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Yeast prions have become important models for the study of
the basic mechanisms underlying human amyloid diseases.
Yeast prions are pathogenic (unlike the [Het-s] prion of
Podospora anserina), and most are amyloid-based with the same
in-register parallel �-sheet architecture as most of the disease-
causing human amyloids studied. Normal yeast cells eliminate
the large majority of prion variants arising, and several anti-
prion/anti-amyloid systems that eliminate them have been
identified. It is likely that mammalian cells also have anti-amy-
loid systems, which may be useful in the same way humoral,
cellular, and innate immune systems are used to treat or prevent
bacterial and viral infections.

Herb Tabor, my mentor

I began my scientific career after completing my medical
internship when I became a postdoc with Herb and Celia Tabor
in 1967 at the National Institutes of Health. I was fortunate to be
working with someone who was such an exceptional model
scientist. After 3 years as a postdoc with Jerry Hurwitz in New
York, I returned to Herb’s department in an independent posi-
tion. Herb had built a department of diverse interests that was
unified by daily literature and weekly work seminars, both fea-
turing intense discussion and critique. It was an excellent envi-
ronment for learning and developing one’s own program.
Although I became the Lab Chief (NIH’s equivalent of the
Department Chair) in 1996, my relationship with Herb has
remained essentially unchanged for over 50 years (it took me
�25 of those years before I switched from “Dr. Tabor” to
“Herb”). Herb Tabor is totally devoted to science, has always
done experiments himself, is far more concerned about getting
the right answer to a problem than in making a splash, and is the
least vain of any scientist I have ever met. His total honesty,
sincerity, and scientific focus have been a model I have
attempted to emulate (though largely without success). His
devotion to science did not mean neglect of his family, but
rather a total involvement of his family in science. Celia White
Tabor worked together with Herb for many years, and all of his
wonderful children have had science careers. A large part of

Herb’s life has been science in the lab, but an equal or maybe
even larger part has been scientific publishing. His technologi-
cally forward-looking approach and his broadening the scope
and enlarging the size of the JBC had an enormous impact.

Among the lessons I have learned from Herb are:

• Any scientific area has the potential to be interesting, if
studied with enough depth and skill.

• “Depth is better than width.”

• The word “critical” was used in a positive sense to describe
someone who could thoughtfully, fairly, and accurately
evaluate a piece of work.

• “Kinetics are meaningless.”

• “Some scientists may not want to be acknowledged
because they do not think much of your work.”

• “I’ve told you all I know, maybe more.”

Although my own work has taken a largely genetic direction, the
lessons I learned from Herb are not specific to any area of science,
and I know I have benefited greatly from his constant example.

The word “prion,” meaning “infectious protein,” without any
nucleic acid being required for the transmission of the infec-
tion, originated in studies of the transmissible spongiform
encephalopathies of mammals (1–3). However, the proof of the
existence of a prion had to await the discovery that the non-
chromosomal genetic elements, [URE3] and [PSI�] of Saccha-
romyces cerevisiae, are based on altered infectious forms of
Ure2p and Sup35p, respectively (4). Both the mammalian
transmissible spongiform encephalopathies and the yeast pri-
ons are self-propagating amyloids. Amyloid is a linear polymer
of a particular protein, a sort of one-dimensional crystal in
which the predominant structure is �-sheet, with the �-strands
perpendicular to the long axis of the filaments. Of late, evidence
has been found for prion-like behavior, or even frank infection, for
such classical amyloidoses as amyloidosis A (5, 6), Alzheimer’s dis-
ease (7–10), multiple system atrophy (11), amyotrophic lateral
sclerosis (12), and type 2 diabetes (13). This developing unification
of the human amyloidoses around the prion model enhances the
importance of an in-depth study of the prions of S. cerevisiae, with
their facile genetic manipulability.

