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Abstract

Speckle tracking based on block matching is the most common method for multi-dimensional 

motion estimation in ultrasound elasticity imaging. Extension of two-dimensional (2-D) methods 

to three dimensions (3-D) has been problematic because of the large computational load of 3-D 

tracking, as well as performance issues related to the low frame (volume) rates of 3-D images. To 

address both of these problems, we have developed an efficient two-pass tracking method suited to 

cardiac elasticity imaging. PatchMatch, originally developed for image editing, has been adapted 

for ultrasound to provide first-pass displacement estimates. Second-pass estimation uses 

conventional block matching within a much smaller search region. 3-D displacements are then 

obtained using correlation filtering previously shown to be effective against speckle decorrelation. 

Both simulated and in vivo canine cardiac results demonstrate that the proposed two-pass method 

reduces computational cost compared to conventional 3-D exhaustive search by a factor of 10. 

Moreover, it outperforms one-pass tracking by a factor of about 3 in terms of root-mean-square 

error relative to available ground-truth displacements.

Index Terms

3-D speckle tracking; ultrasound imaging; ultrasound elasticity imaging; PatchMatch; multi-pass 
tracking; strain imaging; speckle decorrelation; correlation filter

I. INTRODUCTION

Medical ultrasound not only provides anatomical information using B-mode (i.e., brightness 

mode), but also quantitative tissue motion such as blood flow imaging (e.g., color Doppler) 

[1]–[2] and ultrasound elasticity (e.g., strain (rate) imaging and shear wave imaging) [3]–[8]. 

Tissue motion can be detected with a wide range of techniques developed for image 
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processing and computer vision [9]–[18]. However, the two most common exploit phase-

sensitive image formation: Doppler processing and speckle tracking [19]. Doppler-based 

methods are preferred for blood flow and 1-D tissue motion estimation [20]–[21] because of 

their simplicity for real-time implementation [1]–[2]. In contrast, speckle tracking methods 

are extensively used in ultrasound elasticity to characterize multi-dimensional motion [22]–

[25]. Unlike Doppler, speckle tracking calculates all spatial components of tissue 

displacements from the speckle similarity between the original image frame and the frame 

after a deformation is induced [26]–[29]. It is a specific form of block matching, which can 

be realized with cross correlation or sum of absolute differences (SAD) processing using 

either envelope-detected signals (phase-insensitive tracking) or complex signals (phase-

sensitive tracking) [29]. Therefore, speckle tracking is not subject to the angle dependency 

of Doppler processing and enables quantification of local tissue deformation [30]–[33].

Speckle tracking is particularly valuable in assessing myocardial dysfunction such as 

infarction and ischemia [34]–[35]. Two-dimensional (2-D) tracking has been used routinely 

for cardiac strain imaging [36]. However, deformation-induced displacement is inherently 

three dimensional (3-D), requiring 3-D methods to estimate the full displacement vector and 

derive associated components of the strain tensor capturing changes in regional cardiac 

mechanics due to disease processes [37]–[45]. While extending conventional 1-D/2-D 

speckle tracking to 3-D is straightforward, processing massive, fully-sampled volumetric 

data is time consuming, making it challenging for routine clinical use.

Computational reduction of 1-D and 2-D correlation-based block matching was previously 

considered in [46]. Although a variety of 3-D speckle tracking approaches have been 

proposed [9]–[18], [37]–[45], computational load was not considered for 3-D block 

matching [47]. Indeed, alternate tracking methods with greatly reduced computations have 

been proposed even though the spatial resolution of derived displacement fields is generally 

much lower than that of block matching approaches [14]. The basic arithmetic operations 

used in block matching scale with the size of the block and the size and density of the 

searched field [37]. Consequently, arithmetic operations increase quadratically with spatial 

dimension, limiting the clinical applicability of 3-D block matching even given the 

continued growth in computational capabilities.

In addition, 3-D tracking performance is an issue primarily because of the reduced frame 

(volume) rates compared to conventional 2-D rates. This can induce significant speckle 

decorrelation (i.e., speckles are dissimilar between two frames used for tracking) due to low 

signal-to-noise ratio, limited depth-of-field, motion gradients within the sample volume, and 

tissue deformation [37], [48]. Speckle decorrelation is the primary cause of displacement 

estimation error [37], [49]. It increases the possibility of peak hopping artifacts (i.e., false 

estimation) in which a secondary false correlation peak is chosen as the highest correlation 

value, resulting in significant error in the displacement estimate [48], [50].

An effective approach to minimize these artifacts is short-time (i.e., small kernel size) 

normalized cross-correlation (NCC) followed by a correlation filter applied to adjacent 

pixels [28], [51]–[52]. The small kernel reduces most causes of decorrelation, whereas the 

correlation filter spanning multiple kernels can suppress peak hopping at the slight expense 
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of spatial resolution [28]. This scheme works effectively for small strain-induced speckle 

decorrelation [51]. However, peak hopping artifacts are still present in low frame rate 3-D 

speckle tracking of cardiac images due to large interframe displacements and strains [48].

