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Abstract

The NIH Library of Integrated Network-based Cellular Signatures (LINCS) contains gene 

expression data from over a million experiments, using Luminex Bead technology. Only 500 

colors are used to measure the expression levels of the 1,000 landmark genes measured, and the 

data for the resulting pairs of genes are deconvolved. The raw data are sometimes inadequate for 

reliable deconvolution, leading to artifacts in the final processed data. These include the expression 

levels of paired genes being flipped or given the same value, and clusters of values that are not at 

the true expression level. We propose a new method called model-based clustering with data 

correction (MCDC) that is able to identify and correct these three kinds of artifacts 

simultaneously. We show that MCDC improves the resulting gene expression data in terms of 

agreement with external baselines, as well as improving results from subsequent analysis.
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1. Introduction

Recent improvements in gene expression measurement technologies, including microarrays 

(Schena et al., 1995; Lockhart et al., 1996; Ball et al., 2002) and RNAseq (Wang et al., 

2009), have greatly increased the amount of data available for analysis. These data offer 

many opportunities to further biologists' understanding of how cells act in different settings. 

However, the ability to learn from any method is limited by the quality of the data being 

used. The quality of data from gene expression experiments is limited by a number of 

factors, from variability in environmental conditions to uncertainties inherent in the 

measurement technologies themselves (Liu and Rattray, 2010). The data used for inference 

have usually gone through a preprocessing pipeline to adjust the data to be more amenable 

to analysis (Sebastiani et al., 2003). Examples of preprocessing steps include logarithmic 

transformation of raw fluorescence values and quantile normalization. Although these 

techniques are often helpful, they can sometimes introduce artifacts into the data (Blocker 
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and Meng, 2013; Lehmann et al., 2013). It is important to identify these additional sources 

of variation and correct them if possible, or if not, to account for them in the assessment of 

variability and uncertainty.

Our work is motivated by a gene expression dataset from the NIH Library of Integrated 

Network-based Cellular Signatures (LINCS) program. One of the aims of the LINCS project 

is to measure gene expression changes in response to drug and genetic perturbations. In 

these experiments, cell lines (or cell cultures that can be manipulated in the laboratory) were 

subjected to different perturbation experiments, in which drugs were applied or genetic 

makeup was changed. Over 1.4 million experiments have been performed and the expression 

levels of approximately 1000 genes were measured. Genes were paired in the experimental 

setup and this led to multiple issues in the processed data, including clustering, switched 

expression values of the two genes, and assignment of the same expression value to the two 

genes. We develop a new method to address these issues. The method is an extension of 

model-based clustering that explicitly incorporates the expression level swaps while 

simultaneously addressing the other problems in the data. We call it model-based clustering 

with data correction, or MCDC. We show that our method works well on simulated datasets, 

and that it improves the gene expression data, both in terms of agreement with an external 

baseline and in subsequent inference.

Section 2 describes the motivating data for our method. Section 3 outlines our method, 

MCDC, as well as a practical EM algorithm for implementation. In Section 4 we present a 

simulation study, showing that our method is able to identify and correct points which have 

been altered. Section 5 shows how MCDC can be applied to our motivating data to improve 

the data overall as well as improve subsequent analyses. Section 6 concludes with a 

discussion.

2. Data

The Library of Integrated Network-based Cellular Signatures (LINCS) program, http://

lincsproject.org, is funded by the Big Data to Knowledge (BD2K) Initiative at the National 

Institutes of Health (NIH) whose aim is to generate genetic and molecular signatures off 

human cells in response to various perturbations. This program includes gene expression, 

protein-protein interaction, and cellular imaging data (Vempati et al., 2014). Vidović et al. 

(2013) used the LINCS data to understand drug action at the systems level, while Shao et al. 

(2013) used them to study kinase inhibitor induced pathway signatures, and Chen et al. 

(2015) and Liu et al. (2015) examined the association of chemical compounds with gene 

expression profile. The LINCS L1000 data has also been combined with chemical structure 

data to predict adverse drug reactions (Wang et al., 2016).

The LINCS L1000 data is a vast library of gene expression profiles that include over one 

million experiments covering more than seventy human cell lines. These cell lines are 

populations of cells descended from an original source cell and having the same genetic 

makeup, kept alive by growing them in a culture separate from their original source. The 

L1000 data include experiments using over 20,000 chemical perturbagens, namely drugs 

added to the cell culture to induce changes in the gene expression profile. In addition, there 
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are genetic perturbation experiments targeting a single gene to control its expression level, 

either suppressing it (knockdown) or enhancing it (overexpression). The LINCS L1000 data 

is publicly available for download from http://lincscloud.org and from the Gene Expression 

Omnibus (GEO) database with accession number GSE70138 http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70138. Duan et al. (2014) provide a web 

application to allow researchers to explore the LINCS L1000 data interactively at http://

www.maayanlab.net/LINCS/LCB/.

2.1. Experimental design of the L1000 data

Each individual L1000 experiment measures the expression levels of approximately 1,000 

landmark genes in the human genome. The goal of the LINCS project is to capture the cells' 

response to perturbations. Therefore, the project was designed to include a very large 

number of experiments, but this came at the cost of measuring only a limited number of 

selected landmark genes. These landmark genes were selected to cover as much of the 

variation in cellular gene expression as possible. In each experiment, the selected 

perturbation was applied and the cells were allowed to culture for a specified period of time 

before the gene expression levels were measured.