Yeast prions

Two long-known nonchromosomal genetic elements of
yeast, [URE3] (14) and [PSI�] (15), were identified as prions of
Ure2p and Sup35p based on their outré genetic properties (4).
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Ure2p, a repressor of genes encoding transporters and assimi-
lation enzymes for poor nitrogen sources, is active when a good
nitrogen source is available (16), but in [URE3] strains, Ure2p is
largely trapped in infectious amyloid filaments (17–20). The
aggregated form is evidently largely inactive as [URE3] cells
have a phenotype similar to ure2� cells, the inappropriate dere-
pression of the controlled genes despite the presence of a good
nitrogen source. Sup35p is a subunit (with Sup45) of the trans-
lational termination factor (21, 22). In [PSI�] cells, Sup35p is in
infectious amyloid aggregates (23–29), and increased read-
through of stop codons ensues.

A wide array of other prions has now been found in S. cerevi-
siae and one particularly revealing prion in the filamentous fun-
gus Podospora anserina (30). [PIN�] is an amyloid-based prion
of Rnq1p, a protein of unknown function (31–33). [PIN�] is
manifest only (so far) by its facilitation of the (nonetheless
rare) generation of other prions, originally [PSI�] (31) and
later [URE3] (34) and [SWI�] (35). Extensive evidence indi-
cates that this stimulation of prion formation occurs by an
inefficient form of the same seeding process that is involved
in propagation of all of the amyloid-based yeast prions (36).
There is clinical and experimental evidence that similar
cross-seeding is an important feature of human amyloidosis
(37, 38). Because nearly all known pathogenic amyloids have
a similar architecture (see below), it is likely that this poten-
tiation of formation of one prion/amyloid by another is a
general phenomenon.

Prion variants are a feature of all pathogenic prions, whether
of animals or yeast (39). A single prion protein with a single
sequence can be the basis of a wide array of prion variants (or
prion strains), with distinct biological properties and different
amyloid conformations (29, 40). Each variant is relatively stably
propagated, implying that there must be a mechanism by which
the amyloid filaments act as a template to force monomers join-
ing the end of the filaments to assume the same conformation
as molecules already in the filament. In yeast, prion variants
may differ in the intensity of their phenotype (strong versus
weak), stability of propagation, ability to propagate in the face of
overproduction or deficiency of various chaperones or other
cell components, ability to cross interspecies or intraspecies
barriers, and other properties. Using a nonselective system, it
was shown that the [PSI�] prion exists as a “cloud” of prion
variants that segregate from each other as cells grow and
mutate at some frequency (41), thus establishing the “prion
cloud” model (39, 42).

Prion domains are the part of the protein that actually forms
the amyloid and is roughly the same as the part needed to trans-
mit the prion (17, 19, 26, 43). Both the extent of amyloid struc-
ture and the region needed to faithfully propagate the prion
vary with the prion variant (29, 44, 45). The “prion domains”
have normal nonprion functions. The Ure2p prion domain is
necessary for the stability of the whole molecule against degra-
dation, and thus for the full nitrogen regulation function (46).
The prion domain of Sup35p is necessary for general turnover
of mRNAs (47), for cytoskeleton-associated translation (48),
and for recovery from the stationary phase (49).

Structure of infectious yeast prion amyloids

In an attempt to show that there were sequences in the prion
domains of Ure2p and Sup35p needed for prion formation, it
was, surprisingly, found that randomly shuffling these domains
produced sequences that in all cases were able to form prions
(50 –52)! This proved that it was not the sequence but rather the
amino acid content of these domains that made them suitable
for prion formation, and detailed analysis has revealed which
residues favor or impair prion formation (53, 54). The sequence
independence of prion formation, combined with the well-
known barriers to prion propagation produced by even a single
amino acid difference in some cases (55–57), indicated that the
faithful propagation of prion variant/strain information was
not based on “complementarity,” as for DNA or RNA, but
rather a principle of “identity” (52). Any complementarity fea-
ture (self-complementarity in this case) would be destroyed by
shuffling the sequence. It was realized that an anti-parallel
�-sheet, a �-helix, or an out-of-register parallel �-sheet would
rely on complementarity between neighboring amino acids
in different molecules (52). However, a parallel, in-register
�-sheet features rows of identical amino acid residues along the
long axis of the filament, such as had already been shown for A�
amyloid (58). Shuffling the sequence would not prevent identi-
cal residues from interacting in a parallel in-register structure,
only their order would change. For this reason, we proposed
that the prion amyloids of Ure2p and Sup35p had an in-register
parallel �-sheet architecture (52).