Multi-pass methods splitting the search into an initial coarse guess over a large search region 

followed by a high resolution search over a limited region can help increase computational 

efficiency and reduce peak hopping artifacts for 3-D tracking [37], [53]–[55]. The method 

presented in [54] estimates the displacement at central scan lines on the first pass, and then 

propagates outward to estimate displacements in the lateral direction. It assumes spatially 

correlated motion continuity, a reasonable notion for quasi-static applications such as breast 

and thyroid elasticity imaging [54]. Applying it to cardiac imaging is unclear, however, 

because local strain variation is significant and this assumption may not hold.

Other methods [37], [55] use a large correlation kernel and search region in the first pass for 

coarse-to-fine two-pass tracking. Low-resolution displacement estimates are first obtained 

and then used to guide a higher-resolution search with a much smaller correlation kernel. 

Because no assumptions are made about the motion pattern, it can be applied to cardiac 

imaging but presumably some initial estimates are required to guarantee good overall 

performance.

Recently, an algorithm based on randomized search called PatchMatch was developed for 

image editing and computer vision to speed up finding correspondence between two 

different images or videos [56]–[57]. It has also been applied to medical imaging [58]–[60]. 

Based on ultrasound simulation data, PatchMatch performance is comparable to that of an 

extensive search [60], though more clinical data are required to further test feasibility. 

Beyond reducing computational load, PatchMatch implicitly imposes smoothness of 

displacement estimates in adjacent voxels (as explained in Section II-D), which reduces peak 

hopping artifacts [60]. Hence, incorporating PatchMatch into multi-pass tracking has the 

potential to improve coarse-to-fine tracking where reliable initial displacement estimation is 

crucial.

The purpose of this paper is to directly address the primary challenges limiting routine 

clinical application of 3-D speckle tracking: computational load and peak hopping artifacts 

associated with large interframe displacements. We propose efficient two-pass tracking, 

where in the first pass PatchMatch is employed for initial displacement estimates. The 

second pass uses conventional block matching with smaller search regions, followed by 3-D 

correlation filtering applied to NCCs at adjacent voxels.

This paper is organized as follows. Our specific two-pass tracking approach is presented in 

Section II. Simulation and in vivo canine cardiac data are also described. In Section III, 

displacement estimation results and error analyses are provided. We conclude with a 

discussion of computational efficiency in Section IV.
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II. METHODS

A. SIMULATED CARDIAC DATA

To quantify the performance of different displacement estimation approaches, simulated 4-D 

cardiac data developed in [61] are used with available ground-truth motion vectors. A 

detailed description of this simulation model can be found in [47]. In brief, synthetic cardiac 

data are based on a specific electro/mechanical (E/M) model of the heart [62] that drives the 

positions of a collection of ultrasound scatterers input to the COLE ultrasound simulator 

[63]. By varying several parameters of the E/M model, different pathophysiological 

conditions were simulated to produce a loop of 3-D ultrasound images over one heart cycle. 

In this study, dyssynchronous heart disease due to left bundle branch block (LBBB), 

characterized by a progressively longer delay in the activation of the septum and lateral wall, 

is used as a representative example to verify the proposed method.

Figure 1a shows the simulated model of the left ventricle with LBBB where 2250 mesh 

nodes (30 longitudinal points, 25 circumferential points, and 3 radial points) are distributed 

within the myocardium. These images are displayed in spherical coordinates. Figure 1b 

shows the simulated ultrasound array with a center frequency of 3.3 MHz and a −6 dB 

fractional bandwidth of 65% was assumed. The volumetric image contained 107 and 80 

beams in lateral and elevational directions, respectively, spanning an angle of 76° in both 

directions. Therefore, the beam interval in lateral and elevational directions was 0.72° and 

0.96°, respectively. For each beam, radio frequency (RF) signals were sampled at a rate of 

50 MHz yielding 13,637 samples in the axial direction. To reduce the number of samples 

while satisfying the Nyquist sampling criterion, RF data were further downsampled to a 13.2 

MHz rate. The resulting signals were then demodulated to baseband prior to speckle 

tracking.

ρxyz′ (lx, ly, lz)

=
∑i = − K /2

K /2 ∑ j = − L/2
L/2 ∑h = − M /2

M /2 W ijhu(x + i, y + j, z + h)υ ∗ (x + lx + i, y + ly + j, z + lz + h)
∑i = − K /2

K /2 ∑ j = − L/2
L/2 ∑h = − M /2

M /2 W ijh|u(x + i, y + j, z + h)|2 ∑i = − K /2
K /2 ∑ j = − L/2

L/2 ∑h = − M /2
M /2 W ijh|υ(x + lx + i, y + ly + j, z + lz + h)|2

,

(1)

A total of 40 frames was simulated within a complete heart cycle at a frame/volume rate of 

34 Hz. In this study, 3-D displacement estimates were evaluated for the cardiac short-axis 

(i.e., the lateral-elevational image plane indicated in Fig. 1a). Due to limited mesh nodes in 

the original model, ground-truth displacements in this image plane were obtained by dense 

linear interpolation between nodes. It should be noted that all displacement results reported 

here are interframe displacements. Therefore, spatial derivatives of these results represent 

strain rate imaging in Eulerian format rather than strain imaging in Lagrangian format [22].
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B. IN VIVO CANINE CARDIAC DATA

A well-defined animal protocol was also used to test the performance of different 

displacement estimation approaches [45], [64]. Myocardial infarction was induced in a male 

mongrel canine by percutaneous balloon angioplasty occlusion of the left anterior 

descending coronary artery for six hours. At six weeks post-MI, the canine was anesthetized 

and an open-chest 4DE imaging study of the left ventricle was performed. Both RF and B-

mode data were acquired using a Philips iE33 ultrasound machine (Philips Medical Systems, 

Andover, MA, USA) with a matrix X7-2 phased array operating at a center frequency of 3.8 

MHz.

