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Abstract

In the Prostate Cancer Prevention Trial (PCPT), genotypes that may modify the effect of 

finasteride on the risk of prostate cancer have not been identified. Germline Genetic data from 

1157 prostate cancer cases in PCPT were analyzed by case-only methods. Genotypes included 357 

single nucleotide polymorphisms (SNPs) from 83 candidate genes in androgen metabolism, 

inflammation, circadian rhythm and other pathways. Univariate case-only analysis was conducted 

to evaluate whether individual SNPs modified the finasteride effect on the risk of high-grade and 

low-grade prostate cancer. Case-only classification trees and random forests, which are powerful 

machine learning methods with resampling-based controls for model complexity, were employed 

to identify a predictive signature for genotype-specific treatment effects. Accounting for multiple 

testing, a single SNP in SRD5A1 gene (rs472402) significantly modified the finasteride effect on 

high-grade prostate cancer (Gleason score >6) in PCPT (family-wise error rate <0.05). Men 

carrying GG genotype at this locus had a 55% reduction of the risk in developing high-grade 

cancer when assigned to finasteride (RR=0.45, 95% C.I. [0.27,0.75]). Additional effect-modifying 

SNPs with moderate statistical significance were identified by case-only trees and random forests. 

A prediction model built by the case-only random forest method with 28 selected SNPs classified 

37% of PCPT men to have reduced risk of high-grade prostate cancer when taking finasteride, 

while the others have increased risk. In conclusion, case-only methods identified SNPs that 

modified the effect of finasteride on the risk of high-grade prostate cancer and predicted a 

subgroup of men who had reduced cancer risk by finasteride.
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Introduction

Prostate cancer is the most commonly diagnosed cancer and the second common cause of 

cancer death in men in United States (1–2). PCPT was launched in the mid-1990s to test the 

hypothesis whether finasteride, an inhibitor of the enzyme 5α-reductase that is critical to 

androgen metabolism, can prevent prostate cancer (3). Men were randomized to finasteride 

or placebo and followed for 7 years. The primary result was published in 2003 and mixed: 

though finasteride reduced the risk of prostate cancer by 25%, the risk of high-grade prostate 

cancer (Gleason score >6) was elevated in the finasteride arm (3). Because of this result, 

finasteride was not approved as a chemoprevention agent for prostate cancer. The finasteride 

effect on high grade prostate cancer observed in PCPT has since been under considerable 

debate. Because finasteride increases the sensitivity of PSA, the digital rectal exam, and the 

needle biopsy for detecting prostate cancer, one plausible explanation for the observed 

elevation in high grade cancer is a bias due to increased detection in the finasteride arm (4–

8). Substantial efforts have been devoted to understanding the biology of finasteride and 

prostate cancer, including a P01 research program with five projects and a number of single 

nucleotide polymorphisms (SNPs) genotyped in candidate genes for prostate cancer risk (6). 

This paper aims to identify SNPs that modified the prevention effect of finasteride in PCPT.

Clinical cancer research is advancing from the empiric approach of “one size fits all” to 

precision treatment and prevention (9–10). Discovery of predictive biomarkers that delineate 

subgroup or individual treatment effects is the critical step toward precision medicine. In 

clinical trials, retrospectively measured biomarkers on stored baseline samples provide high-

quality data for determining predictive markers associated with treatment efficacy (11–12). 

Classical case-control and case-cohort sampling methods have been commonly used to 

improve cost efficiency of biomarker studies, particularly when study endpoints are rare 

(13–14). More recently, the case-only method has been advocated as a simple but more 

efficient means to study gene-treatment interactions and genotype-specific treatment effects, 

exploiting the independence between randomized treatment assignment and baseline 

biomarkers that is dictated by randomization (15–16). The main benefit, as we will illustrate 

using genetic data analyses from the Prostate Cancer Prevention Trial (PCPT), is that only 

genotypic data in cases are needed, yet it retain statistical efficiency for assessing effect 

modification by genotypes and developing a multi-genotype predictive marker for treatment 

selection.