The L1000 experiments were carried out using the Luminex Bead technology (Peck et al., 

2006; Dunbar, 2006), in which color-coded microspheres are produced to attach to specific 

RNA sequences corresponding to a landmark gene and to fluoresce according to the amount 

of RNA produced as that gene is expressed. To perform a single experiment, a perturbing 

agent such as a chemical compound is added to the solution. Additionally, around 100 beads 

are added for each gene to be measured. The beads for measuring a particular gene share a 

color that can be uniquely identified using lasers. To process an experiment, the beads in the 

solution are sampled and analyzed to determine which gene they are measuring. 

Additionally, their fluorescence level is measured to determine the expression level of the 

gene. With many beads per gene, a good estimate of the overall expression level is obtained.

The L1000 experiments used only 500 bead colors to measure the expression levels of the 

1,000 landmark genes. This means that each bead color had to do double duty, accounting 

for a pair of genes. Thus, when an experiment is processed, a given bead color will have 

some observations from one gene and the rest from another gene. These gene pairs were 

selected to have different levels of expression, and the beads for a pair were mixed in 

approximately a two to one ratio. This means that, ideally, when the beads are sampled, a 

histogram of fluorescence levels corresponding to gene expression is created with two peaks, 

one of which has twice the number of observations as the second peak.

2.2. L1000 Data Preprocessing

In order to facilitate statistical analysis of the L1000 data, the raw bead fluorescence 

measurements were combined and transformed. First, the measurements from many beads of 

the same color were deconvolved to assign expression values to the appropriate pair of 

genes. The data then went through multiple normalization steps (Liu et al., 2015; Bolstad et 

al., 2003). First, a set of genes were identified as being stable across cell lines and 

perturbations, and these were used to inform a power law transformation of all gene values. 
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The expression values were then quantile-normalized across sets of experiments to make the 

distribution of expression levels the same for all experiments. These steps are illustrated in 

Figure 1.

Although these data processing steps result in data that are more amenable to statistical 

analysis, we have found that the deconvolution step in particular introduces artifacts in the 

data. This can be seen when we look at multiple experiments on the same cell line with the 

same experimental conditions. If we look at a pair of genes that share a bead color and form 

a scatterplot of their values across many experiments, we see that these artifacts can take 

several forms.

First of all, two genes that are paired on the same bead color may not be expressed at levels 

such that they are easily distinguished. This can lead to both genes being assigned the same 

value, resulting in a clustering of data directly on the x = y diagonal. Secondly, the 

deconvolution step, which uses a simple k-means algorithm, can be misled if there are many 

beads sampled with very low fluorescence values. This, combined with the quantile 

normalization step, can lead to additional clusters that are not at the true expression value. 

Finally, the deconvolution step can result in assigning the expression levels of the genes 

incorrectly. That is, the expression level of gene A of the pair on the same bead color is 

sometimes assigned to gene B instead, and vice versa. Figure 2 shows examples of the raw 

bead data of two gene pairs and illustrates the difficulty of the deconvolution step.

Figure 3 shows examples of these three types of artifact in the L1000 data. The figure shows 

the expression values for two paired genes, CTLC and IKZF1. Each point shows the values 

measured in a single experiment. All 630 experiments in this dataset are on the same cell 

line, A375, and are untreated, used as controls. As such, we would expect a single cloud of 

observations centered around the point defined by the true expression values of the two 

genes. Instead, we see several clusters of observations, as well as points lying on or very 

near the diagonal. Note in particular the two circled sets of points. These appear to be a 

single cluster in which some of the points were flipped, with the expression values assigned 

to the wrong genes. If we flip one set of points across the diagonal, it falls directly on the 

other set.

Looking more broadly at the untreated A375 experiments, we find that artifacts such as 

those in Figure 3 occur across gene pairs. Every pair of genes has at least a few points lying 

on or near the diagonal, with an average of about 30 per pair. If we compare the number of 

points on either side of the diagonal, excluding those close to it, we find that half of the gene 

pairs have at least 10% of the points on the wrong side of the diagonal (the side with fewer 

points), and a quarter of the pairs have at least 25% on the wrong side. This may be partially 

explained by gene pairs that have similar expression values, but the gene pairs were initially 

selected so as to avoid that problem.

3. Method

We propose a method to detect and correct all three kinds of artifact present in the LINCS 

L1000 data: the multiple clusters introduced by the preprocessing pipeline, the erroneous 
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assignment of the same expression value to paired genes, and the flipping of the expression 

levels of paired genes. This improves the quality of the data and leads to better downstream 

analysis. We do this by addressing issues present in the preprocessed data rather than by 

reprocessing the raw data, as was done by Liu et al. (2015). We adopt this approach because 

some of the artifacts are likely to persist even if the deconvolution method is improved for 

individual gene pairs.

Our method is an extension of model-based clustering (Wolfe, 1970; Banfield and Raftery, 

1993; McLachlan and Peel, 2000; Fraley and Raftery, 2002), which is a model-based method 

for finding clusters by fitting a multivariate Gaussian mixture model to the data. It has been 

found useful in many different contexts, including geochemical analysis (Templ et al., 

2008), chemometrics (Fraley and Raftery, 2007), and health studies (Flynt and Daepp, 

2015). It is well adapted to estimating the expression levels because sometimes there are 

small groups of points not in the main cloud around the true value, such as the points on the 

diagonal in Figure 3. Model-based clustering can identify these groups as clusters and 

remove or downweight them, thus preventing them from contaminating the estimation of the 

gene expression levels.

