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Hyaluronan has a very simple structure. It is a linear glyco-
saminoglycan composed of disaccharide units of GlcNAc and
D-glucuronic acid with alternating �-1,4 and �-1,3 glycosidic
bonds that can be repeated 20,000 or more times, a molecular
mass >8 million Da, and a length >20 �m. However, it has a very
complex biology. It is a major, ubiquitous component of extra-
cellular matrices involved in everything from fertilization,
development, inflammations, to cancer. This JBC Review high-
lights some of these processes that were initiated through pub-
lications in the Journal of Biological Chemistry.

Discovery of hyaluronan (1934 –1954)

Karl Meyer and John Palmer published a JBC classic in 1934
titled “The polysaccharide of the vitreous humor” that identi-
fied a large glycosaminoglycan that contained a hexuronic acid,
an amino sugar, and no sulfoesters. They proposed the name
hyaluronic acid from hyaloid (Greek for vitreous) and uronic
acid, the macromolecule that is now known as hyaluronan
(HA)2 (1). Karl Meyer’s continued research with hyaluronan
over the next 20 years defined its disaccharide structure
((GlcUA�(1–3)-(GlcNAc�(1– 4)-) in an article titled “The
structure of hyalobiuronic acid from umbilical cord” (2). His
research journey is described in the Minireview Prologue (3) for
the “Hyaluronan Minireview Series” published in JBC in 2002
(4 –7). Based on his discovery and identification of its structure
and on his research with other glycosaminoglycans, Karl Meyer
is referred to as the father of glycosaminoglycan research.

Hyaluronan in cartilage (1969 –1974)

My thesis work at the Rockefeller Institute (now Rockefeller
University) with Stanley Sajdera, another graduate student, was
published in the JBC in 1969 (8). As Herb Tabor was on the
Editorial Board of the Journal at that time, he likely was a

reviewer. This study showed that proteoglycans (now named
aggrecans) isolated from cartilage in dissociative guanidine
hydrochloride solutions reformed large aggregates when dia-
lyzed into associative solvents and that a link protein with two
separate binding sites was all that was required. Although I did
not know it, this study initiated my extensive research career
with hyaluronan (9), which was the missing thread required to
form the proteoglycan aggregates and was not known to be
present in cartilages at that time. Tim Hardingham and Helen
Muir showed that cartilage proteoglycan monomers interacted
with hyaluronan in 1972 (10) and that hyaluronan was present
in proteoglycan aggregates in 1973 (11). Fortunately, during a
sabbatical in Lund, Sweden, working with Dick Heinegard in
1973, we were able to define the correct aggregate structure and
role for the link proteins (Fig. 1), published in JBC in 1974 (12).

Hyaluronan matrices in cumulus cell-oophorus
expansion (1988 –1992)

Antonietta Salustri, a researcher in ovulation and fertiliza-
tion, joined my lab at the National Institutes of Health for a
sabbatical in 1988 to work with Masaki Yanagishita to deter-
mine the role of cumulus cells in forming the expanding mat-
rices required for cumulus cell– oocyte complexes (COCs) to
ovulate (Fig. 2). Her studies with COC cultures showed that:
1) hyaluronan is the major structural component of the
matrix (13); 2) serum is necessary to form it (13); and 3) a
factor(s) synthesized by the oocyte is also required (14, 15).
The serum factor involved was identified a couple years later
by Chen et al. (16) as a member of the inter-�-trypsin inhib-
itor (I�I) family.

Structure of I�I and pre-�-trypsin inhibitor (P�I)
(1989 –1991)

During this time frame, Enghild et al. (17) purified two tryp-
sin inhibitors, 225 kDa (I�I) and 125 kDa (P�I), from human
plasma. They showed that testicular hyaluronidase digests sep-
arated a small trypsin inhibitor protein (HI-30) from both, and
they identified three related large “heavy chain” proteins. Their
analyses provided strong evidence for the following: 1) a model
for I�I consisting of a trypsin inhibitor light chain (designated
HI-30) and two heavy chains (HC1 and HC2) that were
attached by glycosaminoglycan (GAG) chains; and 2) a model
for P�I consisting of HI-30 and one heavy chain (HC3) (see Fig.
9 in Ref. 17). They subsequently showed that the GAG chain
was chondroitin-4-sulfate (18).
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Identification of serum-derived hyaluronan-associated
protein (SHAP) (1990 –1995)