We conducted case-only analyses using genotypic and phenotypic data in PCPT, primarily 

aiming to identify SNPs that modify the finasteride effect and to determine whether there is 

a subgroup of men that is more likely to have finasteride prevent both low-grade and high-

grade prostate cancer. The PCPT data are ideal for case-only methodologies, because of the 

large sample size of the trial, a sizable number of prostate cancer cases, the choice of 

evaluating the finasteride effect on the relative risk scale (17), and the fact that a common 

case-control study design was used for the P01 program so that SNP data across the five 

projects can be directly concatenated for case-only analyses. Through this PCPT data 

analysis, we also seek to illustrate to the clinical research community how case-only 

methods can be applied in large randomized clinical trials to identify individual predictive 

genotypes and build a predictive signature for treatment selection.
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Materials and Methods

The PCPT trial is registered in ClinicalTrials.gov (NCT00288106) and details of the trial 

have been described previously (11). Between 1994 and 1997, 18,882 prostate cancer-free 

men 55 years of age or older were randomly assigned to take finasteride (5 mg per day) or 

matching placebo daily for a 7-year period. The primary endpoint was the prevalence of 

prostate cancer in the seven-year period and cancer cases were defined to be biopsy-proven 

presence of prostate cancer. Men with biopsy-determined prostate cancer were identified 

either by a for-cause biopsy for cancer diagnosis during follow-up, or end-of-study biopsy 

for all men without a cancer diagnosis, collected within a time window of 7 years ± 90 days 

after randomization. The majority of men included in the efficacy analysis were whites 

(93%) without family history of prostate cancer (81%). The primary results from PCPT were 

published in 2003, that finasteride reduced the prevalence of prostate cancer by 24.8% (95% 

confidence interval [18.6%, 30.6%]), though the reduction of cancer risk is only for the low-

grade cancer subset (Gleason score < 7). The high-grade prostate cancer, defined as a 

Gleason score of 7 or higher, was more common in the finasteride arm (relative risk 1.27, 

95% confidence interval [1.07,1.50]).

To elucidate the biology underlying the finasteride effect and the risk of prostate cancer, a 

program project (P01) composed of 5 studies was launched, including efforts to genotype 

SNPs in candidate genes involved in androgen metabolisms, diet- related factors, insulin-like 

growth factor axis, inflammation, oxidative damage and DNA repair. Additional genotypes 

came from other ancillary PCPT projects using genotypes from circadian rhythm genes and 

others for risk prediction. The control selection scheme has been previously described (18), 

with frequency matched to cases on distributions of treatment arm, age (in 5-year age 

groups) and positive family history for first degree relative with prostate cancer. In this 

analysis, we retrieved genotypic data from 1167 cases and 1365 controls who had sufficient 

DNA from white blood cells available for genotyping in various projects, which have been 

published previously with details in genotyping (19–21).This case-control set included 

additional cases who had end-of-study biopsy between 90 and 180 days after 7 years’ 

follow-up who were not reported in the primary analysis. Forty-four SNPs were filtered out 

by the quality-control metric that the false discovery rate for the Hardy-Weinberg test is 

greater than 0.05. Forty-three SNPs were not included in the case-only analysis because their 

data were missing in more than 20% cases. This resulted in a total of 357 SNPs from 83 

genes for case-only analyses to identify SNPs that modified the effect of finasteride. The 

minor allele frequencies of these SNPs were similar to those in the HapMap data. Missing 

genotypic data were imputed by the mean genetic score in cases and controls respectively. 

The case-only analyses were stratified for 306 high-grade cases and 851 low-grade cases. A 

small fraction of cases did not have Gleason score available and were excluded from case-

only analyses. Cases from whites and other ethnic groups were combined because the effect 

finasteride did not differ by the ethnic groups and adjustment for the ethnic groups did not 

yield different results in case-only analyses (3).

The treatment effect of finasteride in a genotype subgroup is defined as the reduction of risk 

of prostate cancer in the subgroup if receiving finasteride, relative to receiving placebo in the 

same subgroup. Though typically estimated by a model with a gene-treatment interaction 
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term using data from cases and controls, the gene-treatment interaction and the subgroup-

specific treatment effect can also be estimated by case-only methods (7–8). Such approaches 

have been recently advocated for selecting baseline predictive markers of varying treatment 

effects and estimating marker-specific treatment effects in randomized clinical trials (7–8). 