However, while model-based clustering is able to identify the clusters as well as identifying 

outliers, it does not have a mechanism for identifying particular points as flipped. Here we 

extend the model-based clustering method to detect and take into account the flipping in the 

data. More generally, it can be used for data with any invertible transformation applied to a 

subset of the data. This extension allows us to use an Expectation-Maximization (EM) 

algorithm commonly used to estimate finite mixture models (Dempster et al., 1977; 

McLachlan and Krishnan, 1997).

3.1. Model

Suppose we have multivariate data, {xi : i = 1, …, N}, generated by a finite mixture of G 
distributions fk, k = 1, …, G with probabilities τ1, …, τG:

f (x) = ∑
k = 1

G
τk f k(x |θk) .

Suppose further that we do not observe xi, but rather yi, a possibly transformed version of xi, 

where the probability of a data point having been transformed can depend on the mixture 

component k that xi is drawn from:

yi =
xi with probabilityπk,

Txi with probability(1 − πk) .

Here, T is any invertible transformation that preserves the domain of x. Often, this may be 

represented as a matrix, but it may also be a functional transformation (i.e. a component-

wise monotonic transformation). In the case of the L1000 data, this is just the 2×2 matrix 
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with zeros on the diagonals and ones on the off-diagonals, switching the two values. Given 

the transformation T, the distribution of yi can be written as follows:

f (yi |τ, π, θ) = ∑
k = 1

G
τk[πk f k(yi |θk) + (1 − πk) f k(T−1yi |θk)] .

To simplify the notation, define fik ≡ fk(yi|θk) and f ik
− ≡ f k(T−1yi |θk). Then the distribution 

of yi can be written

f (y |τ, π, θ) = ∏
i = 1

n
∑

k = 1

G
τk[πk f ik + (1 − πk) f ik

−] .

3.2. EM Algorithm

We estimate this model by maximum likelihood using the EM algorithm. We formulate this 

as a missing data problem where the complete data are {yi, zi, ξi}. Here, zi = (zi1, …, ziG) 

and ξi are unobserved labels, with

zik =
1 ifyibelongs to groupk,

0 otherwise,

and

ξi =
0 ifyihas been transformed,

1 otherwise.

Then the complete-data log-likelihood is

l(θ, τ, z, π, ξ |y) = ∑
i = 1

n
∑

k = 1

G
zik[ξi log (πkτk f ik) + (1 − ξi) log ((1 − πk)τk f ik

−)] .

We can also write down the joint distribution of zi and ξi given yi and θ:

f (zi, ξi |yi, θ) = 1
f (yi |τ , π, θ) ∏

k = 1

G
[(τkπk f ik)

ξi ⋅ (τk(1 − πk) f ik
−)

(1 − ξi)]
zik

. (1)

For the E-step of the algorithm, we need to calculate the expected complete-data log-

likelihood, namely
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Q(θ |θ∗) = E[l(θ, τ, z, π, ξ |y) |y, τ∗, π∗, θ∗],

= ∑
i = 1

n
∑

k = 1

G
E[zikξi |y, τ∗, π∗, θ∗] log (πkτk f ik) + E[zik(1 − ξi) |y, τ∗, π∗, θ∗] log (1 − πk)τk f ik

− .

From Equation (1), we have

E[zikξi |y, τ∗, π∗, θ∗] =
τk
∗πk

∗ f ik

f (yi |τ∗, π∗, θ∗)
,

E[zik(1 − ξi) |y, τ∗, π∗, θ∗] =
τk
∗(1 − πk

∗) f ik
−

f (yi |τ∗, π∗, θ∗)
.

We have zikξi + zik(1 – ξi) = zik and ∑k = 1
G zik = 1. This leads to the following updates of the 

estimates of zik and ξi, which make up the E-step:

zik =
τk
∗[πk

∗ f ik + (1 − πk
∗ f ik

−)]

f (yi |τ∗, π∗, θ∗)
,

ξi =
∑k = 1

G τk
∗πk

∗ f ik

f (yi |τ∗, π∗, θ∗)
.

The M-step is then as follows:

τk
nk
n ,

πk
∑i = 1

n zikξ i
nk

,

μk
∑i = 1

n zik(ξiyi + (1 − ξi)T
−1yi)

nk
,

nk ≡ ∑
i = 1

n
zik .

To get the variance of the clusters, we follow the steps from Celeux and Govaert (1995), 

modifying the scattering matrix Wk of cluster k as well as the within-cluster scattering 

matrix W to be
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Wk = ∑
i = 1

n
zik ξ i(yi − μk)(yi − μk)′ + (1 − ξi)(T

−1yi − μk)(T−1yi − μk)′ ,

W = ∑
k = 1

G
Wk .

These can then be used to calculate Σk under different variance models.

We iterate the EM steps until convergence, which leads to a local maximum of the log-

likelihood (Wu, 1983). Although this is not guaranteed to be the global maximum, choosing 

starting values using hierarchical model-based clustering, or doing multiple restarts, have 

both been shown to lead to good solutions (Fraley and Raftery, 1998; Biernacki et al., 2003).

Our model allows the cluster-specific variance matrices to differ between clusters. We select 

the best number of clusters by running MCDC with the number of clusters ranging from 1 to 

some maximum number of clusters (9 in our case) and then comparing the BIC values for 

the resulting estimated models (Fraley and Raftery, 2002).

For our gene expression data, we estimate the expression levels of a pair of genes as the 

mean of the largest cluster (the cluster with the most points assigned to it) found using the 

chosen model. This gives a reasonable estimate - we expect the data points to be distributed 

about a single true value since the experiments were done under the same conditions and the 

observations come from a culture of a large number of cells.