The volumetric image was acquired using ECG gating, where the whole image was 

reconstructed from seven cardiac cycles. The frame (volume) rate was 51 Hz. The 

volumetric image contained 62 and 56 beams covering 91.5° and 82.5° in lateral and 

elevational directions, respectively. Each beam contained 2360 samples in the axial direction 

at a sampling rate of 16 MHz. After euthanasia, postmortem tissue visualization of LV cross-

sections was performed to confirm the extent of myocardial infarction. The study was 

performed with approval of the Institutional Animal Care and Use Committee at the Yale 

University School of Medicine. Studies were performed in compliance with the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals (1996) [45].

C. 3-D SPECKLE TRACKING

The basic block matching algorithm used here computes the phase-sensitive normalized 

cross correlation between two volumetric frames (volumes) [28], [37]. Define (x, y, z) as the 

coordinates in lateral, elevational, and axial directions, respectively, as integer multiples of 

the spatial sampling interval in these directions. For each voxel (x, y, z) in the first 

volumetric frame, a baseband-demodulated kernel u(x, y, z) centered at that voxel with a size 

of (K+1, L+1, M+1) points in three dimensions is defined. This kernel is then compared to 

equivalent ones υ(x, y, z) in the second frame using the 3-D normalized cross-correlation 

coefficient (NCC) ρxyz′ , as given by (1) (See the top) [37], where (lx, ly, lz) denotes the lag 

(i.e., the voxel displacement between two frames) in the search region; * represents complex 

conjugation; |•| represents the absolute value. Wi j h is a 3-D weighting function with unity 

gain. A Hamming window was used in this paper.

Typically, the size of u(x, y, z) equals one speckle spot to minimize decorrelation induced by 

significant local strains [28]. The 3-D displacement at voxel (x, y, z) is estimated from the 

position of the maximum NCC in lag space. This computation is not restricted to integer 

displacements and sub-voxel accuracy is typically obtained with proper estimation of the 

peak position.

Prior to displacement estimation, a 3-D correlation filter is applied over a group of 

neighboring NCCs centered at the NCC corresponding to the voxel under investigation. The 

filtered NCC ρxyz is then expressed as [37]
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ρxyz(lx, ly, lz) = ∑
i = − Sx/2

Sx/2
∑

j = − Sy/2

Sy/2
∑

h = − Sz/2

Sz/2
Fijhρx + i, y + j, z + h′ (lx, ly, lz), (2)

where Fi j h is the 3-D correlation filter with a size of (Sx+1, Sy+1, Sz+1) in three 

dimensions. Here, a Hanning window was used. Note that the correlation filter is applied to 

the spatial extent of the image region rather than the lag direction [37]. As mentioned in 

Section I, correlation filtering can effectively reduce tracking errors for small deformations 

at the slight expense of spatial resolution [28], [51].

D. APPLYING PATCHMATCH TO SPECKLE TRACKING

Originally, PatchMatch was developed for computer vision [56]. For each kernel (called 

patch) in the original image, the algorithm searches for its nearest neighbor (i.e., the most 

similar kernel) in the target image. Dissimilarity is typically based on a generalized distance 

metric including terms such as the sum of squared differences between pixel values in 

different patches. The most similar kernel minimizes the general distance metric for all 

kernels tested [56]. The resulting nearest neighbor field (NNF) contains the map indicating 

each pixel index corresponding to its nearest neighbor. Then, image editing can be done 

based on NNF [56]. Figure 2 shows how PatchMatch is applied to ultrasound speckle 

tracking [60].

There are three major steps in PatchMatch: initialization, propagation, and random search 

[56]. Take a kernel (indicated as a blue cube) in the reference volumetric image as an 

example. It and its six spatially closest neighbors (indicated with different colors, Fig. 2a) 

are assigned to the uniformly-distributed random positions in the target volumetric image 

(Fig. 2b). In practice, such random assignment is confined to a pre-defined search region 

according to a priori knowledge of the maximum tissue motion. The similarity between the 

individual pair in the reference and target images is measured using an NCC approach 

(defined in (1)). By comparing the NCC values of all seven neighbors, the kernel propagates 

to the neighbor with the maximum NCC value (Fig. 2c).

To avoid falling into a local maximum, additional search is performed by randomly selecting 

other positions (Fig. 2d), confined to a pre-defined search region. In this study, six random 

positions are empirically determined. Last, the final position in the target image is 

determined by calculating the maximum NCC among all seven positions (Fig. 2e).

