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The Journal of Biological Chemistry (JBC) has been a major
vehicle for disseminating and recording the discovery and char-
acterization of proteolytic enzymes. The pace of discovery in the
protease field accelerated during the 1971–2010 period that Dr.
Herb Tabor served as the JBC’s editor-in-chief. When he began
his tenure, the fine structure and kinetics of only a few proteases
were known; now thousands of proteases have been character-
ized, and over 600 genes for proteases have been identified in the
human genome. In this review, besides reflecting on Dr. Tabor’s
invaluable contributions to the JBC and the American Society
for Biochemistry and Molecular Biology (ASBMB), I endeavor
to provide an overview of the extensive history of protease
research, highlighting a few discoveries and roles of proteases in
vivo. In addition, metalloproteinases, particularly meprins of
the astacin family, will be discussed with regard to structural
characteristics, regulation, mechanisms of action, and roles in
health and disease. Proteases and protein degradation play cru-
cial roles in living systems, and I briefly address future directions
in this highly diverse and thriving research area.

Historical aspects of proteases and their role in protein
degradation

In the very first issue of the Journal of Biological Chemistry
(JBC)2 in 1905, P. A. Levene published studies on “The Cleavage
Products of Proteoses” (1). The Journal continually published
state-of-the-art work on proteases over the years, but the pace
of discovery in the field accelerated during the 39 years that
Herb Tabor served as Editor of the JBC. When Herb began his
tenure as Chief Editor of the JBC (1971), we knew the fine struc-
ture and a substantial amount about the kinetics of only a few
proteases. Some examples of the major classes of proteolytic
enzymes (aspartic, serine, cysteine, metallo) that were well
studied before 1970 are as follows.

• Pepsin, an aspartic protease of the stomach, was one of the
first enzymes to be discovered, characterized, and named
(in 1825), and it was crystallized in 1930 (2). Studies of
pepsin’s action can be found in the JBC as far back as in

1907 (3), and mechanistic studies were well on the way in
the 1970s.

• The serine proteases, trypsin and chymotrypsin from pan-
creatic secretions, were also discovered in the 1800s and
crystallized in the 1930s (4). Studies of the action of trypsin
appeared in the JBC in 1907 (5), whereas those for chymo-
trypsin appeared in the 1930s (6).

• Papain, the cysteine protease from papaya, was also dis-
covered in the 1800s, and pure forms were reported in the
JBC as early as 1954 (7).

• Thermolysin, an extracellular metalloprotease from ther-
mophilic bacteria, was the first metalloendoproteinase to
be crystallized and to have its structure solved (8).

• Carboxypeptidase A, isolated in 1937 (9), was kinetically
characterized in 1970 (10).

• Carboxypeptidase B was isolated in 1960 (11), and bacte-
rial collagenase, now known as part of the matrixin family,
matrix metalloproteinase 1 (MMP-1), was isolated in 1957
(12).

There are many excellent reviews available for individually
characterized proteases and for clans and families of proteases,
as well as for general insights into functional aspects of pro-
teases (e.g. see Ref. 13). A comprehensive database, MEROPS, of
the more than 1000 individual proteases is available to all and
contains a wealth of information on the characterization and
evolutionary relationships of the proteases and the current lit-
erature (https://www.ebi.ac.uk/merops/)3 (98). A degradome
database of human proteases (14) and the Handbook of Proteo-
lytic Enzymes (15) are also valuable resources.

There was ample new information coming forth in the 1960s
and early 1970s on protease structure and function about small
(20 –35-kDa), secreted proteases (as those cited above), but lit-
tle to nil was known about cell-associated proteases, cellular
functions of proteases, or protein turnover. In an era when
there were great advances and interest in the mechanisms of
protein synthesis (the 1950s and 1960s), there was a compara-
tive dearth of information and effort devoted to studies of pro-
tein degradation. That said, it had been known since the pio-
neering studies of Schoenheimer (1942) (16) that there was
continuous turnover (synthesis and breakdown) of cellular pro-
teins in eukaryotic cells. The extent of that turnover (intracel-
lular protein degradative process) and its importance to the
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vitality of the cell, however, was unappreciated. Cell death was
recognized to involve proteases, as were wasting diseases (e.g.
type 1 diabetes), and lysosomes (17) were thought to handle
these “downhill” processes through autophagy. Studies with
individual proteins indicated great differences in turnover of
specific proteins (18, 19), and the concept of short- and long-
lived proteins grew with studies of many individual cellular pro-
teins. There was expanding interest in intracellular protein deg-
radation in the 1970s, and one of the first conferences in the
United States that heralded that interest was organized by Bob
Schimke (an Associate Editor of the JBC) and Nobuhiku
Katunuma (a prominent biochemist in Japan) in 1973, the Con-
ference on Protein Turnover in Palo Alto, California (20).