Studies by Koji Kimata’s lab during this time identified an
85-kDa protein strongly attached to hyaluronan in the cell matrix
synthesized by mouse dermal fibroblast cultures (19). It was iso-
lated by hyaluronan lyase digestion of purified hyaluronan isolated
from the cultures. They then showed that this protein was not
synthesized by the fibroblasts but was derived from the fetal bovine
serum (FBS) used in the medium. They also showed that incuba-
tion of the FBS alone with high molecular weight HA formed the
complex and that the presence of the hyaluronan decasaccharide
(HA10), and to a lesser extent the HA8, prevented its formation.
The enzyme required to form this complex, TSG-6, described
below, must have contaminated the FBS sample.

Subsequent studies by this group identified SHAP as heavy
chain 1 (HC1) and HC2 of I�I (20). They then isolated hyaluro-
nan from pathological synovial fluid from human arthritis
patients and showed that it contained HCs linked to hyaluronan
by ester bonds onto the 6-hydroxyl of N-acetylglucosamines
(GlcNAc) (21). This provided evidence that this HC modification
of HA is involved in forming pathological HC–HA matrices. This
group then developed a transgenic mouse null in the trypsin inhib-
itor bikunin that is the central protein core on serum I�I, which
anchors the chondroitin sulfate chain that covalently binds HC1
and HC2 (22). The homozygous bikunin null mouse exhibited
severe female infertility due to the inability to form the expanded
cumulus oocyte hyaluronan matrix. Ovulated oocytes had no
matrix and were not fertilized. Intraperitoneal injection of I�I fully
rescued fertilization.

The 2004 Minireview (23) summarizes early studies that iden-
tified I�I and the model for its role in forming HC–HA matrices
(Fig. 3). I�I is synthesized by liver hepatocytes and is consistently
secreted into circulation. During inflammations, serum I�I is
recruited to sites where hyaluronan is being synthesized to form
extracellular matrices at the site of inflammation. HCs (SHAPs)
are then transferred to form the HC–HA matrices. At the time of
this JBC Review, the enzyme responsible for the transfer of the
HCs from I�I onto hyaluronan was not known.

TNF�-induced protein-6 (TSG-6) is the enzyme that
forms HC–HA matrices (2003–2007)

A second infertile null mouse model was described in 2003
(24). In this study a protein often up-regulated in inflammatory
processes, TNF�-induced protein-6, now indicated as TSG-6,
was deleted, and homozygous females were infertile. As was
shown for the bikunin null females, the cumulus– oocyte com-
plexes did not form, nor did any heavy chain– hyaluronan (HC–
HA) matrices form in vivo or in vitro. Recombinant TSG-6 cat-
alyzed the covalent transfer of heavy chains from I�I to form
HC–HA in a cell-free system. TSG-6 also was able to restore
expansion of the null cumulus cell– oocyte complexes in vitro
and in vivo to rescue fertility in TSG-6 null females. A subse-
quent study (25) showed that the TSG-6 mechanism of heavy
chain transfer involves two transesterification reactions in
which an aspartate ester bond linking a HC to the 6-hydroxyl on
an N-acetylgalactosamine (GalNAc) in the chondroitin sulfate in
I�I is transferred to TSG-6 to form TSG-6–HC1 or TSG-6–HC2

Figure 1. The original model for cartilage proteoglycan aggregates
(12).