Briefly, let Z denote the treatment assignment (Z=1 if randomized to an investigational 

treatment or Z=0 if randomized to a standard treatment or placebo), and let D denote the 

binary study endpoint the trial is designed to ascertain (e.g., 1 for a cancer case or 0 for a 

control in PCPT). The baseline biomarker that may predict heterogeneous treatments in the 

trial population is denoted by M, which can be a single candidate marker or a set of high-

dimensional markers under investigation. Suppose the marker specific treatment effect in the 

relative risk scale to be determined is denoted by R(M)=Pr(D=1|Z=1,M)/Pr(D=1|Z=0,M). 
The case-only approaches to estimating marker-treatment interaction and marker-specific 

treatment effect are derived by the mathematical expression

R(M) = Pr(D = 1 Z = 1, M)
 Pr(D = 1 Z = 0, M) =  Pr(Z = 1 D = 1, M)

 Pr(Z = 0 D = 1, M)
 Pr(Z = 0)
 Pr(Z = 1) . (1)

The derivation is based on the Bayes theorem and that randomization ensuring Pr(Z|

M)=Pr(Z) for any baseline M. The expression in (1) suggests that the marker-specific 

treatment effect in the relative risk scale can be estimated by the product of the odds of 

treatment assignment being 1 in cases given the marker M, and the randomization ratio of 

treatment assignment being 0 and 1. Therefore a simple approach to estimate the treatment 

effect in relative risk R(M) is to employ a logistic regression model with outcome variable Z 
and predictor M among cases (D=1) only, adding an offset involving randomization 

fractions, namely log{Pr(Z=1)/Pr(Z=0)}. Note that the marker-specific treatment effect is 

interpreted in the relative risk scale, even though a logistic regression is fitted to obtain the 

odds of the treatment in cases. This case-only logistic regression was applied to the PCPT 

genetic data to test SNP-treatment interaction for one SNP at a time. Since biomarkers such 

as genotypes are typically expensive to measure, the case-only approach substantially 

reduces the cost and saves valuable specimens from controls for other scientific objectives, 

yet the precision of estimated gene-treatment interaction and marker-specific treatment 

effect can be comparable to the full cohort analysis where all study participants were 

assayed for the baseline biomarker (7–8). Furthermore, the genotype-specific treatment 

effect estimated by case-only approaches is protected from confounding of any baseline 

characteristic because of randomization (Equation 1).

In addition to estimate marker-specific treatment effect for markers one at a time, case-only 

methods can be used to select multiple markers, construct a multivariate predictive model, 

and estimate individualized treatment effect based on the selected markers. Observe that the 

derivation in (1) implies that investigators can estimate the marker-specific treatment relative 

risk R(M) using any parametric or nonparametric function to estimate the treatment odds in 

cases, e.g., LASSO or classification tree methods, with an offset adjusting for the ratio of 

randomization fractions. In this PCPT study, we will fit case-only classification tree and 

random forests methods in order to discover effect-modifying SNPs in a multivariate 

fashion. The R packages rpart and randomForest were used to fit trees and random forests. 
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The rfcv function in randomForest was used to select SNPs to build random forest, by 

gradually deleting SNPs ranked low in variable importance and evaluating predicting 

accuracy by cross validation.

Results

Not all prostate cancer cases had blood samples available for genotyping. The collection of 

white blood cells was introduced after the trial started enrolling men. To establish the 

interpretability of our analyses, characteristics of 1157 prostate cancer cases (306 high-

grade, 851 low-grade) used in our case-only (CO) analyses were compared to all 2003 

prostate cancer cases from PCPT. Table 1 shows that there is no difference between the 

distribution of age, race, family history, body-mass index, diabetes, treatment assignment, or 

Gleason score between the two case populations. The proportion of for-cause biopsies in 

cases included in this analysis is less than that in all cases. This is because some earlier cases 

in PCPT who had for-cause biopsies did not have blood samples for genotyping. 

Consequently, the follow-up time for the portion of earlier prostate cancer cases included in 

this analysis is slightly longer than that for all cancer cases: for example, the 20 and 30 

quantiles of the distribution of follow-up time are nearly 1 year longer for cases included in 

this analysis (Table 1).

The 357 SNPs passing quality control were first evaluated one at a time for potential 

modification of the finasteride effect using a case-only logistic model with an additive 

genetic effect, stratified by high-grade prostate cancer cases and low-grade prostate cancer 

cases. Figure 1 shows the quantile-quantile plots of p-values for the SNP-finasteride 

interactions, separately for high-grade and low-grade prostate cancer. A number of SNPs 

show evidence for SNP-finasteride interaction as their observed p-values are smaller than 

expected in the quantile-quantile plot (Figure 1a), while there is clearly no significant SNP-

finasteride interaction for low-grade cases when multiple-testing is accounted for (Figure 

1b). The top SNP (rs472402, p-value=8 × 10−5) is statistically significant after adjusting for 

multiple testing. This SNP (C/G) is located in SRD5A1, the gene encodes the enzyme which 

catalyzes the conversion of testosterone into the more potent androgen, dihydrotestosterone 