Intracellular protein degradation was clearly of international
interest and activity, leading to several conferences in Europe in
the 1970s. For example, Alan Barrett organized a meeting at
Strangeways Research Laboratory in Cambridge, England, in
1970 on tissue proteinases; in 1973, a group of scientists at the
Martin Luther University in Halle, German Democratic Repub-
lic (GDR), organized a symposium on intracellular protein
catabolism in Reinhardsbrunn, GDR; Vito Turk organized a
meeting in 1975 in Lubljana, Yugoslavia (now Slovenia); and
Professors Horst Hanson and Peter Bohley organized addi-
tional conferences on intracellular proteolytic enzymes and
protein turnover in vivo in 1977 and 1981. The 1970s were
times in which GDR scientists could not leave their country for
meetings, so scientists in Western countries went to the GDR,
placing science above politics. This interest resulted in the for-
mation of committees to increase communication among sci-
entists who work on proteases and protein turnover. First there
was ECOP, the European Committee on Proteolysis, in 1981,
followed by ACOP (the American Committee on Proteolysis,
which organized the 5th International Symposium on Intracel-
lular Protein Catabolism) and then JCOP, the Japanese Com-
mittee on Proteolysis, and finally ICOP, the International Com-
mittee on Proteolysis. These were forerunners of the current
International Proteolysis Society formed in 1999.

Before the 1970s, there were several myths, or misconcep-
tions, regarding proteolytic enzymes and protein turnover.

• There were many who thought the only function of pro-
teases was to totally degrade proteins at certain stages of
life (particularly end-stages) or that their only function
was to be secreted in order to degrade extracellular pro-
teins, thereby releasing amino acids so that other proteins
could be synthesized.

• It was thought that there were very few proteases in cells
and that they could handle a great variety of degradative
functions, similar to the trypsins and chymotrypsins along
with some exopeptidases that could degrade almost any-
thing in the intestinal tract.

• There were bacteriologists who argued that protein deg-
radation did not occur in growing procaryotes because
there was no need to degrade proteins; it was thought that
defective, damaged, or useless proteins could be diluted
out as cells divided rapidly.

• The known proteases were small (20 –35 kDa), compact,
uncomplicated (no carbohydrate, lipids, or cofactors) pro-
teins, and it was assumed that this was generally true of all
proteases.

• Lysosomes were thought to be the primary or only site for
degrading proteins in cells, as well as those taken up by
endocytosis, and that this occurred through the merg-
ing of lysosomes and other cell components to form
autophagic vacuoles.

But now we know that there are a large number of proteases in
and secreted from cells. Proteinases are the largest enzyme gene
family in vertebrates.

• There are 641 protease genes in the human and 677 in the
mouse (i.e. �3% of the human and mouse genome).

• Proteolysis occurs in virtually all stages of a cell’s life, in all
cell compartments, and in many stages of a protein’s exist-
ence: from processing of preproproteins coincident or
soon after protein synthesis to total destruction of the
protein.

• There are a great variety of protease structures, from small
to large (20 kDa to 6 MDa), highly complex structures,
some containing multiple domains with many posttrans-
lational moieties, such as carbohydrates and lipids.

• Lysosomal proteases are not the only intracellular pro-
teases and, under many circumstances, are not the
major proteases responsible for intracellular protein
degradation.

• Evolutionary clans and families of proteases have been
identified, and the classification of individual proteases is
highly developed.

• Proteases regulate fate, localization, and activity of many
proteins.

• Proteases are key factors in the health and viability of cells,
involved in multiple processes, such as replication, tran-
scription, cell proliferation, differentiation, extracellular
matrix remodeling, and processing of hormones and bio-
logically active peptides.

• Proteases are highly regulated (e.g. transcriptionally, post-
translationally, activated, inhibited, and compartmentalized).

• Proteases are involved in many diseases (e.g. cancer, Alz-
heimer’s, arthritis, blood clotting disorders, allergies, and
infections, to name a few).