By iterating between propagation and random search, the final positions for all kernels 

converges efficiently (Fig. 2f). In practice, iteration is performed in windshield-wiper order, 

i.e., from left/top/front to right/down/end and then scanned backward. Thus, two iterations 

complete one scan cycle. Accordingly, 3-D displacements between two volumetric images 

are estimated, which serve as first-pass estimates in two-pass tracking. The required number 

of iterations will be evaluated in Section III-A.

To show how PatchMatch works in ultrasound imaging, Fig. 3 presents displacement 

estimates for the simulated cardiac data mentioned in Section II-A at end-systole (ES), i.e., 
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at the end of heart contraction. Simulated cardiac deformations at this point are expected to 

be the largest over the cardiac cycle. A kernel size of 5×17×5 (lateral × axial × elevational) 

was used. Figure 3a shows initial displacements, where the random position is assigned for 

each individual kernel. The three displacement components (lateral-upper left, elevational-

upper right, and axial-lower left) components of displacement along with the maximum 

NCC map (lower right) are displayed in the four panels. Lateral and vertical axes represent 

the elevational and lateral directions in degrees, respectively. Axial displacements are in 

units of mm whereas lateral and elevational ones are in degrees.

After two iterations, as shown in Fig. 3b, displacement estimates converge. Note that since 

the lateral and elevational displacements are much smaller than the axial one, displacements 

less than one voxel size become zero inside the myocardium. Applying four iterations 

further improves the results until final convergence (Fig. 3c).

For comparison, the result of conventional one-pass tracking with the same kernel size is 

shown in Fig. 3d. After four iterations PatchMatch produces displacement results very 

similar to those from the exhaustive search. Peak hopping reduction by PatchMatch can be 

observed at 5 and 8 o’clock in the myocardium where smoother estimates are obtained even 

though the corresponding maximum NCCs are smaller than those of one-pass tracking 

(comparing the lower right panels in Figs. 3c and 3d). However, both methods fail to find 

good estimates where there is significant strain, such as at 4 o’clock. As demonstrated in the 

next section, these results can be improved using correlation filtering in two-pass tracking.

E. PROPOSED TWO-PASS SPECKLE TRACKING

As shown in Fig. 3, PatchMatch can efficiently obtain displacement estimates within a few 

iterations. However, for large deformations, these estimates must be improved. Therefore, 

we propose the two-pass scheme illustrated in Fig. 4.

PatchMatch is used on the first-pass with a kernel size slightly larger than a speckle spot 

(less than two speckle spots – see Table I). One speckle spot was determined based on the 

full-width at half maximum (FWHM) of the auto-correlation function of the baseband 

volumetric image [48]. Using a slightly larger kernel is a tradeoff between ensemble 

averaging and speckle decorrelation because no correlation filtering is applied at this stage. 

To remove inconsistent estimates, resulting estimates are further processed by filtering, such 

as a median filter.

In the second pass, a smaller kernel (around one speckle spot – see Table I) is then used to 

perform the full search within a smaller search region. Prior to applying 3-D correlation 

filtering, alignment between all relevant NCCs is needed, as illustrated in Fig. 4b. This is 

because the zero lag (i.e., (lx, ly, lz) = (0, 0, 0) in (2)) for each NCC varies with the estimate 

of PatchMatch. Hence, to ensure all NCCs have the same zero-lag reference, every NCC is 

shifted to its PatchMatch estimate in lag space. Correlation filtering is then performed by 

applying different weightings on the aligned NCCs (indicated in different colors in Fig. 4b), 

and then summing all NCCs in the spatial extent.
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After correlation filtering, subpixel interpolation using second-order polynomial fitting on 

27 closest neighbors is then applied to the magnitude of the filtered NCC. Once the peak of 

the interpolated NCC is determined, the corresponding lag provides finer resolution 

estimates in lateral and elevational directions [37].

The axial displacement component is estimated using the phase zero crossing technique. It 

exploits the fact that the phase of the analytic representation of the NCC is precisely zero at 

the peak location along the axial direction [28]. Its main advantage is that the axial 

displacement can be accurately estimated without having to densely interpolate the NCC in 

the axial direction to find the peak position [28]. For this purpose, the baseband NCC is first 

modulated to form the analytic signal. The phase zero crossing is then estimated by least-

squares linear fitting of the phases at the lags surrounding the NCC peak [28]. Finally, a 

median filter is again used to remove inconsistent estimates.

III. RESULTS

Both simulation and in vivo canine cardiac data sets were evaluated to demonstrate the 

performance of the two-pass tracking approach presented in Fig. 4. Table I lists tracking 

parameters associated with one-pass and two-pass tracking used in the simulation and 

experiment. Note that due to oversampling in the axial direction (i.e., 4 times the center 

frequency), the correlation filter was applied every 4 voxels axially. By doing so, compared 

to our previous results [37], [48], arithmetic operations are reduced by a factor of 4 while 

keeping filtered results acceptable.

In the simulation, both tracking methods measured the short-axis cardiac image in the 

lateral-elevational image plane using a 5×5 (lateral × elevational) 2-D median filter for post-

processing. In contrast, experimental measurements were conducted in the axial-lateral 

image plane using a 20×5 (axial × lateral) median filter. No thresholding (e.g., NCC-based) 

and regularization were used to produce final displacement estimates.