Figure 2. Cumulus cell oocyte complex before (a) and after (c) expansion
in culture (13). b was incubated without FBS, which contains I�I that is
required for expansion. d is the current model for forming the hyaluronan
matrix (27).
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intermediates. The HC is then transferred to the 6-hydroxyl of a
GlcNAc in hyaluronan to form the aspartate HC–HA ester bond
(21). A more recent study (2013) showed that the sulfation pattern
of the chondroitin sulfate chain is complex with unsulfated,
4S-sulfated, 6S-sulfated, and 2,6S-disulfated regions and that the
more fully sulfated regions with the 2,6S-disulfate facilitated the
HC transfer mechanism (26). The formation of the cumulus cell–
oocyte complex also required an additional molecule, pentraxin, a
multimer complex with �10 protomers. The Salustri lab (27)
showed that pentraxin selectively interacted with HCs in forming
the expanding cumulus oocyte HC–HA matrix providing the cur-
rent model with the TSG-6–HC intermediate for forming its
structure (Fig. 2d).

Hyaluronan synthases (1993–1997)

Hyaluronan is a member of the glycosaminoglycan family
that includes chondroitin sulfates, heparin/heparan sulfates,
and keratan sulfates. Extensive studies showed that the sulfated
glycosaminoglycans are synthesized as proteoglycans in the
Golgi on protein cores using UDP-sugars that form the back-

bone disaccharide structures that are extended on the nonre-
ducing ends. Thus, it was thought that hyaluronan would likely
be synthesized similarly on a core protein in the Golgi. How-
ever, this changed in 1993 when the Weigel lab identified a
hyaluronan synthase in Streptococcus pyogenes (28). This study
showed that a single gene, named HasA and later as spHAS, was
sufficient to synthesize hyaluronan. A subsequent study (29)
showed that this enzyme utilizes both substrates, UDP-GlcUA
and UDP-GlcNAc, unlike synthesis of all of the proteogly-
cans that require a different enzyme for each of the two
sugars required. Studies to determine the mammalian
enzyme converged in 1996 –1997 as described in the Mini-
review (30) and, surprisingly, identified three HASs: HAS1
(mouse (31) and human (32)); HAS2 (mouse (33, 34) and
human (35)); and HAS3 (mouse (36)).

It is likely that the HASs evolved from a chitin synthase trans-
forming from synthesis of a large hydrophobic chitin polymer
of [GlcNAc(�1,4]n that forms the exoskeleton of crustaceans,
arthropods, and insects to synthesis of the large hydrophilic

Figure 3. Current model for the structure of I�I and its conversion to HC(SHAP)–HA matrices (23). The schematic structure of I�I family molecules and the
SHAP-HA complex are shown in a, and the structures of the HCs and bikunin are shown in b. The electron micrograph shows the globular domains (arrowheads)
and stem structures (arrows) of HCs that are bound to the hyaluronan molecules. The ester linkage between hyaluronan and the aspartate in HC is shown in c.
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hyaluronan by inserting negatively charged GlcUA in between
the GlcNAc residues. The most recent model for hyaluronan
synthesis indicates that a short [GlcNAc(�1,4]3,4–UDP chitin
oligomer is initially synthesized to induce transfer through the
plasma membrane before the negatively charged GlcUA–UDP
is added to the reducing end to initiate synthesis and extrusion
of the hyaluronan polymer (37, 38).

Monocyte adhesive hyaluronan matrices (1999 –2004)

Carol de la Motte, a technician working with Scott Strong, a
colorectal surgeon, was studying colon smooth muscle cell cul-
tures. It was known that viral infections of patients with Crohn’s
disease or ulcerative colitis often had subsequent intestinal
inflammations. They showed in 1999 that virus infection of
the cultures or treating them with poly(I:C), a viral analogue,
induced synthesis of an extensive hyaluronan matrix that
mononuclear leukocytes bound to selectively at 4 °C via their
cell-surface CD44, a hyaluronan-binding protein (39). Based on
a thesis for this discovery, de la Motte received a Ph.D. from
Cardiff University and was promoted to Assistant Staff at the
Cleveland Clinic. A subsequent study in 2003 showed that this
hyaluronan matrix coalesced into cable-like structures and that
I�I was necessary for their structure and function (40) at a time
prior to the identification of the heavy chain transfer mecha-
nism described above. A subsequent review in early 2004
showed that the bound leukocytes degraded the hyaluronan
matrix when the cultures were warmed to 37 °C with capping
of their CD44, a mechanism involved in the macrophage
responses in inflammations that were shown initially in asthma,
colitis, and Crohn’s pathologies (see Figs. 7–11 in Ref. 41).