Based on extensive studies of highly infectious amyloids of
Sup35p, Ure2p, and Rnq1p, using solid-state NMR (59 –63) and
EM (particularly mass/length measurements) (64 –66), it is
clear that each of these prion amyloids in fact does have a
folded, parallel, in-register, �-sheet architecture. Indeed, the
amyloids formed by the shuffled prion domains also had this
architecture (67).

Mechanism of conformational templating

The fact that a single protein sequence can be the basis for an
array of prion variants apparently differing only in protein con-
formation implies that there must be a mechanism for proteins
to template their conformation and to transmit this conforma-
tion information to other molecules of the same sequence. This
is the central mystery of prions. Based on the folded in-register
parallel �-sheet architecture of yeast prion amyloids, we have
suggested that the same forces of favorable interaction between
identical side chains that keeps this architecture in-register also
ensures that a new molecule joining the end of a filament will
adopt the same structure as molecules already in the filament
(Fig. 1) (68, 69). A line of glutamine residues along the long axis
of a filament can form a line of hydrogen bonds, but only if the
molecules are in-register. Thus, this interaction stabilizes the
in-register architecture. The same is true of a line of aspar-
agines, serines, or threonines. A line of identical hydrophobic
residues can have a series of stabilizing hydrophobic interac-
tions if the structure is in-register. Charged residues would of
course destabilize an in-register structure, and charged resi-
dues are rare in the prion domains of Ure2p, Sup35p, and
Rnq1p. Furthermore, mutations blocking prion transmission
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are often uncharged-to-charged amino acid changes (55, 56). A
molecule of the prion protein joining the end of the filament, to
have these favorable side-chain interactions, must have a turn
between the �-strands at the same location as those molecules
already in the filament. This results in the end of the filament
acting as a template to transmit conformation information to
the new molecule joining the end of the filament (68, 69). This
templating explains how proteins can act as genes, templating
conformation in analogy to the templating of sequence by rep-
licating DNA or RNA (Fig. 1).

Nearly all of the pathogenic amyloids associated with human
diseases that have been examined have the same folded in-reg-
ister parallel �-sheet architecture (58, 70 –77) as observed for
these yeast prions, with one exception being transthyretin (78 –
80). It is likely that templating of conformational information
for the human pathologic amyloids proceeds by the same
mechanism discussed here.

Yeast prions [PSI�], [URE3], [SWI�], and [PIN�] are
pathogenic

Most variants of [PSI�] and [URE3] arising in WT laboratory
strains severely slow growth or actually kill the host cells (81). A
beneficial prion variant would be widespread in wild strains,
particularly because they are infectious, but [PSI�], [URE3],
[SWI�], and [PIN�] are known to be rare in wild isolates (82–
84), more rare than the 2-�m DNA plasmid that is known to
cause a �1% growth detriment (82, 85). These and other results
show that no variants of these prions are beneficial on the net
(86).

Anti-prion systems in yeast

There is a wide array of cellular components whose overpro-
duction or deficiency leads to the loss of one or another prion
(36, 87, 88). These studies have been important in establishing

mechanisms affecting prions, but it is generally unclear which
of these effects represent physiologic (or pathophysiologic)
responses of cells to prions. It is of particular interest to know
whether there are systems that cure yeast prions in a normal
cell, without overproduction or deletion of anything, and it is
these that we refer to as “anti-prion” systems. As expected for
a pathogenic infectious agent, the cell indeed has defenses
against yeast prions at several levels. Prion formation is partially
blocked; having formed, several systems cure the nascent pri-
ons; and other systems prevent prion-based pathology (Table
1). As with DNA repair systems, these anti-prion systems are
each only partially effective.