4. Simulation Study

We now describe a simulation study in which data with some of the key characteristics of the 

LINCS L1000 data were simulated. We simulated datasets with no clustering (i.e. one 

cluster), but where some of the observations were flipped. We also simulated datasets with 

clustering (two clusters), where some of the observations were flipped.

Finally, we simulated a dataset where no observations were flipped, but instead some 

observations were rotated and scaled. This is to show that the method can be effective when 

some of the data are perturbed in ways other than flipping.

4.1. Simulation 1: One Cluster With Flipping

Figure 4 is an example dataset from our first simulation. This simulation represents what we 

see in the LINCS L1000 data in the best case, with no clustering or diagonal values (i.e. a 

single cluster), but with some flipping. For the simulation, we generated 100 datasets with 

300 points each from the single cluster model with flipping probabilities (1 – π) of 0.05 to 

0.45 in increments of 0.05, resulting in 900 simulated data sets in total. We applied MCDC 

to each simulated dataset and counted the number of times the correct number of clusters 

(one) was selected as well as the percentage of the points correctly identified as flipped or 

not. Finally, we looked at the inferred gene means compared to taking the mean of all the 

observations without applying MCDC. We refer to this as the unaltered mean.
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The correct number of clusters (i.e. one) was selected for all but one of the 900 datasets, and 

in the one erroneous dataset out of 900 only a few points were in a second cluster. In 858 of 

the 900 datasets no errors were made — all the points were correctly identified as being 

flipped or not flipped. In three datasets, all with the highest probability of flipping, namely 

0.45, all the points were misidentified by being flipped to the wrong side, while in one 

dataset (again with 1 – π = 0.45), a single large cluster with no flipping was identified. In 

the remaining 38 datasets, one to three points out of 300 were misidentified. All these 

misidentifications make sense, since we expect rare cases where a point crosses the x = y 
line as well as cases where more points are flipped when using a flipping probability near 

0.5.

Figure 5 and Table 1 show the mean absolute error in inferred mean using MCDC versus the 

unaltered data. For each flipping probability, we calculated the mean absolute error of the 

inferred mean from the true mean. MCDC did much better than taking the unaltered mean in 

all cases, improving on the unaltered data by a factor of 5 to 36, depending on the 

probability of flipping.

4.2. Simulation 2: Two Clusters with Flipping

For the second simulation, we added a second cluster on the diagonal, as demonstrated in 

Figure 6. This reflects a common issue we see in the L1000 data. When the data processing 

pipeline has trouble differentiating between the two gene expression levels, it can end up 

assigning them both the same value. For these data, we wanted to see how well MCDC 

identified the “good” points (not the diagonal cluster). Again, we used the mean of the 

largest cluster as the inferred mean. For the simulation, we generated 100 datasets with 400 

points each for the two-cluster model with flipping probabilities (1 – π) from 0.05 to 0.45, 

and probability τ of a point being in the true cluster from 0.55 to 0.95, in increments of 0.05.

Figure 7 shows the comparison of mean absolute error in the inferred mean. The MCDC 

results are better across the board, although we see that as τ decreases, it is more likely to 

identify the diagonal cluster as the largest one. Figure 8 shows that MCDC does well in 

identifying which points are flipped. In Figure 9, we see that the correct number of clusters 

is not generally identified as well as we might like. This may be due to poor initialization of 

the algorithm and may be corrected with multiple random initializations.

4.3. Simulation 3: Three Clusters With Rotation and Scaling

To show that MCDC can be applied to other kinds of data errors than flipping, we also 

generated a dataset with three clusters where the error process rotates and scales the data 

points affected. This transformation is not motivated by the L1000 data but rather serves to 

demonstrate the potential for MCDC to be used in other situations. In this more complex 

situation we used n = 1000 points split among the three clusters with varying probabilities of 

transformation. MCDC selected the correct number of clusters and correctly classified all 

the points. Figure 10 shows the original and MCDC-corrected data. One caveat is that here, 

as in the flipping situation, the data error process was known to the MCDC algorithm.
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5. Application to LINCS L1000 Data

We applied MCDC to a portion of the LINCS L1000, namely the data from cell line A375, a 

human skin malignant melanoma cell line. We chose this cell line because it had good 

coverage in the L1000 data in terms of the number of different perturbations applied. We 

considered only the transformation T that switches the expression levels of the paired genes. 

We looked at improvement of the data in aggregate as well as improvement in a specific 

inferential setting. For each pair of genes, we ran MCDC with 1 to 9 clusters on 2,044 

untreated experiments and chose the optimal number of clusters by BIC. Running this on a 

laptop with a 2.6GHz Intel i7-6700HQ processor took approximately 47 minutes on a single 

core for all gene pairs, or under 6 seconds for running MCDC with each of 1 to 9 clusters on 

a single gene pair. The running time could be improved by running MCDC on the gene pairs 

in parallel.

Three gene pairs were selected to illustrate the results of applying MCDC to the L1000 data. 

Figure 11 shows the results of applying MCDC to one gene pair in the untreated 

experiments in cell line A375. Each point corresponds to a single experiment, and most of 

the points fall in the same region. However, there is a single point in the top-left corner that 

appears to be mirrored across the x = y line, and we suspect that this point has had the 

expression levels of the two genes switched. MCDC corrects this point and we see that it 

does indeed fall within the main body of points.

