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In honor of the 100th birthday of Dr. Herbert Tabor, JBC’s
Editor-in-Chief for 40 years, I will review here JBC’s extensive
coverage of the field of cytochrome P450 (P450) research.
Research on the reactions catalyzed by these enzymes was pub-
lished in JBC before it was even realized that they were P450s, i.e.
they have a “pigment” with an absorption maximum at 450 nm.
After the P450 pigment discovery, reported in JBC in 1962, the
journal proceeded to publish the methods for measuring P450
activities and many seminal findings. Since then, the P450 field
has grown extensively, with significant progress in characteriz-
ing these enzymes, including structural features, catalytic mech-
anisms, regulation, and many other aspects of P450 biochemis-
try. JBC has been the most influential journal in the P450 field.
As with many other research areas, Dr. Tabor deserves a great
deal of the credit for significantly advancing this burgeoning and
important topic of research.

It is a pleasure to contribute this article on the occasion of Dr.
Herbert Tabor’s 100th birthday. I have indeed counted it as a
special privilege to work with him for a number of years at The
Journal of Biological Chemistry. His leadership at JBC has ben-
efited many research communities, including that of cyto-
chrome P450 (P450), a field that I have worked in since 1973. I
have tried to highlight some of the more seminal advances in
the P450 field that were published in JBC. In my opinion, P450
is a classic example of how good biochemistry moved a field to
its current place, with all of the translational applications it now
has.

With limitation of space and number of references, it is
impossible to mention all of the P450 research published in
JBC. A Clarivate “topic” search yielded 1437 “P450” or “P-450”
papers in JBC, but many were probably missed if they did not
actually use this term. In 2009, a Special Meeting Collection
on P450 was done, and it includes 63 “classic” JBC papers
published since 1962 (available at http://www.jbc.org/site/
collections/p450/classics/60s70s.xhtml). In addition to a
number of Minireviews on P450, the reader is also referred to
several Classics and Reflections (1–7) and a Thematic Series

that appeared in 2013 (8). I apologize for not being able to
include more papers and authors, but we have had a historic
limit of �100 for JBC Minireviews, the model for this Col-
lection. There is no question that JBC has been the single
most influential journal in P450 research.

Early work and the discovery of P450

P450 research was published in JBC before anyone realized it
was P450. The field had its roots in the studies of the metabo-
lism of drugs (9), steroids (10, 11), and chemical carcinogens
(Fig. 1) (12, 13). These studies were done when pyridine
nucleotide–dependent activation of molecular oxygen (O2)
was a new concept (16).

The term “P450” was used to describe a “pigment” with an
absorption maximum at 450 nm seen with the ferrous– carbon
monoxide complex of P450 in rat liver microsomes, published
in JBC in 1962 (17). Tsuneo Omura and Ryo Sato published two
more classic papers in 1964 (1, 18, 19), the first of which
describes the spectrophotometric assay of P450 still ubiqui-
tously used today.

An independent line of investigation by Irwin Gunsalus on a
bacterial system that oxidized camphor also led to a P450,
termed P450cam (now named P450 101A1) (2, 20, 21). Because
of its soluble nature and ease of large-scale purification,
P450cam has served as a very useful model in structural and
biophysical studies for many years (22–24).

The mammalian P450s are all membrane-bound (mostly in
the endoplasmic reticulum, some in mitochondria) and were
difficult to work with in the 1960s. However, Minor Coon and
Anthony Lu were able to use detergents and glycerol to success-
fully separate the P450, NADPH-P450 reductase, and phospho-
lipid components from rabbit liver microsomes and then
reconstitute fatty acid �-hydroxylation activity by recombining
the three components. Two classic papers published in 1968
and 1969 reported these milestones (3, 25, 26).

Purification of mammalian P450s

In today’s world of recombinant heterologous expression
systems and artificial affinity tags, it is sometimes hard to con-
vey to students the difficulties of (i) purifying enzymes from
tissues and (ii) evaluating criteria to determine whether a puri-
fied protein is homogeneous. However, there were several nota-
ble successes of purification of P450s from rabbit and rat liver
microsomes in the 1970s (27–30). The significance of these
purifications should be appreciated, because work beginning in
the 1960s suggested that there were at least two forms of P450
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in liver microsomes, although this proposal was not accepted by
all. The 1970s saw a shift to biochemistry as a means of answer-
ing many of the fundamental questions about P450s. Indeed,
proposals that there were as many as four or five P450s were
met with skepticism. Today, we know, from genomic analysis,
that there are 57 human P450 genes plus 88 in rats and 103 in
mice.