To quantify the displacement error between estimates and ground truth results, both bias and 

root-mean-square error (RMSE) were measured according to

Bias = 1
N ∑

i = 1

N
(xi′ − xi), (3)

and (3)

RMSE = 1
N ∑

i = 1

N
(xi′ − xi)

2, (4)

where N is the number of points inside the myocardium, and xi and xi′ are the true and 

estimated i -th displacement components for these N points, respectively.
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A. SIMULATED CARDIAC DATA

1) STATISTICAL EVALUATION OF TWO-PASS TRACKING—The robustness of 

PatchMatch’s random initialization for ultrasound imaging and the number of iterations 

required for stable results was first investigated.

With sixty independent realizations (i.e., different random assignment for the initial 

displacement), Fig. 5 shows the RMSE of the three displacement components (expressed as 

mean ± standard deviation) as a function of iteration estimated with two-pass tracking in the 

early systolic period (Fig. 5a, approximately 88 ms from end-diastole (ED)) and at ES (Fig. 

5b). The former represents the point where average interframe deformations are not 

significant compared to peak deformations at ES. To solely identify the effects of random 

initialization on estimation errors, both 3-D correlation filtering and the second median filter 

in Fig. 4 are not included. In comparison, the dashed line indicates the RMSE of 

conventional one-pass tracking. Clearly, two-pass tracking is insensitive to the random 

initialization of PatchMatch. Moreover, errors are even smaller than those of one-pass 

tracking without correlation filtering.

Figure 5 also demonstrates that two-pass tracking can rapidly converge after two iterations 

(i.e., one complete scan cycle). Moreover, errors do not strictly decrease with the number of 

iterations, where residual errors are hardly improved due to speckle decorrelation. However, 

they are still smaller than those of one-pass tracking. This suggests PatchMatch is an 

efficient and reliable first-pass displacement estimator. In the following evaluations, we 

chose four iterations as a compromise between convergence and computational load.

2) DISPLACEMENT ESTIMATION EVALUATION—Figure 6 shows displacement 

estimates from simulated cardiac images at 88 ms after ED. Ground truth displacements 

(first column) are compared with those using one-pass tracking (second column) and two-

pass tracking (third column). All three components, axial (first row), lateral (middle row), 

and elevational (bottom row), are shown. Errors in one-pass tracking (fourth column) and 

two-pass tracking (fifth column) with respect to ground truth are also shown. The axes and 

units are identical to those in Fig. 3. Clearly, larger errors are present in one-pass tracking 

than two-pass tracking at 7 and 8 o’clock. They are mainly caused by significant cardiac 

deformations (i.e., spatial gradients of the displacements) in these regions. Two-pass 

tracking can effectively reduce estimation error and outperform one-pass tracking for this 

case.

The effectiveness of two-pass tracking is further demonstrated in Fig. 7, where the simulated 

myocardial deformation at ES is the largest. All image formats are identical to those in Fig. 

6. Specifically, the deformations at 4 and 5 o’clock are more significant than those in Fig. 6 

where one-pass tracking exhibits larger errors. Two-pass tracking can still obtain 

displacements close to ground truth. Moreover, comparing Fig. 3 with Fig. 7 where both are 

evaluated at ES, correlation filtering is clearly effective in reducing peak hopping artifacts. 

Axial estimation after PatchMatch (Fig. 3c) is improved by the correlation filter. 

Additionally, lateral and elevational displacement components are improved as well not only 

by subpixel interpolation, but also by correlation filtering.
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Using the same format, we have included a supplementary file presenting two videos of 

interframe displacement estimates and errors over a complete heart cycle. Results for ground 

truth (left column), one-pass tracking (middle), and two-pass tracking (right) are compared. 

Here, the display frame rate is reduced to 1 Hz for easy side-by-side comparison. The videos 

will be available at http://ieeexplore.ieee.org.

A quantitative comparison between one-pass (blue line) and two-pass (red line) tracking 

over a complete heart cycle is shown in Fig. 8. To understand the individual contributions of 

PatchMatch and correlation filtering in reducing peak hopping artifacts, the results of 

PatchMatch are also compared (green line), where the first median filter, the second pass 

search, and correlation filtering (as shown in Fig. 4) were bypassed. Therefore, the results 

shown here can be regarded as one-pass tracking with PatchMatch.

The bias (top row) and RMSE (bottom row) of lateral (first column), elevational (second 

column), and axial (third column) estimates are presented as a function of frame index. 

Clearly, two-pass tracking consistently outperforms one-pass tracking for all displacement 

components in all frames. One-pass tracking has significant bias and RMSE from the first to 

the eleventh frame index (representing the period between ED and ES) where the heart 

exhibits larger deformation than other periods. Errors are maximal around ES.

Also, this figure clearly shows that the performance of PatchMatch tracking alone is 

comparable to that of one-pass tracking, consistent with the results reported in [60]. 

However, applying the second-pass search with correlation filtering significantly reduces the 

errors of all three components, as is evident by comparing green lines with red ones. 