• Protease inhibitors are useful medically (e.g. angiotensin-
converting enzyme inhibitors for blood pressure, HIV
inhibitors, proteasome inhibitors for myeloma, dipeptidyl
peptidase IV inhibitors for type II diabetes).

• Proteases are useful industrially (e.g. clarifying beer
and wines, preparation of leather, tenderizing, and
debraiding).
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Herb Tabor’s leadership and protease advances during
his oversight of the JBC

The JBC has been a major vehicle for elucidating the struc-
tures and functions of proteases and especially the fundamental
aspects of these enzymes. Herb was responsible for keeping the
Journal focused on fundamental/basic science, not the “hot sci-
ence” of the day. His emphasis was on high-quality science that
stood the test of time and had the potential of long-range
importance and impact.

Herb also has had a strong commitment to and influence on
the ASBMB. I know this through my role as an Associate Editor
of the JBC from 1999 to 2012 and as a president of the ASBMB
(2004 –2006). Herb participated in many activities of ASBMB,
including business and financial meetings, publication commit-
tee meetings, centennial planning meetings, and Associate Edi-
tor and editorial board member activities. When it was time for
the centennial celebration, he felt strongly that both the Society
and the JBC should be celebrated together, even though the
Journal started in 1905, one year before the Society was estab-
lished (1906). He gave strong support to the Associate Editors
and staff. He was always thinking ahead about issues, best ways
to communicate, and new emerging areas. Herb always listened
to various viewpoints, considered alternatives, and had an
uncanny way of getting people to “agree” with his view. He has
always been forward-looking and especially encouraged the
online version of the Journal; the JBC was the first of the life
science journals to appear online (in 1995).

There has been great excitement about proteases and their
functions in the last half-century. A few examples of discoveries
that created that excitement will be mentioned here.

• The discovery of proteasomes and the ATP-ubiquitin pro-
teolytic pathway certainly changed our view of the world
of protein degradation. The role of ubiquitin and the pro-
teasome in intracellular protein breakdown began to
unfold in the 1970s (e.g. see Refs. 21–23) and expanded
rapidly in the 1980s (e.g. see Refs. 24 –28).

• Signal peptidases that cleave signal peptides from secre-
tory and membrane-associated proteins as they are trans-
located across membranes and into the endoplasmic retic-
ulum were discovered in the 1970s and 1980s (e.g. see Refs.
29 –31).

• Caspases, proteases involved in programmed cell death
(apoptosis), were discovered in Caenorhabditis elegans in
the 1980s, and the complexity of the caspase family in
humans and the role of these enzymes in apoptosis and
cytokine processing was revealed in the 1990s (e.g. see
Refs. 32 and 33).

• The HIV-1 protease, the retroviral aspartic protease that is
essential for the maturation of the AIDS virus, was discov-
ered in the 1980s (see Ref. 34). This protease is a prime
target for drug therapy, and inhibitors of the protease,
along with other drugs, have greatly prolonged the lives of
people infected with the virus. The development of inhib-
itors of the HIV-1 protease was accelerated by the large
body of information available about aspartic proteases in

many organisms, which allowed development of specific
viral protease inhibitors. This is an example of the impor-
tance of basic science for therapeutic advances.

• The great variety of cysteine proteases (e.g. cathepsins and
calpains) and their diverse functions have come to light in
recent decades (see, for example, Ref. 35). They participate
in a variety of processes, including autophagy, the lyso-
somal degradation of cellular constituents. The discovery
of the molecular players in the autophagic process has
enhanced our understanding of this process in health and
disease (36, 37).

Advances in metalloproteases, highlighting meprins

Metalloproteases have emerged as a fascinating group of
enzymes. They are present in all kingdoms of living organisms
and have expanded widely during evolution. In 1980, 11 metal-
loproteinases were identified (38). Now we know that the
mouse and human genomes encode �200 metalloproteinases,
the largest group in the proteolytic enzyme realm (39). Most of
these enzymes are secreted from cells or plasma membrane–
bound, and they act pericellularly and extracellularly. They are
involved in tissue differentiation and remodeling during
embryogenesis and in processing biologically active peptides
and cytokines in adult tissues. Angiotensin-converting enzyme
inhibitors to control blood pressure are among the most widely
used inhibitors for humans. Metalloproteinases are also
involved in many diseases, such as cancer and inflammatory
diseases. They and their inhibitors (e.g. TIMPs (tissue inhibitors
of metalloproteinases)) are of great medical interest and have
provided optimism and disappointment in clinical trials. The
use of synthetic inhibitors of metalloproteinases to inhibit can-
cer cell mobility provides great promise but has not yet reached
its potential.