Other important developments involved the accessory flavo-
protein, NADPH-P450 reductase. One JBC paper by Bettie Sue
Masters described an affinity column– based purification (31),
still used today in my own laboratory. Another pair of papers
by Janice Vermilion, working with Minor Coon and Vincent
Massey, characterized electron flow through NADPH-P450
reductase (32, 33) and it is still generally accepted following
more work by others.

Mitochondrial and microsomal P450s involved in steroid
metabolism, including bile acids

Most of the mammalian work described thus far was with the
microsomal P450s (now known to be 50 of the 57 human

P450s). However, it was already recognized that several impor-
tant steroid oxidations occur in mitochondria, including those
catalyzed by the cholesterol side-chain cleavage enzyme (now
known as P450 11A1), which begins the whole process of ste-
roidogenesis (Fig. 2).

The (seven) mitochondrial P450s are synthesized on ribo-
somes and then enter mitochondria following proteolytic pro-
cessing. Instead of the microsomal NADPH-P450 reductase,
these P450s receive electrons from a mitochondrial electron
transport system consisting of a flavoprotein and a ferredoxin,
NADPH-adrenodoxin reductase and adrenodoxin, respec-
tively. Seminal early contributions toward understanding
these systems were made by the groups of David Cooper,
Ronald Estabrook, Otto Rosenthal, Michael Waterman,
Henry Kamin, Peter Hall, and others (34 –37). Other work by
Narayan Avadhani has shown that fractions of some micro-
somal P450s are also partially localized in mitochondria (38)
due to processing and other phenomena. I would be remiss
not to mention the seminal work that David Russell (a for-
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Figure 1. Roles of P450s in the bioactivation and detoxication of chemicals: The complex example of phenacetin. Acetaminophen (paracetamol,
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mer JBC Associate Editor) did by applying techniques of
recombinant DNA technology to solving problems with sev-
eral P450s involved in the metabolism of sterols and vitamins
(39 –41). A number of other seminal papers in this area were
published in JBC (42–51).

Human P450s

Experimental animals are used extensively in many areas of
research, including drug discovery and development. In our
early work with rabbit and rat liver P450s, we (and others) noted
a number of differences, and we realized that ultimately the
biochemistry of the human P450s would have to be studied
directly in order to understand them. However, obtaining
human tissue samples needed for purification and other studies
was not easy.

Important observations about the influence of genetic varia-
tion by Robert Smith led me to the view that a single P450 could
have a dominant role in the metabolism of a drug and that using
such assays could guide productive purification. In the 1980s,
we were successful in purifying what we now recognize to be
several of the major human P450s (4, 14, 52, 53); other labora-
tories also contributed (54). One could argue that this work
would have been done eventually by cloning and recombinant
expression studies, but this early work shaped several concepts
and was applied in the pharmaceutical industry. For instance, a
limited number of P450s (�5) dominate drug metabolism. Induc-
tion and inhibition of these are major issues in drug–drug inter-
actions. Genetic deficiencies are important. Today, it is possible to
use in vitro methods to predict not only drug clearance for new
compounds but also drug–drug interactions, pharmacogenetic
issues, and other drug effects before proceeding with clinical trials;
attrition of drug candidates due to human pharmacokinetic prob-
lems is no longer the major issue.

Metabolism of vitamins and eicosanoids

Although much of the interest in P450 came from studies on
drugs, steroids, and carcinogens, these enzymes make major
contributions in the metabolism of a number of other physio-
logical compounds. Hector DeLuca had demonstrated that
P450-catalyzed hydroxylation of vitamin D3 was important in
generating the most active forms (49, 50), and subsequent work
has shown the importance of several P450s in the activation and
catabolism of vitamin D (55–57). Deficiency in P450 27B1 is a
cause of rickets disease (58, 59).