Ribosome-associated Hsp70s inhibit [PSI�] formation

Ssb1 and Ssb2 are Hsp70 family members that are associated
with the ribosomes and are involved in folding of nascent poly-
peptides (89, 90). For example, in the absence of the Ssb pro-
teins, aggregated proteins accumulate in the cell (91). In ssb1�
ssb2� cells, the frequency of [PSI�] arising is about 10-fold
higher than in a normal cell (92, 93). Restoration of Ssb1 does
not cure the [PSI�] variants arising in the double mutant, indi-
cating that the Ssb proteins largely prevent [PSI�] generation,
rather than blocking their propagation (92). However, dissoci-
ation of Ssb’s from ribosomes in cells grown on minimal
medium has a [PSI�]-curing effect (94).

Hsp40 family member Sis1p prevents toxicity of otherwise
mild [PSI�] prion variants

Although a majority of [PSI�] prion variants are highly toxic
to cells, the variants usually studied do not produce an obvious
growth defect. The studies of wild strains (above) show that
even these variants are detrimental in the wild. However,
Masison’s group (95) has shown that these “mild” [PSI�]
variants have the potential to prevent cell growth except for

Figure 1. A, folded parallel in-register �-sheet architecture of yeast prion amyloids Sup35p, Ure2p, and Rnq1p (59 – 61, 63). It is proposed that prion variants
differ largely in the location of the turns in the strands/folds in the �-sheet (B), with favorable H-bonding or hydrophobic interactions among aligned side
chains ensuring alignment of identical residues in adjacent molecules. These favorable interactions drive new molecules joining the end of the filament to have
their turns in the same places as molecules already in the filament, and this constitutes templating of conformation (68, 69). Reprinted with permission from
Ref. 69. This research was originally published in Biochemistry. Wickner, R. B., Edskes, H. K., Bateman, D. A., Kelly, A. C., Gorkovskiy, A., Dayani, Y., and Zhou, A.
Amyloids and yeast prion biology. Biochemistry 2013;52:1514 –1527. © the American Chemical Society.
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the action of the Sis1p protein. Sis1p is essential for growth,
but deletion of the C-terminal domain of the protein does
not substantially affect growth of [psi�] cells. However,
[PSI�] cells with the Sis1p C-terminal deletion grow poorly
or not at all (95).

F-box protein Ylr352w/Lug1 prevents toxicity of mild [URE3]

A general screen for genes that are essential specifically in
[URE3] cells was carried out using transposon mutagenesis
with the Hermes transposon (96). Genes that could be mutated
in a [ure-o] cell, but not in a [URE3�1] strain, were inferred to
be either necessary for propagation of [URE3] or for cell
growth/survival in the presence of the prion. The most dra-
matic hit from the screen was YLR352W (renamed LUG1 for
“lets [URE3] grow”) (96), encoding a substrate-specifying sub-
unit of a cullin-containing multisubunit E3 ubiquitin ligase
(97). Other subunits of this complex and subunit-modifying
proteins also were detected in the screen (96). Lug1p is one of
20 substrate-specifying subunits with a common sequence
called the “F-box” (97–100), but the substrates specified by
Lug1p are unknown. The lug1� [URE3] strains could not grow
on glycerol media, whereas lug1� [ure-o] cells grew normally.
The growth defect was suppressed by overproduction of
Hap4p, a transcription factor that stimulates expression of
mitochondria-related genes, consistent with the requirement
for oxidation for utilization of glycerol (96). The growth defect
of lug1� [URE3] strains was also suppressed by mutation
of GLN1, encoding glutamine synthase. Like cells carrying
[URE3], gln1 mutants are defective in nitrogen catabolite
repression, the diminished expression of genes for using poor
nitrogen sources when a good nitrogen source is available. This
indicates that the inability to utilize glycerol of the lug1 [URE3]
strains was not a consequence of failure to control nitrogen
catabolism. Growth of lug1� strains on proline, a condition that
is known to shut off Ure2p’s activity in repressing NCR genes,
does not affect cell growth, confirming the conclusion that
Ure2p has another function independent of NCR (96). It
remains unclear what is the relevant target of Lug1p, but it is
clear that this protein prevents the pathologic effects of an oth-
erwise relatively mild variant of [URE3].