The metzincin superfamily contains most of the known met-
alloendoproteinases (zinc-containing enzymes that cleave pep-
tide bonds internally on protein substrates) (39). The superfam-
ily is composed of six evolutionarily related families: a
disintegrin and metalloproteinases (ADAMs), MMPs, pappa-
lysins (pregnancy-associated plasma proteins), serralysins (bac-
terial enzymes), leishmanolysins (protozoan proteinases), and
astacins (Fig. 1). Each of these families has multiple individual
enzymes and fascinating stories of discovery and functions.
Interestingly, there are relatively low amino acid sequence sim-
ilarities between the protease domains of different families.
However, all of the catalytic domains have strikingly similar
three-dimensional structures as well as a conserved zinc bind-
ing domain (HEXXHXX(G/N)XX(H/D)) at the active site and a
conserved methionine-containing turn (Met-turn) (40). This
review will focus on the astacin family (41, 42), and particularly
meprins of this family.

The astacin family was recognized as a consequence of exten-
sive cloning and sequencing that occurred in the 1980s and
1990s (see Fig. 1). The original members of the family, identified
by sequence similarities, were as follows: the crayfish digestive
enzyme astacin, bone morphogenetic protein-1 (BMP-1) from
human bone, meprins from mouse kidney and human intestine,
and UVS.2, a partial sequence from Xenopus laevis embryos
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(41). The name “astacin family” was chosen because the crayfish
Astacus astacus enzyme was the first to be sequenced and char-
acterized (43, 44). Astacins are present in animals and bacteria;
none have yet been found in plants and fungi. Hundreds of
astacins have been identified as genome sequencing expands to
many species (45). In the human and mouse genomes, six asta-
cin family genes have been identified, which includes two
meprin genes, three BMP-1/tolloid-like genes, and one ovasta-
cin gene. However, in Drosophila melanogaster, there are 16,
and in C. elegans there are 40 astacins. The functions of most of
the astacin genes in D. melanogaster and C. elegans have not
been determined, but in parasitic nematodes, astacin enzymes
are involved in moving through extracellular matrixes and in
Hydra in head regeneration (46).

Of the characterized astacins, the crayfish astacin is the
smallest, containing a 200-amino acid residue catalytic domain.
From cDNA sequencing, it is known that there is a prepro
sequence that is cleaved off during protein synthesis. Pre or
signal sequences are found in all of the astacin family members
examined thus far, presumably to direct the protein into
the endoplasmic reticulum and the secretory pathway. Pro
sequences keep the enzymes inactive as a regulatory mecha-
nism. Whereas the active crayfish protein contains only the
�20-kDa catalytic domain, most of the astacin family members
contain one or more noncatalytic domains, C-terminal to the
protease domain. Many contain one or more copies of an epi-
dermal growth factor (EGF)-like domain, and a CUB (comple-
ment subcomponents Clr/Cls, embryonic sea urchin protein
UEGF, BMP-1) domain (42). These are important for protein–
protein or protein–substrate interactions. The noncatalytic

domains are responsible for the variety of sizes of family mem-
bers, which range from 200 (crayfish astacin) to 900 amino
acids (mouse BMP-1). In addition, many of the more complex
astacins are highly glycosylated proteins, further increasing
their molecular mass and complexity.

Meprins, members of the astacin family, are unique oligo-
meric metalloproteases, containing homo- and hetero-oligo-
mers of two evolutionarily related subunits, � and � (see Fig. 2).
They exemplify the complexity of the metzincin superfamily
members.