Retinoid metabolism involves several P450s, and maintain-
ing the appropriate balance of proper levels of the signal reti-
noic acid is important. Several P450s oxidize retinoic acid (60,
61). More recent work from our own laboratory (in collabora-
tion with Joseph Corbo) has shown the role of P450 27C1-cat-
alyzed 3,4-desaturation of retinol in the eye of fish and amphib-
ians, adjusting their visual spectra; however, in humans it is a
skin enzyme (62) whose desaturation function is not yet known.

Prostaglandin H2 is converted to thromboxane and prosta-
cyclin by two P450s (5A1 and 8A1), as shown by Volker Ullrich
and co-workers (63, 64). These are unusual P450 reactions in
that they do not need electrons or O2; they rearrange the
endoperoxide function of prostaglandin H2 (65). The balance
between their two reactions has important health conse-
quences in several disease contexts. Leukotrienes are also sub-
strates for P450 hydroxylation (66).

Even some simple oxidation products of arachidonic acid have
surprisingly potent biological activities (Fig. 3), as reported in a
number of papers published in JBC by Jorge Capdevila and
others (67–72). The epoxides and �-hydroxy products of
arachidonic acid have vasodilatory and vasoconstrictive
activities, respectively, and are being considered in the con-
text of cardiovascular and renal diseases.
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Catalytic mechanisms of P450 catalysis

A number of the most important publications in this area
have appeared in JBC. Paul Hollenberg and Lowell Hager’s dis-
covery (73) that chloroperoxidase is spectrally like P450s was a
major driver in terms of “Compound I” chemistry, which was
originally described in peroxidases and is now widely accepted
in the P450 field. Paul Ortiz de Montellano and associates
demonstrated the 1-electron oxidation of amines (74). Other
important papers in a variety of areas include many kinetic and
other mechanistic studies (23, 24, 75–77).

Regulation of P450s

The development of recombinant DNA methods in the
1980s greatly facilitated the study of the regulation of P450
genes, as with all other systems, and many of the pioneering
studies were published in JBC. Although demonstrating
enhanced mRNA transcription, isolating cDNAs, and obtain-
ing nucleotide sequences (on home-made gels!) may seem triv-
ial today, it was not 30 years ago. Many of the studies on both

P450s involved in the metabolism of both drugs and endoge-
nous compounds were first published in JBC (78 –85). Some of
the first complete nucleotide sequences of cDNAs encoding
P450s (an important milestone at the time) were first published
by Yoshiaki Fujii-Kuriyama in JBC (86, 87). It is also noteworthy
that the seminal papers by Alan Poland and Christopher Brad-
field on the biochemistry of the Ah receptor were published in
JBC (88 –90).

P450 structure and function

The first P450 X-ray crystal structure was of bacterial
P450cam (91). For several years, this was the only P450 structure
available. An early effort at modeling, based on this structure,
was made by Osamu Gotoh (92) in a JBC paper. The model has
actually proven to have held up well.

One of the challenges in P450 research had been the ability to
achieve high yields of heterologously expressed proteins. Work
in 1991 from the laboratories of Minor Coon (93) and John
Chiang (94) showed that expression of active enzymes was pos-
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sible in Escherichia coli. The 1990s saw the publication of many
site-directed mutagenesis studies on P450s in JBC, which are
too numerous to discuss (95, 96).

The membrane-bound P450s had been difficult to crystallize,
and work at the turn of the millennium by Eric Johnson paved
the way. Many of these structures were published in JBC (97,
98), and JBC has been a leader in demanding rigor for crystal
structures (i.e. Protein Data Bank validation requirements). A
recent count in the Protein Data Bank showed at least 850 P450
X-ray crystal structures, 179 of which are human P450s. JBC
continues to publish many P450 structures. At this time, crystal
structures of 21 of the 57 human P450s have been reported, plus
two animal orthologs. Several of these structures have revealed
important mechanistic inferences, e.g. the recent work of Eric
Johnson and Allan Rettie on P450 4B1 (99).

More microbial P450s

P450cam was the first but by no means the last bacterial P450
of interest. Armand Fulco’s work on P450BM-3 (now termed
P450 102A1) was first published in JBC (100). P450BM-3 was the
second P450 X-ray structure to be determined and became a
popular platform for biotechnology applications.