Note that here that the best solution by BIC involves three clusters. This means that the 

distribution of the points may not be strictly normal, but here the components overlap such 

that they form one contiguous cluster.

Figures 12 and 13 show MCDC applied to additional gene pairs in the same dataset. In each 

case MCDC succeeded in removing the artifacts in the data. MCDC selects 3 clusters in 

Figure 12 and 5 clusters in Figure 13. Note in Figure 13 that the inferred mean after MCDC 

is substantially different than the mean of the full dataset moving it from a location not near 

any data to one within the largest cluster. Figure 14 shows the distribution of the number of 

clusters chosen by BIC across all the gene pairs.

5.1. Agreement with External Baseline Data

We wanted to see if MCDC improves the data relative to an external baseline. There are 

2,044 untreated experiments in the A375 cell line. These experiments should all yield 

similar expression levels since they are all done under the same experimental conditions. We 

can get an estimate of the gene expression level of a particular gene by taking the mean 

across all the experiments. We refer to this as the unaltered data.

There are two expression level baseline datasets included in the LINCS L1000 metadata for 

cell line A375, one using RNAseq technology and the other using Affymetrix microarray 

technology. Each of these datasets was generated using an independent technology and can 

be compared to the values in the L1000 data. Since the baseline datasets were produced 

using different technologies, the scales of the expression levels are different from that from 

the L1000 data. In order to take this difference into account, we looked at the mean squared 
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error (MSE) from a simple linear regression of the baseline data on the inferred gene 

expression levels from the L1000 data.

We then applied MCDC to see if this improved the estimates of gene expression. To do this, 

we applied MCDC separately to each pair of genes that were measured using the same bead 

color. For a gene pair, we ran MCDC on the data from the 2,044 experiments. Doing this for 

all 500 gene pairs, we ended up with an estimated gene expression level for all of the 1,000 

landmark genes. These estimates were also compared to the baseline estimates and we were 

able to compare the MSEs of the unaltered data with those from the corrected data.

Liu et al. (2015) introduced a new processing pipeline for the LINCS L1000 data in order to 

address some of the issues they found with the data. They started with the raw data and 

performed the deconvolution step with a Gaussian mixture model approach rather than the k-

means approach used in the original pipeline. This yielded what they refer to as Level 2 data, 

which they then further normalized and performed quality control on to produce Level 3 

data. The Liu Level 2 data can be compared with the Level 3 data from the L1000 pipeline, 

while the Liu Level 3 data is similar to the Level 4 L1000 data.

As a comparison with MCDC, we looked at the same regression against the Affymetrix and 

RNAseq baselines using the mean values from the Liu Level 2 data for each gene, again for 

the A375 untreated experiments. We used the Liu Level 2 data because part of the process of 

creating the Level 3 data removes the means from the gene data, which is not useful for our 

purpose. The Liu data included observations from 532 experiments.

Table 2 shows the results of this analysis. Using the corrected data improved the MSE by 8% 

when using the Affymetrix data and by 7% when using the RNAseq data. The Liu data also 

improved the MSEs, though not as much as MCDC in the case of the Affymetrix baseline.

It is also of interest to note that the performance of MCDC in improving gene expression 

estimates does not depend on the number of clusters inferred. This is shown in Figure 15, 

where we look at the improvement in the residual for each gene from the regression using 

the unaltered means versus the regression using the MCDC-corrected estimates. Figure 15 

shows the results when using the Affymetrix baseline; the results were similar with the 

RNAseq baseline. There is not a substantial change in the improvement based on whether a 

small or large number of clusters is chosen.

5.2. Gene Regulatory Network Inference

As well as improving the overall estimates of gene expression levels, MCDC identifies 

particular experiments where the gene pairs are flipped. This improvement in the data leads 

to improvements in methods that use the data in a more granular way. One common use for 

gene expression datasets is to infer gene regulatory networks.

Gene regulatory networks describe the connectedness of genes within the cell. 

Understanding these genetic interactions leads to understanding of how organisms function 

and develop at a cellular level. Many methods have been developed for inferring these 

relationships. These include stochastic methods such as mutual information (Basso et al., 

2005; Faith et al., 2007; Margolin et al., 2006; Meyer et al., 2007), linear models 
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(Gustafsson et al., 2009; Lo et al., 2012; Menéndez et al., 2010; Young et al., 2014), and 

Bayesian networks (Kim et al., 2003; Murphy and Mian, 1999; Zou and Conzen, 2005), as 

well as deterministic methods involving systems of differential equations (Bansal et al., 

2006; D'haeseleer et al., 1999).

To assess the improvement from MCDC, we looked at inferring gene regulatory networks 

from the LINCS L1000 data knockdown experiments, which target a specific gene to 

suppress its expression level. This target gene is the regulator in these experiments, and the 

remaining genes are potential targets, giving us a causal pathway by which to infer 

networks.

We previously developed a simple posterior probability approach using knockdown data to 

infer edges (Young et al., 2016). To do this, we first standardized the knockdown data using 

the untreated experiments on the same plate to obtain z-values. We then used a simple linear 

regression model, regressing each potential target on the knocked down gene. Using 

Zellner's g-prior (Zellner, 1986), the posterior probability pht of there being an edge from the 

knocked-down gene h to the target gene t is

pht =
Tht

1 + Tht
, where

Tht =
πht

1 − πht
exp [(nh − 2) log (1 + g)/2 − (nh − 1) log (1 + g(1 − R2))/2] .