Meprins were discovered in 1980 as a consequence of a
search for proteolytic enzymes in diabetic mice (47, 48). In the
process of searching for changes in proteolytic activity and pro-
tein turnover in streptozotocin-induced diabetes in BALB/c
mice, proteolytic activities were measured in liver, kidney, and
muscle tissues using a variety of substrates. No fundamental
changes were found in degradation rates in the liver or in the
proteolytic activities measured in diabetic mouse tissues com-
pared with controls. However, it was noted that the kidneys of
these mice had a relatively high activity using azocasein as sub-
strate at basic pH values (pH 9). The enzyme was then purified
from BALB/c mouse kidney and found to be a glycosylated
membrane-bound metalloprotease with a subunit molecular
mass of 85–90 kDa (48). The subunits formed disulfide-bridged
dimers, and the dimers formed tetramers of 320 kDa. The
human equivalent of mouse meprin, an intestinal enzyme
called PABA-peptide hydrolase (named after the substrate
hydrolyzed) was reported in 1982 (49), but the similarities of
the mouse and human enzymes were not recognized until both
were cloned and sequenced (41).

Figure 1. Metzinicins, astacins, and meprins. The metzincin superfamily includes the astacins, the ADAMs, the MMPs, the serralysins, and the papalysins and
leishmanolysins (last two families not shown). Over 180 individual astacins have been identified in animals and bacteria, and several examples are shown,
including the crayfish astacin, fly and human tolloids, and the meprins from hydra (HMP2), zebrafish, human, and mouse/rat. The ribbon diagram shows that the
protease domain of meprins consists of five-stranded �-sheets, three �-helices, and a coil structure in the lower subdomain. The zinc (gray sphere) is penta-
coordinated by three histidines of the motif HEXXHXXGXXH, a water molecule, and a tyrosine positioned by the Met-turn. Adapted from Ref. 39. This research
was originally published in Molecular Aspects of Medicine. Sterchi, E. E., Stöcker, W., and Bond, J. S. Meprins, membrane-bound and secreted astacin metallo-
proteinases. Molecular Aspects of Medicine. 2008; 29, 309 –328. © Elsevier Ltd.
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In 1983, BALB/c mice were unavailable for a period, and
members of my laboratory collected kidneys from two other
inbred mouse strains, C3H/He and CBA mice. In contrast to
BALB/c mice, these mice had very low kidney azocaseinase
activity. This led to a publication (50) describing the “defi-
ciency” in many “C stock” mice. The publication was noticed by
Chella David, a mouse immunogeneticist at the Mayo Clinic,
who informed us that many C stock mice were bred for trans-
plantation studies and had differences in the major histocom-
patibility genes (H-2 genes). These observations led to collab-
orative studies and the discovery that a gene (the Mep-1a gene)
on mouse chromosome 17 near the H-2 complex was respon-
sible for the level of expression of meprin activity in mouse
kidney (51, 52). It is now known that the Mep-1a gene codes for
the meprin � subunit (53). Further studies with the “deficient”
or low-meprin mouse strains revealed that they expressed a
latent form of meprin (54), containing meprin � subunits. The
catalytic domain of meprin � is 58% identical to that of meprin
�, and is encoded on mouse chromosome 18 (55), an example of
divergent evolution from a single gene (53). The studies of
meprin � and � in different strains of mice have led us to under-
stand that there are several different combinations of meprin �
and � that exist in mouse kidney to form the quaternary struc-
ture of the meprins, and the isoforms of meprin A and B (56),
EC 3.4.24.63 and EC 3.4.24.18, respectively. The reason for the
lack of expression of the � subunit in adults of some inbred
mouse strains is unknown, but it is known that this is develop-
mentally regulated because all mouse strains express both
meprin � and � in embryonic kidney and until puberty (57).

The work on meprins in the 1980s was with proteins isolated
from kidney brush-border membranes of adult mice; those
from mice with high azocaseinase activity contain both � and �
subunits, whereas those with the low meprin activity (“defi-
cient” strains) contain only � subunits. The mouse � subunit is
fully active at the plasma membrane, whereas the � subunit is
predominantly latent but can be activated by trypsin-like
enzymes. Studies of the activation of meprin � indicate that

removal of the prosequence allows for formation of hydrogen
bonds involving the two N-terminal residues that are critical for
enzyme structure (58). With the advances of molecular biology
in the 1980s and 1990s, especially cloning, sequencing, and site-
directed mutagenesis, progress on structure and function pro-
ceeded at a rapid pace.