Microbial P450s are not only useful models but have impor-
tant metabolic roles (e.g. in antibiotic synthesis) and are also
drug targets in some diseases (e.g. tuberculosis). A few of the
many microbial P450 papers in JBC include studies on the
enzymes from Mycobacterium tuberculosis (101, 102), Strepto-
myces coelicolor (103), and Candida albicans (104).

Plant P450s

Plants have far more P450-encoding genes than mammals,
and Arabidopsis thaliana has 249 and wheat has 1476 (drnelson.
uthsc.edu/cytochromeP450.html). Plant P450s are configured in
complex metabolic pathways, and a number of studies on plant
P450s have been published in JBC (105, 106).

P450s and disease

With more knowledge about P450s, there is now an enhanced
appreciation of their contributions to disease (59). The role of
P450 2E1, an ethanol-inducible enzyme, in acetaminophen-in-
duced liver toxicity was convincingly demonstrated by Frank
Gonzalez in a transgenic mouse model (Fig. 1) (15). The molec-
ular basis for deficiencies of several P450s has been demon-
strated in several inherited diseases, particularly in endocrine
dysfunction (107, 108). JBC has also published many of the
studies on the relationship of arachidonic acid oxidation prod-
ucts and hypertension (Fig. 3) (67–71), including a transgenic
mouse study demonstrating a role for P450 4A11 (72). Interest-
ing transgenic models with P450s having potential implications
in understanding other human diseases have also been pub-
lished in JBC (109, 110).

Relevance of P450 research

Today, the P450 field can be considered to be mature. That
does not mean that all questions have been answered. However,
56 years after the “discovery” of this protein superfamily (17), it
is reasonable to ask what benefits have accrued from the invest-

ment in its study. Indeed, there have been many practical out-
comes, mainly in human medicine but now also in other areas.

We now understand the molecular basis of many diseases,
perhaps most notably in endocrine diseases (59). For instance,
many clinical cases of congenital adrenal hyperplasia are now
understood to result from amino acid substitutions in the
CYP21A2 gene (108).

Knowledge about the human P450s involved in drug metab-
olism has led to the rapid characterization of substrates, inhib-
itors, and inducers with new drug candidates and has enabled
rapid in vitro prediction of human (in vivo) pharmacokinetics
and drug– drug interactions. Concepts developed from our
knowledge of human P450s have led to better design by medic-
inal chemists, directing chemical synthesis to avoid rapid
metabolism and bioactivation to toxic products (15). In the
realm of drug development, it is now possible to understand
metabolism and sometimes the toxicity of drugs in animal
models through their interactions with P450s, in terms of sim-
ilarities and differences with human models. Furthermore, it is
possible to avoid many issues with genetic polymorphisms in
drug metabolism and extreme pharmacokinetic variations.
Moreover, potential inhibitors (e.g. drugs such as ritonavir for
P450 3A4) can be managed effectively.

Future research needs for the P450 field

Basic research

Every aspect of basic P450 research would benefit from deeper
knowledge. The following list is driven in part by some of my own
interests and is not intended to be comprehensive.

One area of need is more information about the “orphan”
P450s, not only in plants and microorganisms (i.e. comprising
most P450s) but also humans. There are true orphans (e.g. P450
20A1), about which almost nothing is known, and also the
“xenobiotic-metabolizing” enzymes. Is the role of the xenobi-
otic-metabolizing P450s (e.g. human P450 Families 1–3) lim-
ited to protection from foreign chemicals, or are their demon-
strated interactions with endogenous substrates (e.g. fatty acids,
steroids) relevant?

We have more to learn about three-dimensional structures
and their relationships to P450 function. Currently, 21 of the
human P450s have structures in addition to two animal orthologs
(4B1 and 24A1). This leaves 36 human P450s that need structural
characterization.

Although much has been written about allosteric regulation,
we have few details beyond some X-ray crystal structures with
multiple ligands bound. The matter of the auxiliary accessory
protein cytochrome b5 is still devoid of many details. There are
only two crystal structures of P450s with auxiliary partners
(ferredoxins) but none for microsomal P450s with NADPH-
P450 reductase or cytochrome b5.