Quantitatively, the maximum RMSE of the axial component in two-pass tracking is 0.27 mm 

compared to 0.47 mm for one-pass tracking, which is close to one ultrasound wavelength 

(i.e., 0.23 mm). On the other hand, the maximum RMSE of lateral and elevational 

components are improved from 0.46° and 0.57° to 0.21° and 0.24°, respectively. Note that an 

angle of 1° in the lateral and elevation direction is a displacement of 1.3 mm and 1.7 mm at 

a depth of 10.33 cm (indicated in Fig. 1), respectively.

It should also be noted that lateral and elevational displacement errors are larger than axial 

ones because of the characteristics of the ultrasound beam pattern [37]. In general, the 

beamwidth in the lateral and elevational directions is larger than the pulse width in the axial 

direction [37]. Moreover, axial RF signals provide even finer sensitivity by estimating 

displacement using signal phase [37]. Overall, by averaging the ratio of RMSE between one-

pass and two-pass tracking over all frames, improvements by a factor of 1.7, 1.8, and 3 for 

lateral, elevational, and axial displacement components are clearly demonstrated, 

respectively.

B. IN VIVO CANINE CARDIAC RESULTS

In vivo demonstration of two-pass tracking at ED ((a)) and ES ((b)) is shown in Fig. 9, 

where results of one-pass tracking (first and third columns) are compared with the results 

from two-pass tracking (second and fourth columns). The axial (top row), lateral (middle), 

and elevational (bottom) components are shown with horizontal and vertical axis 

representing lateral and axial directions, respectively.
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Even though ground-truth displacements are not available, it is evident that two-pass 

tracking provides more consistent estimates than those from one-pass tracking. Extensive 

peak hopping artifacts can be observed at 4, 6, 7, 8, and 12 o’clock for ED and at 3 to 9 

o’clock for ES. Two-pass tracking improves all three displacement components. A video is 

also included in the supplementary file presenting interframe displacement estimates over a 

complete heart cycle (This will be available at http://ieeexplore.ieee.org). Clearly, two-pass 

displacement estimates are generally more consistent than one-pass results.

IV. DISCUSSION AND CONCLUSION

The performance of both one-pass and two-pass tracking methods were tested in MATLAB 

on a Linux computer with a 2.6-GHz CPU and 252.4-GB RAM. The relative computational 

times of different processing components, including PatchMatch, block search (representing 

either full search for one-pass tracking or second-pass search for two-pass tracking), 

correlation filter, subpixel interpolation, and phase zero crossing (the last two are indicated 

as “others”) are summarized in Table II. The individual processing times are expressed in 

percentage normalized to the total processing time of one-pass tracking. In addition, the 

computational load of both tracking methods is evaluated in terms of arithmetic operations, 

as detailed in Appendix A and summarized in Table III.

Several observations can be made in comparing Table II with Table III. First, when only 

search processing (i.e., PatchMatch + block search) is considered, two-pass tracking can 

improve the processing time by a factor of 15 to 16, in good agreement with a 15-fold 

reduction in arithmetic operations (presented in Appendix A). Second, two-pass tracking 

improves not only the search time but the processing time for correlation filtering.

As shown in Table III, the number of arithmetic operations for correlation filtering is 

reduced from 20.2% to 0.7% due to the smaller search region. The practical improvement in 

processing time is, however, only a factor of 4 (see Table II) because two-pass tracking 

involves NCC alignment before correlation filtering, which is image dependent and 

increases arithmetic operations not considered in Table III. Nonetheless, a 4-fold 

improvement in the processing time of correlation filtering is still significant.

Third, the computational time of “other” processing, as defined above, is doubled with two-

pass tracking. This is mainly due to the increased processing time of subpixel interpolation. 

As mentioned in Section II-D, subpixel interpolation is based on 3-D second-order 

polynomial fitting on 27 closest neighbors. In one-pass tracking, however, the possibility of 

detecting outlier peaks caused by either limited search regions or peak hopping artifacts is 

much higher than that in two-pass tracking. Consequently, interpolation used 2-D fitting 

with 9 neighbors and the processing time is reduced. In any event, the measured total 

computational load with two-pass tracking is 10 times less than that with one-pass tracking. 

Computations associated with NCC calculations are greatly reduced and comparable to 

those of correlation filtering. Hence, correlation filtering becomes the time limiting step 

rather than block matching.
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Both simulation and animal results in the heart have demonstrated that the proposed two-

pass tracking outperforms traditional one-pass, exhaustive-search 3-D speckle tracking in 

terms of bias and RMSE. As shown in Fig. 5, even with random initialization, PatchMatch is 

statistically robust and can improve displacement estimation over exhaustive search without 

correlation filtering. It should be noted that the results of PatchMatch do not necessarily 

correspond to the maximum NCC, as is evident in Fig. 3. The propagation step in 

PatchMatch aligns the motion of adjacent kernels when the underlying kernel cannot find the 

best match. This step can reduce peak hopping artifacts in the presence of speckle 

decorrelation.

Further reduction of peak hopping artifacts using correlation filtering has also been 

demonstrated in Fig. 8. While PatchMatch alone is comparable to one-way tracking with 

correlation filtering, applying correlation filtering in two-pass tracking can greatly improve 

estimation. Note that without correlation filtering, block matching in the second pass is 

inefficient to suppress peak hopping artifacts. Therefore, the main purpose of second-pass 

block matching is to generate all NCCs required for filtering. Peak hopping suppression is 

then realized by correlation filtering.