Meprin isoforms are structurally quite complex, with multi-
domain, multimeric structures, as shown diagrammatically in
Fig. 2. The oligomers are composed of meprin � and/or � dis-
ulfide-linked dimers that may self-associate to form higher-
molecular weight isoforms. Homomeric meprin A contains
only � subunits, heteromeric meprin A contains both � and �
subunits, and homomeric meprin B contains only � subunits.
Both subunits are glycosylated, and the asparagine-linked sug-
ars are important for disulfide bond formation, oligomeriza-
tion, stability, secretion, and enzymatic activity (59, 60). As for
the domain structure, both subunits contain a signal sequence,
prosequence, protease (catalytic) domain, MAM domain,
TRAF domain, EGF-like domain, transmembrane domain, and
small C-terminal tail (6 –26 amino acids). The noncatalytic
domains are important for transport, structure, and activity of
the proteases (Fig. 3) (61, 62). One notable difference between
the � and � domain structures is that meprin � contains an I
(inserted) domain between the EGF and TRAF domains that is
missing in the � subunit. There is a proteolytic cleavage within
the I domain during maturation in the secretory pathway that
results in the release of this subunit from the membrane (63–
65). Removing the I domain from the meprin � subunit by site-
directed mutagenesis showed that the I domain is necessary
and sufficient for proteolysis and release of the subunit from the
membrane (Fig. 3). Therefore, meprin isomers containing only
meprin � are secreted into the extracellular space. The disul-
fide-linked meprin � dimers tend to associate noncovalently
into high-molecular weight complexes of 1– 6 MDa, among the
largest proteolytic complexes secreted in living systems (66)
(Fig. 4). This self-association concentrates the monomer
meprin A in the extracellular environment and may be impor-

Figure 2. Domain and oligomeric structure of meprins � and �. Domains are as follows: S (signal sequence), Pro (prosequence), protease, catalytic domain,
MAM (meprin), A5 protein, protein-tyrosine phosphatase �, TRAF homology, I (inserted), EGF (epidermal growth factor-like), TM (transmembrane-spanning),
and C (cytoplasmic). During maturation, the meprin � subunit is cleaved in the I domain, separating the subunit from the membrane. As a result, three isoforms
of meprin exist: membrane-bound meprin B (a homodimer of � subunits), membrane-bound meprin A (heterotetramers of � and � subunits, found in ratios
of �2�2 and �1�3), and secreted meprin A (homomeric multimers of � subunit dimers). The secreted forms of meprin � dimers tend to self-associate and form
large multimers (1– 6 MDa) extracellularly.
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tant for stability and action, particularly at sites of infection and
in the harsh environment of the intestine. Membrane-associ-
ated forms of meprins all contain meprin � subunits and may
consist of meprin � disulfide–linked dimers, meprin �/�
dimers that form tetramers, or meprin �/� dimers that associ-
ate noncovalently with meprin � dimers. Cross-linking studies
with the meprin B dimer have revealed a compact structure
with inter- and intradomain contacts within the protein,
including TRAF–TRAF interactions (67). An X-ray structure of
human meprin B is available showing that the active site is close
to the membrane, which has implications for the shedding
activity of this isoform (68).

The localization of meprins to kidney and intestinal brush-
border membranes was originally deduced from cell fraction-
ation studies and later through immunohistochemical studies
(69, 70). Meprins are also expressed in leukocytes, and studies
with these cells from mice with a deleted meprin � gene showed
a diminished ability to move through extracellular matrix (71).
Meprin expression in monocytes and natural killer cells affects
homeostasis of these cells (72). Human meprin � and � sub-
units are expressed in different layers of the epidermis and are

involved in cell proliferation and terminal differentiation of
human skin cells (73). Through mRNA studies, meprin sub-
units have been detected in pancreas, testis, fetal liver, embry-
onic stem cells, and brain tissues. The highest expression levels
are in kidney and intestine. For this reason, the functions of
meprins have primarily been studied in these tissues. Addi-
tional insights into the function of the meprins have been
gathered by creating knockout mice and challenging the mice
(74, 75).