Finally, are we finished with learning about the chemistry or
is there more to learn? Are there really alternatives to the Com-
pound I mechanism or not? There are also kinetic questions
about the degree of processivity of multistep P450 oxidations
(111), and there is very limited information about the kinetics of
individual steps in the reactions involving the mitochondrial
P450s (62, 112).
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Applied research

Although we have a considerable amount of structural infor-
mation about P450s (at least 850 Protein Data Bank entries,
including 179 for humans), the question can be raised as to how
we can better use it. For instance, can we really understand
inherited P450 deficiencies seen in the clinic at a molecular
level? Are WT structures really that predictive of problems due
to a single base change (108, 113)?

Chemical carcinogenesis had long been a driver in the P450
field, but now we need to learn more about the roles of P450s
(and their variants) in diseases, particularly nonendocrine dis-
eases. What does the association between P450 4A11 variants
and hypertension mean (114)? What are the prospects for gain-
ing more insight into the association between P450 differences
in humans and the incidence of certain cancers?

Although we have a large and developing database on single
nucleotide variations (SNVs) in P450s, are we really getting any
closer to applying it in clinical practice? Despite the excitement
20 years ago, can P450 research drive “personalized medicine”
more than in a few cases as with P450s 2C9 and 2D6 (e.g. war-
farin and iloperidone)?

Lastly, there are new research applications that are not dis-
cussed above such as the targeting of human P450s with drugs.
For instance, inhibition of P450 19A1, the steroid aromatase, is
now a popular strategy for treating breast cancer, and research
is in progress to inhibit several other P450s in diseases, e.g.
P450s 11B2, and 17A1. Another area of opportunity is to target
fungal and bacterial P450s that are critical to membrane syn-
thesis and viability (101, 102, 104, 115).

Finally, there are many opportunities for practical appli-
cations of P450 knowledge to veterinary and agricultural
problems. Many of the applications described in human
medicine can also be applied in the veterinary arena. There is
great unrealized opportunity for understanding the plant
P450s and their interactions with the P450s in insects and
other plants. This information can in turn be used for the
effective application of genetic modifications and pesticides
in agriculture.

My role at JBC and relationship with Dr. Tabor

I began doing research on P450s in 1973, as a postdoctoral
fellow with Minor Coon at the University of Michigan. In 1975,
I started my own laboratory as a Biochemistry Faculty Member
at Vanderbilt University. I have continued working with P450
since then, which means that I have spent 45 years in the field.
My first P450 paper was published in JBC in 1975, and I have
continued to publish much of my own research in the journal.
By my count, I have authored or co-authored 117 primary arti-
cles in JBC (not all on P450), plus a number of reviews, and JBC
remains a favorite journal for our papers.

In 1984, I was asked to join the JBC Editorial Board. When I
was in the middle of my fourth term, I was invited to become an
Associate Editor in 2006. Since that time, I have worked with
Herb Tabor in several aspects of JBC work, and I have come to
truly admire him as a person and appreciate what he has done
for JBC (Fig. 4). Herb Tabor was Editor-in-Chief for 40 years.
After I served in that capacity for 1 year (2015–2016) I can
better appreciate all that he did, particularly in the pre-elec-
tronic era when paper manuscripts arrived at his home door-
step every evening for assignment. I also understand the
effort required in dealing with problem manuscripts, author
complaints, and the other issues that come with the job.
Herb Tabor managed JBC very effectively during his long
tenure as Editor-in-Chief, allowing Associate Editors to drive
the journal activities and making critical decisions based on their
input. He also reviewed manuscripts himself and has a genuine
appreciation of what Associate Editors and Editorial Board Mem-
bers do.

Dr. Tabor is an amazing man— he graduated from Harvard
University at the age of 18 and from Harvard Medical School at
22. To this day he still assigns some of the new manuscripts and
has gladly filled in when I am unavailable for this task. He is
really a brilliant man but is also one of the most humble people
I know. His focus was always on what was good for JBC and
what was good for science, not for himself.

I rank being able to interact with Herb Tabor among the true
privileges of my career. It has been a pleasure to work with him.

Figure 4. Dr. Herbert Tabor (left) and the author at lunch at Dr. Tabor’s home in 2016.
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I wish there were more people like Herb Tabor in science, but I
think we can all benefit from trying to emulate him.

Finally, Herb, I wish you all the best on this occasion of your
100th birthday. Thanks for the things you taught me about
being an editor and a person.

Acknowledgments—I thank Prof. Michael Waterman for reviewing
this article and adding some historical points. I also thank my long-
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