Normal synthesis of hyaluronan induces cell-surface
protrusions (2003–2006)

Raija and Markku Tammi’s lab showed that activation of rat
epidermal keratinocyte cultures with keratinocyte growth factor
increased Has2 mRNA and hyaluronan synthesis with concurrent
increases in filapodial protrusions (42). A subsequent study trans-
fected several cell lines with green fluorescent protein (GFP)-
tagged Has3 (43). Fig. 4A from a following Minireview (44) shows
a confocal image of hyaluronan synthesis (red) by live, nondividing
human breast adenocarcinoma MCF-7 cells cultured in normal
glucose. The Has are transported from the ER in vesicles to the
Golgi and from the Golgi to the plasma membrane, embedded
(yellow), and then activated to synthesize and extrude the hyaluro-
nan (red) (see supplemental videos in Ref. 43). The HA is on
microvillus-like protrusions on the cell surface, which recede back
to the cell surface if the hyaluronan is removed by hyaluronidase.
The role of these protrusions in modulating the hyaluronan peri-
cellular matrices (coats) is also shown (43).

Abnormal intracellular hyaluronan synthesis in
hyperglycemic dividing cells (2004 –2014)

At the time of the Minireview mentioned above (41), there were
also several studies showing intracellular localization of hyaluro-
nan, frequently during mitosis (see Fig. 1 in Ref. 44), and it was
thought that this might be a normal cellular process. However, a
subsequent study published later in 2004 changed this model (45).
The problem was the glucose concentrations that were used in

many of the previous studies, usually Dulbecco’s modified Eagle’s
medium high glucose (5� normal). This study showed that kidney
mesangial cells stimulated to divide from G0/G1 in 3–5� normal
glucose, but not in 1–2� normal glucose, activate Has enzymes
and synthesize hyaluronan (green) into intracellular compart-
ments (ER, Golgi, and transport vesicles) shortly after entering S
phase (Fig. 4B, 16 h). After division, the hyaluronan is extruded
into extensive cable-like structures that form a monocyte-adhesive
extracellular matrix at the end of division (Fig. 4B, 36 h). Ren et al.
(46) showed that the mechanism required cyclin D3, which initi-
ates an autophagic response (Fig. 4B, red). In vivo, kidney glomeruli
of streptozotocin-treated type 1 diabetic rats contained abnormal
hyaluronan deposits, often with closely associated monocytes/
macrophages by 1 week (45).

Subsequent studies showed that low concentrations of hep-
arin (�0.3 �g/ml) were sufficient 1) to prevent the intracellular
hyaluronan synthesis and autophagy and 2) to re-program the
cells to finish cell division and then synthesize the extensive
extracellular hyaluronan matrix that is monocyte-adhesive
(47). Furthermore, the nonreducing trisaccharide of heparin
(Hep-Tri) (Kd �20 nM) is sufficient (48). These results provide

Figure 4. A, normal glucose: Has enzymes (green) travel to the cell surface,
activate hyaluronan synthesis (yellow), and extrude hyaluronan (red) along
cell-surface protrusions in nondividing cells. This figure (44) was kindly pro-
vided by the Tammi laboratory. B, hyperglycemic glucose: Has enzymes in
hyperglycemic dividing cells were activated in intracellular membranes. They
then synthesized hyaluronan (green) into ER, Golgi, and transport vesicles
after entry into S phase as shown at 16 h of division. After division, they
extruded the hyaluronan to form an extracellular hyaluronan matrix as shown
at 36 h (16 h after division). Cyclin D3 is localized in intracellular regions (red).
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evidence that hyperglycemic dividing cells have a cell-surface
receptor that interacts with the Hep-Tri to re-program the cells
to block intracellular hyaluronan synthesis. Ongoing experi-
ments provide evidence that dividing cells normally block glu-
cose uptake as they enter cell division, but they cannot do so in
high glucose, and that heparin treatment restores a mechanism
to block glucose uptake within the 1st h of division.