When myocardial deformations are significant, such as at 4 o’clock in Fig. 7, displacement 

estimates from two pass tracking still must be improved. Since strain rate imaging is based 

on spatial derivatives of interframe displacements, small displacement errors can lead to 

large strain misestimates. Our previous work has shown that correlation filtering performs 

poorly for high strain regions, or regions of high rotational motion, where the true peaks of 

the NCCs along the axial direction are not aligned at constant lag [48], [50]. Such 

misalignment may cause phase cancellation between NCCs when applying a constant-lag 

correlation filter, thus increasing peak hopping artifacts.

Since misalignment is simply related to spatial gradients in the axial displacement, a “tilt” 

filter following the true peaks can potentially reduce phase cancellation between NCCs 

within the spatial extent of the correlation filter [48]. We previously proposed an efficient 

approach using phase rotation to ensure phase alignment at constant lag prior to correlation 

filtering [48]. The resulting filtered NCC is greatly improved and produces more accurate 

displacement estimates provided that the axial displacement gradient is known in advance. 

Using iteration of the initial gradient guess, this algorithm is effective in 2-D motion 

estimation associated with quasi-static elasticity [48]. In future work, we will show how tilt 

filtering can be extended to 3-D cardiac imaging using an iteration-free approach to further 

reduce displacement errors over the methods presented here. Moreover, studies using data 

from the human heart are required to demonstrate clinically feasibility.

In summary, we have presented an efficient two-pass speckle tracking approach that can 

improve both computational load and displacement estimation compared to traditional one-

pass speckle tracking with exhaustive search. Simulation and in vivo canine results have 

demonstrated that PatchMatch can efficiently obtain consistent estimates in the first pass. 

The performance is further improved in the second pass with correlation filtering, producing 

displacement estimates with a factor of three lower errors. In addition, overall computational 

load is reduced by a factor of 10 for the parameters used in this study.
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With the availability of 2-D transducer arrays and real-time 3-D imaging, there are many 

potential applications of 3-D motion estimation for clinical problems [65]. In addition to 

cardiac imaging, it is expected that the 3-D speckle tracking method presented here can also 

be used for quasi-static elasticity and vector blood flow velocity studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A

The reduced computational load of two-pass tracking can be evaluated in terms of arithmetic 

operations, where summation, subtraction, multiplication, division, and square root 

operations involved in PatchMatch, block search (representing either full search for one-pass 

tracking or second-pass search for two-pass tracking), and correlation filtering are 

considered. Table III compares the number of arithmetic operations per voxel between one-

pass and two-pass tracking. Just as in Table I, they are expressed in percentage relative to the 

total arithmetic operations of one-pass tracking.
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Fig. 1. 
Simulated cardiac ultrasound imaging with LBBB (left branch bundle block) disease 

obtained from [61]. (a) The simulation uses 2250 nodes (30 longitudinal points, 25 

circumferential points, and 3 radial points) distributed within the whole myocardium of the 

left ventricle. Note that the images are displayed in spherical coordinates. (b) Volumetric 

image is shown using 3-D projections. The frame rate is 34 Hz where 40 frames are 

simulated over one heart cycle. In this study, 3-D displacement estimates are obtained for the 

short-axis image (i.e., the lateral-elevational image plane).
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Fig. 2. 
Schematic flow chart of PatchMatch for displacement estimation. Taking a kernel (indicated 

as a blue cube) in the reference image as an example, (a) six closest neighbors surrounding 

this kernel (only three are displayed) are indicated with different colors. (b) The positions of 

the kernel and its neighbors in the target image are randomly assigned. The similarity 

between individual pairs in the reference and target images (i.e., identical color cubes) is 

measured. (c) The kernel propagates to the neighborhood having the maximum similarity. 

(d) Other random positions are chosen to avoid a local maximum. (e) Determine the final 

position by comparing the similarity of all candidates in (d). (f) Iteration is performed 

between (c)–(e) to find the positions of all kernels.
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Fig. 3. 
Displacement estimate at end-systole (ES) using PatchMatch. For each panel, lateral (upper 

left), elevational (upper right), and axial (lower left) components are displayed along with 

the NCC (lower right): (a) first random assignment, (b) 2 iterations, and (c) 4 iterations. For 

comparison, the results of conventional speckle tracking (referred to as one-pass tracking) 

(d) are also shown. Lateral and vertical axes represent the elevational and lateral directions 

in degrees, respectively. Axial displacements are in units of mm whereas lateral and 

elevational ones are in degrees.

Jeng et al. Page 23

IEEE Access. Author manuscript; available in PMC 2019 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
(a) Block diagram of the proposed 3-D two-pass speckle tracking method, where NCC 

stands for normalized cross-correlation coefficient. (b) Illustration of NCC alignment and 

correlation filtering. For simplicity, 3-D block matching is represented as the lag space (i.e., 

(lx, ly, lz)) and the spatial space (i.e., (x, y, z)). After second-pass search, each NCC has its 

extent in lag space (indicated as boxes) and is then shifted to its PatchMatch estimate. 