(2)

In (2), R2 is the coefficient of determination for the simple linear regression model, g is from 

Zellner's g-prior, πht is the prior probability of an edge between h and t, and nh is the 

number of knockdown experiments. For our data, we used πht = 0.0005, reflecting the 

average expected number of regulators, and chose g = √n, a value we have previously found 

to be reasonable (Young et al., 2014). This approach is fast and allows us to incorporate 

prior probabilities as well. The final result is a ranked edgelist.

The LINCS L1000 data include multiple knockdown experiments for most of the landmark 

genes. Most genes have between 9 and 15 replicates with some having as few as 4 or as 

many as 100. This limits the effectiveness of MCDC for this data, but we were still able to 

apply it to many of the knockdown datasets.

We used the posterior probability method on the knockdown experiments for cell line A375 

to generate a ranked list of potential edges. In order to assess the results, we used a gene-set 

library compiled from TRANSFAC and JASPAR (Wingender et al., 2000; Sandelin et al., 

2004) and accessed from Enrichr at http://amp.pharm.mssm.edu/Enrichr/ (Chen et al., 

2013a). This is a list of transcription factors, namely genes that are known to control the 

expression levels of other genes. Each transcription factor has a list of target genes, yielding 

an assessment edgelist.

The TRANSFAC and JASPAR (T&J) edgelist is not a complete list since not all gene 

relationships are captured in the T&J library. This is in part because the T&J data focus on 
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transcription factors, but also because the true regulatory networks are not fully known. The 

T&J edgelist includes edges for 37 transcription factors also found among the LINCS 

landmark genes. This includes 4,193 regulator-target pairs out of 43,290 potential edges for 

which we computed posterior probabilities.

To see the benefit from using MCDC, we applied the posterior probability method using the 

unaltered data and compared the results with using the same posterior probability method on 

the data after it had been corrected using MCDC. This results in two ranked lists of gene 

pairs with associated posterior probabilities. We compare these with the T&J assessment 

dataset by taking all edges with a posterior probability over a specified cutoff and creating 

two-by-two tables showing how well the truncated edgelists overlap with the T&J edgelist.

Table 3 shows the two-by-two tables generated at posterior probability cutoffs of 0.5 and 

0.95. We also report approximate p-values by using the probability of getting at least the 

number of true positives found using a binomial(n, p) distribution, where n is the number of 

pairs in the inferred list and p is the probability of selecting a true edge from the total 

number of possible edges. From the table, we can see that the p-value is better for the 

corrected data at both probability cutoffs. The corrected data include more edges at both 

cutoffs but maintain a similar precision, defined as the proportion of edges which are true 

edges.

Another way of looking at the results is via the precision-recall curve (Raghavan et al., 

1989). Precision and recall are both calculated by truncating our ranked list of edges and 

looking only at the edges in the truncated list. The precision is the proportion of the edges in 

the truncated list which are true edges. Recall is defined as the proportion of all true edges 

which are in the truncated list. The precision-recall curve takes a ranked list of edges from a 

procedure and shows how the precision varies as more edges are included from the list. High 

precision at low recall indicates that the procedure is good at identifying true edges at the 

highest probability. This is important in many cases, particularly genetic studies, because it 

gives researchers good information on where to focus their efforts in subsequent studies.

Figure 16 compares the precision-recall curves for the unaltered and corrected data at the 

very top of the edgelist. The dashed line shows what would be expected by randomly 

ordering the edges; anything above that line is an improvement. Both methods give 

improved results, but the corrected data yield much better results for the very top edges 

returned. This is of particular importance for further research because having high 

confidence in the top edges allows the biologist to develop further experiments to focus on 

these edges in additional, more targeted experiments. In this respect, data correction with 

MCDC provides substantial improvement.

We can see this by looking at the inferred edges, ranked so that the first edge has the highest 

posterior probability, the second has the second highest, and so one. Table 4 is constructed 

by ranking the edgelist from the posterior probability method on a particular dataset. Thus 

the first edge in the list is the one with the highest posterior probability, the second edge has 

the next highest posterior probability, and so on. We then look at each edge and see if it is 

also found in the T&J assessment edgelist. The rank in the table indicates the position at 
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with the n-th edge in T&J was found in the ranked edgelist. It can be seen that the edge with 

the highest posterior probability using the MCDC-corrected data is in T&J, as are the edges 

with the 5th, 6th, 7th and 10th highest posterior probabilities. Only one of the top 10 edges 

from the unaltered data is a true edge, namely the one with the 7th highest posterior 

probability, while, in contrast, five of the top ten edges from the MCDC-corrected data are 

true edges.

We also applied the posterior probability method to the Liu Level 3 data. In this case, the 

Level 3 data is appropriate since it is more comparable to our z-value transformation, and 

quality control has been performed to improve the data. We used the same prior and choice 

of g as for the other datasets. Due to the quality control step employed by Liu, there were 

fewer experiments available and only 24,377 testable edges had posterior probabilities. Of 

these, 2,746 were in the T&J assessment dataset. None of the edges had a posterior 

probability over 0.95, and only two had a posterior probability of at least 0.5. Neither of 

these edges was in the T&J dataset. When we looked at the edges as ranked by posterior 

probability, we found that the edge with the 12th-highest posterior probability, at 0.04, was 

the first which was also found in T&J. The lack of high posterior probability edges and 

positive results using the Liu Leve 3 data is due in part to the quality control step used, 

which resulted in fewer observations for each knockdown data set.

6. Discussion

When working with any data, understanding the unique aspects of how it was generated and 

processed can be helpful in developing models and methods, leading to improved inference. 