The same screen also showed a substantial decrease in detec-
tion of mutations in many chaperone genes, including some
that had not previously been implicated in [URE3] prion prop-
agation. This effect was observed for HSP82 and HSC82
(encoding Hsp90 paralogs), HSP104 and SSA2 (known to be

necessary for [URE3] propagation (101, 102)), YDJ1 and CAJ1
(Hsp40s), STI1 (co-chaperone of Hsp90s), FES1 and SSE1
(nucleotide exchange factors for Hsp70s known to affect
[URE3] (103)), HSP26 and HSP42 (“small” heat-shock pro-
teins), SSB1 and SSB2 (ribosome-associated Hsp70s), and
SSA1 and SBA1. Whether these effects reflect specific toxic-
ities of [URE3] prevented by the chaperones, or a synergistic
toxicity of prion-induced stress and stress due to chaperone
deficiency, remains to be determined. Nearly all of these
chaperones have close human homologs (HSP104 is a nota-
ble exception), making understanding this phenomenon of
particular interest.

Normal levels of Btn2p and Cur1p cure most [URE3] variants

Overproduction of either of two paralogs, Btn2p or Cur1p,
cure [URE3] (104). In the process, Btn2p collects the aggregates
of Ure2p at one site in the cell (instead of being scattered about
the cytoplasm), and this collection spot co-localizes with a spot
of Btn2p (104). Apparently, on cell division, the probability of
daughter cells getting any filaments is thereby reduced, produc-
ing frequent cured cells (104). Consistent with this “sequestra-
tion model,” Btn2p can also collect nonprion aggregates of
other proteins at a single cellular site (105, 106). However,
Cur1p did not co-localize with Ure2p aggregates in the course
of its curing of [URE3] (104).

To determine whether normal levels of Btn2p or Cur1p have
an anti-prion action, a series of [URE3] prion variants was iso-
lated in a btn2� cur1� strain, and the normal levels of each
protein were restored by mating or by other means (107).
Remarkably, nearly all (�90%) of these [URE3] variants were
cured in the WT environment, although most were quite sta-
ble in the btn2� cur1� strain. Indeed, the frequency of
[URE3] arising spontaneously was elevated about 5-fold in
btn2� cur1� strains (107). A propagon-measuring method
(108) revealed that variants of [URE3] with high seed num-
ber (presumably many amyloid filaments per cell) could only
be cured by overproduction of Btn2p or Cur1p, whereas
those variants with low seed numbers were cured by normal
levels of these proteins (107). Thus, there are far more prions
arising than the few that manage to escape the cellular anti-
prion systems.

Btn2p overproduction curing of [URE3] requires Hsp42
(107), a small chaperone also known to be involved in collecting
nonprion aggregates of denatured proteins (109). Hsp42 over-
production can also cure [URE3] (107). Btn2p overproduction

Table 1
Yeast anti-prion systems active without overexpression or deficiency
5PP-IP5 is 5-diphosphoinositol pentakisphosphate.

Anti-prion protein Anti-prion protein activity Prion affected Effect Ref.