Correlation filtering is performed by multiplying different weightings on all relevant NCCs 

(The same color represents applying the same weighting), and summing them in spatial 

space. The resulting filtered NCC is indicated in the lower left of the figure.
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Fig. 5. 
Root mean square error (RMSE) of displacements using two-pass tracking as a function of 

iteration with 60 independent realizations. The error bar spans two times the standard 

deviation. (a) RMSE in the early systolic period (approximately 88 ms from end-diastole 

(ED)). (b) RMSE at end-systole (ES). Lateral (left), elevational (middle), and axial (right) 

displacement estimates are shown in each figure. Dashed lines show the RMSE of one-pass 

tracking. For the results presented here, both approaches do not use correlation and median 

filtering.
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Fig. 6. 
Displacement estimation of simulated cardiac data in early systolic period (approximately 88 

ms from ED). (a) Ground truth displacements (first column) are compared with one-pass 

tracking (second column) and two-pass tracking (third column) estimates. The axial (first 

row), lateral (middle), and elevational (last) components are shown. (b) Errors in one-pass 

tracking (fourth column) and two-pass tracking (fifth column) with respect to ground truth. 

All images are shown with horizontal and vertical axis representing elevational and lateral 

directions (in degrees), respectively. Axial displacements are in units of mm whereas lateral 

and elevational ones are in degrees.
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Fig. 7. 
Displacement estimation of simulated cardiac data at ES. All image formats are identical to 

those in FIGURE 6. Due to the significant strain present in the lower right myocardial 

region, one-pass tracking is subject to larger estimation errors than two-pass tracking.
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Fig. 8. 
Comparison of displacement errors over a heart cycle using simulated cardiac data between 

one-pass tracking (blue line), two-pass tracking (red line), and PatchMatch (green line). 

Here, the results of PatchMatch are obtained by bypassing the first median filter, the second-

pass search and correlation filtering indicated in Fig. 4. The bias (top row) and RMSE 

(bottom row) of lateral (first column), elevational (second column), and axial (third column) 

estimates are presented as a function of frame index. Axial displacements are in units of mm 

whereas lateral and elevational ones are in degrees.
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Fig. 9. 
Comparison of displacement estimates using canine data between one-pass tracking (first 

column in each figure) and two-pass tracking (second column) at (a) ED and (b) ES. The 

axial (top row), lateral (middle row), and elevational (bottom row) components are shown. 

All images have horizontal and vertical axis representing lateral (in degrees) and axial (in 

mm) directions, respectively. Axial displacements are in units of mm whereas lateral and 

elevational ones are in degrees.
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TABLE I

Tracking Parameters Associated With One-Pass and Two-Pass Tracking Used in the Simulation and 

Experiment.

Parameter Simulation Experiment

One-pass tracing Kernel 3×17×3

Search region 7×55×7 7×63×7

Correlation filter 5×7×5

Two-pass tracking PatchMatch Kernel 5×17×5

Search region 7×55×7 7×63×7

Second pass Kernel 3×17×3

Search region 2×11×2

Correlation filter 5×7×5

All sizes are indicated in format of (lateral × axial × elevational) and in units of voxels. The measured speckle spot was 4×14×3.
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TABLE II

Comparison of Processing Time Between One-Pass and Two-Pass Tracking. Individual Processing Times 

Including Patchmatch, Block Search, Correlation Filtering, and Others (Subpixel Interpolation and Phase Zero 

Crossing), Are Expressed in Percentage Relative to Total Processing Time of One-Pass Tracking. 

Measurements Were Performed With Two Heart Periods at ED + 88 MS (Top, Black) and Es (Bottom, Green).

PatchMatch Block
search

Correlation
filter

Others

One-pass tracking
N/A 82.0 % 17.1 % 0.9 %

80.7 % 18.3 % 1.0 %

Two-pass tracking
2.3 % 3.0 % 4.6 % 1.8 %

2.2 % 3.0 % 4.5 % 1.8 %
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TABLE III

Comparison of Number of Arithmetic Operations (AO) Per Voxel Between One-Pass and Two-Pass Tracking 

Associated With Patchmatch, Block Search, and Correlation Filtering. Arithmetic Operations of Individual 

Processing Are Expressed in Percentage Relative to Total Arithmetic Operations of One-Pass Tracking.

PatchMatch Block search Correlation
filter

One-pass tracking
AO N/A BlBaBe (9KlKaKe + 3) 2BlBaBeClCaCe

% N/A 79.8% 20.2%

Two-pass tracking
AO (1 + Ni (1 + Ns)) (9rkKlKaKe + 3) blbabe (9KlKaKe + 3) 2blbabeClCaCe

% 2.4% 2.9% 0.7%

Ni is the number of iterations in PatchMatch;

Ns is the number of random searches indicated in Fig. 2d;

KlKaKe are the lateral, axial, and elevational kernel size of one-pass tracking (as well as the second-pass kernel of two-pass tracking), respectively;

rk denotes the ratio of kernel size accounting for a slightly larger one in PatchMatch than in the second pass;

BlBaBe and blbabe are the lateral, axial, and elevational search region size for block matching in one-pass and two-pass tracking, respectively;

ClCaCe are the lateral, axial, and elevational correlation filter size, respectively.
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