This is particularly true with genomic data. There are often many steps of data 

transformation and normalization between the raw measured data and what is used by the 

researcher in drawing conclusions (Binder and Preibisch, 2008). When these steps are not 

known or understood, assumptions about sources of error can be misinformed and lead to 

degraded performance in inference. Price et al. (2006) identified population stratification of 

allele frequency in disease studies, while Gomez-Alvarez et al. (2009) found that a particular 

sequencing technique resulted in many artificial replicates. Lehmann et al. (2013) showed 

that quantile normalization of microarray data introduced a phase shift into time-series in 

strains of cyanobacteria, changing night-expressed genes into day-expressed genes and vice 

versa. Stokes et al. (2007) developed a tool to identify and remove artifacts in genomic data. 

Batch effects have been identified as a significant source of systematic error that can be 

corrected (Leek et al., 2010; Chen et al., 2011; Sun et al., 2011). Identifying these sources of 

error is crucial, and in some cases can lead to much improved results.

We have shown how understanding the data-processing pipeline of the LINCS L1000 data 

allowed us to identify the introduction of a particular error, namely the flipping of 

expression values for gene pairs. This led to the development of MCDC, which is able to 

identify and correct these flipping errors. We were able to apply MCDC to improve the 

L1000 data in aggregate, as measured against external standards. This improvement of the 

data also led to improved inference of regulatory relationships between the genes, in 

particular for the edges ranked highest. Moreover, the use of the EM algorithm for 

optimization makes MCDC fast and useful for large datasets.
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We showed that MCDC compared favorably to the data from Liu et al. (2015) in our 

assessments, but it is important to note that our approach is orthogonal to theirs. As an 

example of this, Figure 17 shows the Liu Level 2 data for a gene pair in the untreated A375 

data. We see that there is evidence that this data could benefit from MCDC as well, prior to 

the processing that creates the Level 3 data.

MCDC is an extension of model-based clustering, which has been used extensively in other 

analyses of genetic data, including image analysis of microarrays (Li et al., 2005) and 

sequence analysis (Verbist et al., 2015). One of the most common uses of model-based 

clustering in genetics is in finding meaningful groups among gene expression profiles across 

multiple experiments under different experimental conditions (cell sources, phases, applied 

drugs, etc.) (Siegmund et al., 2004; Jiang et al., 2004). This includes methods using 

Gaussian mixture models (Yeung et al., 2001), infinite mixture models (Medvedovic and 

Sivaganesan, 2002) and Bayesian hierarchical clustering (Cooke et al., 2011). Our use of 

MCDC as a step in improving data quality is complementary to these analysis methods. An 

implementation of our method will be made available as an R package, mcdc, on CRAN.

We showed in our simulation experiments that MCDC is able to accurately identify the data 

points which have been altered and thus improve the quality of the data. It is not limited to 

flipping, as seen in the LINCS data, but is able to handle any dataset where a subset of the 

data points have been altered in a known way. For the L1000 data, the transformation is 

informed by understanding the way the data is generated and pre-processed. In cases where 

there are multiple possibilities for T, it may be possible to run MCDC with each candidate 

transformation and compare the results to identify the one most compatible with the data.
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Fig 1. 
The L1000 data preprocessing pipeline. The raw data are first measured from the beads in 

the experiments. Next, the data from each color of bead are deconvolved to assign 

expression values to the two genes which share that bead color. Finally, the data are 

normalized to yield directly comparable data across experiments. Figure adapted from an 

image on the Broad Institute LINCS cloud website (http://lincscloud.org/l1000).
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Fig 2. 
Histograms of raw bead fluorescence values for single bead colors. The left panel shows an 

example where the two peaks corresponding to the genes sharing the bead color are 

relatively easy to distinguish. The right panel shows an example where the deconvolution is 

more difficult. Dotted lines show possible inferred densities for two clusters.
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Fig 3. 
Expression levels on a log-base-2 scale for two paired genes, CLTC and IKZF1, measured 

on the same bead, in the L1000 data. Each point represents one experiment; there are 630 

experiments in all. Data artifacts include points directly on or very near to the diagonal, 

multiple clusters rather than a single one as may be expected, and flipping between the two 

circled clusters of points, with the CLTC value incorrectly assigned to IKZF1, and vice 

versa. The blue arrow shows the effect of data correction using MCDC.
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Fig 4. 
One Dataset from Simulation 1: One Cluster with Flipping. The fraction of data flipped, 1 – 

π, is chosen to be 0.05. Left panel: Original data with flipped data points. Right panel: Data 

after correction by MCDC. MCDC identified and corrected all the flipped points. The grey 

triangle is the mean of all the data, and the yellow triangle is the mean of the data after 

correction by MCDC.
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Fig 5. 
Simulation 1: Mean Absolute Error in Inferred Mean. The blue line is based on using 

unaltered data, while the red line is based on using the mean of the largest cluster found by 

MCDC.
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Fig 6. 
Simulated dataset 2: two clusters after flipping. For this example, 90% of the data fall in the 

main cluster, and the fraction of points in the main cluster that were flipped, 1 – π, is chosen 

to be 0.05. MCDC correctly identified the two clusters and the flipped points, as seen in the 

plot on the left. The grey triangle is the mean of all the data, which is moved from its true 

position due to the second cluster. The yellow triangle is the mean of the largest cluster 

found by MCDC and is much closer to the true value.
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Fig 7. 
Mean absolute error in inferred mean comparison for simulation 2 when varying τ, the 

probability that a point comes from the primary cluster. The blue line is using unaltered data, 

while the red line is using the mean of the largest cluster found by MCDC.
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Fig 8. 
Proportion of points correctly identified as flipped or not flipped for simulation 2 when 

varying τ, the probability that a point comes from the primary cluster. When there is a high 

probability of flipping (near 0.5), there may be more points in the flipped cluster, leading to 

MCDC identifying it as the main cluster and thus misidentifying all points for a particular 

dataset.
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Fig 9. 
Number of datasets (out of 100) in which 2 clusters was identified as the best result for 

simulation 2 when varying τ, the probability that a point comes from the primary cluster. 