Ssb1p, Ssb2p Ribosome-associated Hsp70 [PSI�] Prevents [PSI�] formation 92, 94, 142
Btn2p Collector of aggregates [URE3] Cures by sequestration of amyloid filaments 104, 107
Cur1p ?? [URE3] Cures by unknown mechanism 104, 107, 110
Hsp104 Disaggregating chaperone [PSI�] Cures–mechanism controversial: asymmetric segregation

or blocking Hsp70 access for filament cleavage
115, 125–127, 130

Siw14p 5-Pyrophosphate-inositol-hexakisphosphate
pyrophosphatase

[PSI�] Cures by lowering 5PP-IP5 levels 131, 132

Upf1p, Upf2p, Upf3p Nonsense-mediated mRNA decay factors [PSI�] Cures, perhaps by either binding Sup35p monomers
or binding to filaments blocking extension

138

Sis1p Hsp40 chaperone [PSI�] Prevents lethality of normally mild variant 95
Lug1p/YRL352wp F-box protein; substrate-specifying subunit

of cullin ubiquitin ligase
[URE3] Allows growth of [URE3] strains on glycerol 96
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curing of [URE3] does not require Cur1p nor does Cur1p
overproduction curing require Btn2p (107). The facts that
Cur1p does not co-localize with Ure2p aggregates in the pro-
cess of curing [URE3] (104) and that Cur1p overproduction
curing does not require Hsp42 (107) suggest that Cur1p and
Btn2p cure by different mechanisms, despite their sequence
similarity (110).

Btn2p was previously known as a mediator of protein traf-
ficking in the endosome pathway (111, 112), and Btn3p, an
inhibitor of Btn2p’s action in protein sorting, also inhibits its
ability to sequester the [URE3] amyloid filaments and cure
the prion (113). This is the only connection yet defined
between the protein-sorting and aggregate-collecting activ-
ities of Btn2p.

Normal levels of the Hsp104 disaggregase cures most [PSI�]
variants

Hsp104 is a disaggregating chaperone that, in concert with
Hsp40s and Hsp70s, disaggregates denatured proteins allowing
cells to recover from heat shock (114). Hsp104, working with
Hsp70s, Hsp40s, and nucleotide exchange factors, cleaves prion
amyloid filaments to generate new filament ends and thus new
growing points (23, 87, 115–118, 121). However, overproduc-
tion of Hsp104 cures the [PSI�] prion (115) and [URE3] to a
minor extent (104). The propagation-promoting activity of
Hsp104 involves its removing monomers from the middle of an
amyloid filament thereby breaking it into two pieces (119, 120).
Inhibition of Hsp104 by millimolar concentrations of guanidine
results in the arrest of new filament formation, and eventual
curing of the prion in most progeny cells as the filaments are
diluted by cell growth (108, 122–124).

The mechanism of the [PSI�]-curing effect of Hsp104 over-
production is still controversial, despite extensive study. One
line of evidence shows that Hsp104 has a specific binding site in
the M (middle) domain of Sup35p (125) and that excessive

Hsp104 blocks access of Hsp70s to the filaments, thereby pre-
venting filament cleavage (126). Another study shows that
overproduced Hsp104 results in asymmetric segregation of
prion seeds, resulting in frequent loss of the prion (127). A
third group proposes that the overproduction curing activity
of Hsp104 is a “trimming” activity, removing monomers
from the ends (in contrast to cleavage of filaments in the
middle) (128).

To determine whether normal levels of Hsp104 cure some
[PSI�] variants as they arise, we used the same approach as
discussed above for Btn2 and Cur1. We used the hsp104T160M

mutant that propagates [PSI�] normally but cannot cure
[PSI�] even if overproduced (129). A series of [PSI�] variants
isolated in this strain was tested for the ability to propagate in an
HSP104 host, and about half were unable to do so (130). The
frequency of [PSI�] arising spontaneously was elevated over
10-fold in hsp104T160M hosts. These results indicate that the
normal Hsp104 (without overexpression) cures many [PSI�]
variants as they arise (130).