Hyaluronan in hyperglycemic dividing bone marrow
stromal (stem) cells (2014)

3T3-L1 cells have been used extensively to study adipogene-
sis. However, the mechanism frequently uses high-glucose
medium to promote dividing 3T3-L1 precursor cells to adi-
pocytes. This was shown in 1993 to promote synthesis of an
excessive amount of hyaluronan by 3T3-L1 cells (49). The
importance of this was demonstrated in 2014 when bone mar-
row stromal (stem) cells were stimulated to divide in normal
glucose (1�) compared with high glucose (5�) (50). Normally,
these cells divide asymmetrically resulting in one daughter stro-
mal cell and one bone-forming osteoblast. However, in high
glucose both daughter cells initiate intracellular synthesis of
hyaluronan during division and become pathological adi-
pocytes after division. This mechanism is likely to be a major
factor in the current epidemic of diabetic obesity due primarily
from the carbohydrate, low-fat Western diet that has been erro-
neously strongly recommended during the last 40 years as
described in the book by Nina Teicholz (51).

Role of CD44 in metabolism of hyaluronan glycocalyces
(2014)

The Minireview (52) describes the dynamic synthesis and
degradation of hyaluronan glycocalyces on connective tissue
cells and how it can be a rheostat to maintain cytosolic
UDP-GlcNAc in an acceptable concentration for regulating
cytosolic O-GlcNAc transferase activity. Extracellular glucose
levels change greatly depending on consumption. If levels
decrease below �15% of normal during fasting, for example, an
AMP-kinase pathway phosphorylates a threonine on active
hyaluronan synthases in the plasma membrane and stops their
activity. Excessive glucose from feasting, for example, induces
synthesis of more hyaluronan glycocalyx, which can then be
degraded on the cell-surface catabolic sites. This involves a pro-
tease to remove any associated proteoglycan, often versican, a
hyaluronidase to fragment the hyaluronan, and CD44 to trans-
port the fragments into an endosome and then recycle to the
cell surface (see Fig. 2 of Ref. 52). The inability to prevent
increases of cytosolic glucose and the subsequent increased
UDP-GlcNAc leads to abnormal O-GlcNAcylation of many
cytosolic proteins involved in diabetic pathologies.

Hyaluronan interaction with CD44 variants promotes
cancer cell migration and metastasis (2009 –2010)

CD44 can be synthesized in up to nine variants. An innova-
tive study by Misra et al. (53) showed that hyaluronan interac-
tion with CD44v6 on murine adenoma tumor cells promoted
anti-apoptotic cell-survival pathways. Two transferrin-coated
nanoparticles were developed to test their effect on interfering
with this pathway in a mouse model of spontaneous colon ade-

noma tumors: 1) a colon cell-specific promoter-driven Cre recom-
binase, and 2) a floxed-specific CD44v6shRNA. These two nano-
particles were delivered into the mice every other day, and the
mice were sacrificed on day 10. The number of tumors was
reduced �40%, and the remaining tumors expressed normal
amounts of CD44 and excessive amounts of CD44v6, providing
evidence for the delivery to the tumor cells and the specificity of
the shRNA for the CD44v6. A subsequent study (54) provided
evidence that a similar approach may be applicable for prostate
cancer in which hyaluronan interaction with CD44v9 has been
identified.

The following articles are recent new directions for hyaluro-
nan research.

Hyaluronan glycocalyx on umbilical cord mesenchymal
stem cells (2013–2014)