Meprins are capable of hydrolyzing a wide variety of sub-
strates, from peptides to proteins. Mouse meprin B has a clear
preference for acidic residues at cleavage sites; by contrast,
homomeric meprin A prefers to cleave bonds containing small
or hydrophobic amino acid residues (76, 77). These preferences
lead to clear differences in the hydrolysis of peptide substrates.
For example, meprin B, but not homomeric meprin A, cleaves
gastrin and osteopontin; homomeric meprin A, but not meprin
B, cleaves bradykinin and substance P. Meprin B also cleaves
cell surface proteins, such as E-cadherin and ENaC (epithelial
sodium channel) and thereby can affect cell– cell interactions
and ion transport (78). Meprin A cleaves the tight junction pro-
tein occludin, which impairs epithelial barrier function and
enhances monocyte migration (79). The meprin isoforms also
have different preferences for cytokine activation and degrada-
tion, and the balance of the meprin isoforms could have impor-
tant implications in cytokine profiles and the progression of
inflammatory responses (80, 81, 82). High-throughput tech-
niques, in a search for substrates of human meprins, have
revealed many substrates and interesting links between
meprins and ADAMs (83).

There is good evidence that meprins are involved in several
disease processes, and these are areas that will be explored in

Figure 3. Intracellular trafficking of WT meprin � subunits and mutants.
WT meprin � is secreted from cells after maturation in the endoplasmic retic-
ulum (ER) and Golgi; if the I domain is deleted by site-directed mutagenesis
(�I mutant), the subunit is retained in the endoplasmic reticulum/cis-Golgi; if
the MAM domain is deleted (�MAM mutant) the subunit misfolds, and this
triggers retrograde transport to the cytosol and degradation by the protea-
some (64).

Figure 4. Oligomerization of meprin A and B. Shown are electron micro-
graphs of rat meprin A and B expressed in human embryonic kidney 293 cells.
Negatively stained samples of various isoforms are shown. Shown clockwise
from left to right are the following: heteromeric meprin A containing tetram-
ers of � and � subunits (a); homomeric meprin B (dimers of � subunits) (b);
latent homomeric meprin A containing homodimers of meprin � subunits
that associate noncovalently to form crescents, tubes, and spirals containing
up to 100 subunits (d); and activated homomeric meprin A forming primarily
rings and crescents containing about 10 –12 subunits (c). Adapted from Refs.
39 and 66. This research was originally published in Molecular Aspects of
Medicine. Sterchi, E. E., Stöcker, W., and Bond, J. S. Meprins, membrane-bound
and secreted astacin metalloproteinases. Molecular Aspects of Medicine. 2008;
29, 309 –328. © Elsevier Ltd. and the Journal of Biological Chemistry. Berten-
shaw, G. P., Norcum, M. T., and Bond, J. S. Structure of homo- and hetero-olig-
omeric meprin metalloproteases: dimers, tetramers, and high molecular mass
multimers. Journal of Biological Chemistry. 2003; 278, 2522–2532. © the Amer-
ican Society for Biochemistry and Molecular Biology.
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the future and have therapeutic possibilities. For example,
meprins are present at sites of inflammation, where they affect
migration of leukocytes, degrade tight junction proteins, and
activate/degrade cytokines. Studies of meprin � knockout mice
have shown that decreased expression of this subunit is associ-
ated with increased intestinal inflammation in an experimental
model of intestinal bowel disease. Furthermore, the human
MEP1A gene is a susceptibility gene for inflammatory bowel
disease, particularly ulcerative colitis (84). Meprins also influ-
ence the course of urinary tract infections in mice (85). Other
studies with mice have implicated meprins in the pathogenesis
of kidney diseases (75, 85– 89), and polymorphisms in the
human MEP1B gene are associated with diabetic nephropathy
in Pima Indians (90). Meprins are expressed in various cancer
cells (e.g. colon and breast) and are thought to play a role in
tumor cell invasion and migration (91–94). Meprins have also
been found to cleave amyloid precursor protein (APP) in vivo,
implying a role in neurodegenerative diseases, such as Alzhei-
mer’s (95). Recent studies of the interaction of meprins with
mucins in the intestine imply a role in protecting the host epi-
thelium from bacteria and affecting the microbiome (96).

One of the challenges of the future is to understand the func-
tion of proteases in living organisms and to be able to activate
and inhibit them selectively in specific tissues. Proteases exist in
the context of networks of other molecules and other proteases,
in cellular compartments, at cellular membranes, and in the
extracellular milieu, and these environments are no doubt crit-
ical in determining function. System-wide approaches, such as
degradomics that uses a combination of genetics, cell biology,
and proteomics to identify substrates and active proteases, will
be necessary to understand and regulate proteolytic systems
(97). Herb Tabor has built the foundation for the JBC to move
past the identification and characterization of individual
enzymes and into complex multicomponent systems to shed
more light on the role of proteases in the fabric of life.
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