When τ was high, MCDC did not always correctly identify the cluster on the diagonal due to 

the low number of points in that cluster.
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Fig 10. 
Simulation dataset 3: three clusters with rotation and scaling. A data point was transformed 

by rotating it 120° counter-clockwise around the origin and then scaling out from the origin 

by a factor of 2, as seen in the plot on the left. MCDC was able to identify the correct 

clusters and assign the transformed points back into the appropriate clusters, as on the right.

Young et al. Page 29

Ann Appl Stat. Author manuscript; available in PMC 2019 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 11. 
Example 1 showing the results of applying MCDC to L1000 control data. MCDC chooses 3 

clusters by BIC. On the left are the data before correction, and on the right are the same data 

after correction. Triangles indicate inferred mean - gray is the mean of all the data while 

yellow is the mean of the largest cluster found by MCDC.
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Fig 12. 
Example 2 showing the results of applying MCDC to L1000 control data. MCDC chooses 3 

clusters by BIC. On the left is the data before correction, and on the right is the same data 

after correction. Triangles indicate inferred mean - gray is the mean of all the data while 

yellow is the mean of the largest cluster found by MCDC.
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Fig 13. 
Example 3 showing the results of applying MCDC to L1000 control data. MCDC chooses 5 

clusters by BIC. On the left is the data before correction, and on the right is the same data 

after correction. Triangles indicate inferred mean - gray is the mean of all the data while 

yellow is the mean of the largest cluster found by MCDC.
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Fig 14. 
Histogram of the numbers of clusters chosen by BIC for the gene pairs.
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Fig 15. 
Boxplots showing the improvement in gene expression estimation for each gene versus the 

Affymetrix baseline, by the number of clusters chosen. Improvement is calculated as the 

absolute residual from regression using the original data minus the absolute residual from 

regression using the MCDC estimates. Positive values indicate improvement from using 

MCDC.
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Fig 16. 
Precision-recall curve comparing edgelists from unaltered (blue line) and MCDC-corrected 

(red line) data on knock down data.
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Fig 17. 
Expression levels for two paired genes in the untreated experiments for cell line A375 from 

the Liu Level 2 data (532 experiments), demonstrating that MCDC could potentially be 

useful in this processing pipeline as well as the original L1000 pipeline.
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Table 1

Simulation 1: Mean Absolute Error (MAE) in Inferred Mean for Unaltered data and MCDC-corrected Data, as 

the probability of flipping increases. The MAE ratio is the ratio of mean absolute error using the unaltered 

data divided by the MAE using the MCDC-corrected data. Values greater than 1 indicate improvement by 

using MCDC.

Probability of Flipping Unaltered MAE MCDC MAE MAE Ratio

0.05 0.22 0.04 5

0.10 0.42 0.05 9

0.15 0.63 0.05 13

0.20 0.85 0.05 17

0.25 1.07 0.05 24

0.30 1.27 0.05 25

0.35 1.50 0.05 32

0.40 1.73 0.05 36

0.45 1.90 0.19 10
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Table 2

MSE of regressing external baseline data on imputed gene means. Comparison of unaltered means, means 

from the Liu data, and MCDC data. Affymetrix and RNAseq baselines are both from external sources 

independent of the LINCS L1000 data.

Method Affymetrix Baseline RNAseq Baseline

Unaltered 1.91 1.66

Liu 1.87 1.58

MCDC 1.76 1.55
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Table 4

Comparison of the rank of the first 5 edges found that match the TRANSFAC and JASPAR edgelist. Edges 

ranked by posterior probability. MCDC-corrected data produces found edges at higher ranks than the 

uncorrected data. See text for explanation of how the table was constructed.

Found Edge Unaltered Rank MCDC Rank

1 7 1

2 11 5

3 14 6

4 19 7

5 26 10

Ann Appl Stat. Author manuscript; available in PMC 2019 February 06.


	Abstract
	1. Introduction
	2. Data
	2.1. Experimental design of the L1000 data
	2.2. L1000 Data Preprocessing

	3. Method
	3.1. Model
	3.2. EM Algorithm

	4. Simulation Study
	4.1. Simulation 1: One Cluster With Flipping
	4.2. Simulation 2: Two Clusters with Flipping
	4.3. Simulation 3: Three Clusters With Rotation and Scaling

	5. Application to LINCS L1000 Data
	5.1. Agreement with External Baseline Data
	5.2. Gene Regulatory Network Inference

	6. Discussion
	References
	Fig 1
	Fig 2
	Fig 3
	Fig 4
	Fig 5
	Fig 6
	Fig 7
	Fig 8
	Fig 9
	Fig 10
	Fig 11
	Fig 12
	Fig 13
	Fig 14
	Fig 15
	Fig 16
	Fig 17
	Table 1
	Table 2
	Table 3
	Table 4