Inositol pyro-/polyphosphates and [PSI�] propagation

In a general screen of the knockout collection for mutants
defective in anti-[PSI�] activity, two isolates were siw14::
kanMX mutants (131), lacking a pyrophosphatase specifically
active on 5-pyrophosphoinositol pentakisphosphate, and thus
having elevated levels of this compound (Fig. 2) (132). We
found that nearly all [PSI�] variants require some inositol poly/
pyrophosphate and that 5-pyrophosphoinositol tetrakisphos-
phate, inositol hexakisphosphate, or 5-pyrophosphoinositol
pentakisphosphate could support [PSI�] propagation (131). In
the absence of the 5-pyrophosphoinositol polyphosphates, ele-
vated levels of the 1-pyrophosphoinositol polyphosphates
inhibited [PSI�] propagation (131). The target(s) of the inositol
poly/pyrophosphates in exerting these effects is at this time
unclear. The inositol poly/pyrophosphates have a wide array of

Figure 2. Inositol pyro/polyphosphate pathways showing [PSI�]-supporting (green arrows) and [PSI�]-inhibiting (red symbol) species (mod-
ified from Ref. 131). IP3, inositol 1,4,5-trisphosphate; IP4, inositol tetrakisphosphate; 5PP-IP5, 5-diphosphoinositol pentakisphosphate; IP6, inositol
1,2,3,4,5,6-hexakisphosphate.
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activities (133, 134), making this a difficult task. Wu et al. (135)
prepared affinity resins with the inositol poly/pyrophosphates
that support [PSI�] and identified yeast proteins that adhere to
columns of these resins. Among these were Hsp26p, Sse1p, and
Ssb1,2, each of which has been reported to affect [PSI�] gener-
ation or propagation (92, 103, 136, 137), and they must be con-
sidered candidates for mediators of action of the inositol
poly/pyrophosphates.

Upf proteins, mediators of nonsense-mediated mRNA decay,
cure many [PSI�] variants

The screen described above also returned deletions of UPF1
and UPF3 (138), genes encoding components of the nonsense-
mediated mRNA decay apparatus, responsible for elimination
of mRNAs carrying a premature stop codon (139). Because
these genes also affect the genetic test for [PSI�] (readthrough
of a premature stop codon), it was shown in several different
ways that the effect of the Upf proteins was on prion propaga-
tion and not on the assay. The upf mutants have a �10-fold
increased frequency of [PSI�] generation, and nearly all of the
[PSI�] variants produced in a upf mutant are cured by simply
replacing the normal amount of the Upf protein (138). The Upf
proteins normally form a complex with the translation termi-
nation factors Sup35p and Sup45p on the ribosome, and it is
argued that this complex stabilizes Sup35p in its normal form
preventing conversion to the amyloid form (138). Upf1p, at
sub-stoichiometric levels, inhibits amyloid formation in vitro
by Sup35p (but not by Ure2p), suggesting that a direct interac-
tion is responsible for blocking prion propagation (138). Exam-
ination of a series of UPF1 and UPF2 mutants showed a poor
correlation of [PSI�]-curing activity (138) with nonsense-me-
diated decay (NMD) efficiency, RNA helicase, ATPase, or
RNA-binding activity, but a better correlation with their
reported (140, 141) formation of the Upf1–2-3 complex and
binding to Sup35p.

It is possible that the binding of Sup35p monomers by the
Upf complex competes with their binding to amyloid filaments.
Alternatively, the binding of the Upf1–2-3 complex to the ends
of Sup35p amyloid filaments may block access of Sup35p mono-
mers to these growth points. We infer that normal protein–
protein interactions naturally compete with and may even
reverse abnormal interactions. This may have general implica-
tions applicable to treatment of disease.

Study of anti-prion systems reveals an unexpected
abundance of prion variants

At this time the various anti-prion systems appear to be spe-
cific for a particular prion, although only limited tests have been
done. Several systems cure [PSI�] variants, and it is not yet
known whether they work independently or in concert. It is
evident in yeast that prions are arising at a dramatically higher
rate than was previously appreciated and that the array of anti-
prion systems cures most of them. There are also anti-prion
systems that prevent prion formation, and others that make
some of those prions that do succeed in arising less harmful
than they would otherwise be. It is hoped that detailed study of
the yeast anti-prion systems will facilitate discovery of homo-

logous or analogous mammalian systems active against the
many human amyloidoses.
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