Corneal clouding occurs in mucopolysaccharidosis VII mice
(55). Intriguingly, implantation of human umbilical cord mes-
enchymal stem cells (UMSCs) into the mouse corneas cleared
the hazing, and the human cells were not recognized by the
mouse immune system. This indicates that exosomes from the
human cells had to carry the missing enzyme to the mouse cells
so that the lysosomes could clear the accumulating hazing
matrices. A following study (56) showed that human UMSCs
transplanted into a WT mouse stroma 24 h after an alkali burn
suppressed the severe inflammatory response and enabled
recovery of corneal transparency within 2 weeks. However,
transplanting UMSCs pre-treated with chondroitinase, which
cleaves hyaluronan as well as chondroitin sulfate, did not
inhibit the inflammatory responses, and the mouse immune
system removed the human cells within 2 weeks. Analyses
of the USMC glycocalyx showed that it contained HC–
hyaluronan, TSG-6, and pentraxin indicating that the compo-
sition of the glycocalyx on UMSCs mirrors that formed by the
cumulus oocyte complex and that this matrix is capable of
protecting the human cells from the immune system of
the mouse host. Furthermore, it provides evidence that the
exosomes required to clear the mouse mucopolysaccharide
VII corneal clouding are likely to have emerged from the hya-
luronan-covered microvilli-like protrusions identified in the
Tammi and co-workers study (43).

Platelet formation by megakaryocytes requires
hyaluronidase 2 (Hyal2) (2016)

The de la Motte lab showed that hyaluronan synthesized by
megakaryocytes is involved in platelet formation and biology.
They showed that platelets express Hyal2 and that they bind to and
cleave hyaluronan produced by TNF�-treated endothelial cells
(57). Further studies showed that megakaryocytes synthesize the
hyaluronan in intracellular compartments and that its depolymer-
ization by Hyal2 is required for pro-platelet formation (58).

Formation of airway epithelial hyaluronan rafts (2016)

Air–liquid interface cultures of murine airway epithelial cells
actively synthesize and release HC3– hyaluronan rafts onto
their ciliated apical surfaces (59). To do this, they synthesize the
enzyme TSG-6 and a HC3–P�I donor. The rafts were identified
in alveolar lavages of lungs from normal mice, but they were not

JBC REVIEWS: Hyaluronan research in the JBC

1694 J. Biol. Chem. (2019) 294(5) 1690 –1696



present in alveolar lavages of the TSG-6 null mice. These rafts,
then, provide a protective surface in lung airways.

Nuclear HYAL2 has an important role in inhibiting
splicing of CD44v7/8 (2017)

Hyaluronidase 2 has been identified as a cell-surface protein
with weak enzymatic activity and as a lysosomal enzyme with
strong enzymatic activity to fragment hyaluronan. Soma Meran’s
research (60) has now shown that HYAL2 also has an important
nuclear function in regulating alternative splicing events of
CD44v7/8 mRNA, thereby modulating these splicing CD44 vari-
ants that are involved in the regulation of cellular phenotypes in
progressive fibrosis models. Whether its hyaluronidase activity has
a role in this novel process remains to be determined.

HC– hyaluronan matrix formation on right side is
required for gut rotation (2018)

Induction of left–right asymmetry during development is
required for normal gut rotation and function. The Kurpios lab
(61) has now shown that the mechanism requires formation of an
extensive expanding HC–hyaluronan matrix on the right side
with very little hyaluronan matrix on the left side during midgut
rotation. TSG-6 null mice fail to initiate midgut rotation, which
perturbs vascular development and predisposition to midgut
pathology.

Finale

This perspective focuses on many aspects of the ever-in-
creasing roles of hyaluronan in the biology of higher organisms
that evolved after a cell learned how to synthesize it, and how
the JBC has had a major role in this ongoing research area. It is
remarkable that a simple disaccharide structure evolved into so
many biological processes–from fertilization to organ develop-
ment to inflammatory processes to cancer. The exciting pro-
gress with this field is due largely to the highly interactive col-
laborations among the hyaluronan research community. This is
reflected by the establishment of the International Society for
Hyaluronan Sciences (ISHAS), founded by Endre Balazs in
2004, which now sponsors international meetings every 2 years,
with the next one in Cardiff, Wales, in June, 2019. From my focus
on hyaluronan research areas that I have been involved in, it is clear
that both the high quality of the JBC that was maintained by Herb
Tabor and his management of the Associate Editors (which I expe-
rienced as an Associate Editor) and the high quality of the manu-
script reviews by the Editorial Board have been essential for my
career, as well as for continuing the development of the hyaluro-
nan research field. Thank you Herb!
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