(DHT). The minor allele (G) frequency of rs472402 is 0.48. Table 2 shows the treatment 

effect in relative risk estimated by case-only methods and stratified by genotype at rs472402, 

separately shown for high-grade and low-grade cases. Notably, men carrying GG genotype 

had a 55% reduction of risk to develop high-grade prostate cancer when taking finasteride 

(RR=0.45, 95% C.I. [0.27,0.75]), contrary to the reported overall hazardous intent-to-treat 

effect. The SNP-treatment interaction for high-grade prostate cancer is statistically 

significant (family-wise error rate 0.018 based on the permutation test). These men also had 

a decreased risk to develop low-grade prostate cancer when taking finasteride (RR=0.69, 

95% C.I. [0.51,0.92]), though the estimated case-only interaction between rs472402 and 

finasteride for low-grade cancer is not significant (p-value=0.08).

We investigated whether the multivariate case-only analysis using the classification trees and 

random forests methods would identify additional SNPs that did not reach univariate 

statistical significance when evaluated one at a time, but could further refines subgroups 

determined by rs472402. One SNP (rs1052536) in LIG3, a gene encoding a protein that 
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catalyzes the joining of DNA ends and involves in DNA metabolism, was identified in the 

best fitting tree selected by cross validation. Figure 2a shows the final classification tree of 

subgroups with genotypes in the two SNPs. Three nodes were identified in the final tree. In 

addition to the subgroup defined by GG at rs472402, a small subgroup of men with 

rs1052536 genotype TT and rs472402 genotype CC or CG have reduced risk by finasteride 

(RR=0.54), while the third subgroup with at least a C allele in both loci had a substantially 

increased risk of developing high-grade prostate cancer (RR=2.21). We further investigated 

whether additional SNPs could be identified to better predict individualized finasteride 

effects, by generating a large number of case-only trees and perform ensemble learning by 

random forests. Two thousand trees were randomly generated using bootstrap samples of the 

case-only data and a prediction model was built from averaging predictions from all trees 

generated. The feature selection procedure the R packages randomForest resulted in 28 

SNPs that were used in the final random forest prediction model (Supplementary Table 1). 

The cross-validation prediction errors for different numbers of SNPs are shown in 

Supplementary Figure 1. This prediction model was applied to genotypic data in the case-

control sample. Cases and controls were included with different weights to adjust for case-

control sampling and generate a distribution of individualized treatment effects 

corresponding to the population of men in the PCPT trial. Figure 2(b) shows the distribution 

of the estimated individualized treatment effects in PCPT. The vertical red line indicates zero 

treatment effect (RR=1). There were estimated 37% of PCPT participants whose risk of 

high-grade prostate cancer were decreased by finasteride (RR<1), and 26% of participants 

whose risk of high-grade prostate cancer were decreased by more than 25% (RR<0.75).

Table 3 shows the characteristics of the top seven SNPs selected by the feature selection 

method in the random forest analysis. All of these SNPs are common variants, with the 

lowest minor allele frequency 0.067 (rs12795870). These SNPs have varying significance 

levels from univariate case-only interactions, ranging from 0.09 (rs3736544) to 0.00008 

(rs472402, the SNP identified in Figure 1a). When using case-control data to estimate SNP-

treatment interactions, the case-control interaction p-values for these SNPs are slightly 

bigger than the case-only interaction p-values. Three out of the seven SNPs came from 

SRD5A1, including the one SNP (rs472402) already identified by univariate case-only 

analysis. Three SNPs (rs3736544, rs11689432, rs12795870) are from circadian rhythm 

genes, CLOCK, PER2 and the intergenic region between RASSF10 and ARNTL (a 

circadian gene) respectively. One SNP (rs1052536, also found by classification tree in 

Figure 2a) is from LIG3, a DNA ligase gene involved in DNA repair.

Discussion

Using case-only methods, we identified multiple SNPs that modified the effect of finasteride 

on high-grade prostate cancer in PCPT. Our results suggest that men carrying specific 

genotypes in these SNPs may not have increased risk of high-grade prostate cancer when 

taking finasteride. Discovery of these effect-modifying SNPs have major implications for 

usage of finasteride. First, finasteride as a chemoprevention agent for prostate cancer may be 

restricted to the subgroup with the particular genotype that is associated with reduction of 

risk. Having the GG genotype at rs472402, the single most significant SNP modifying the 

finasteride effect, is a crude classification rule to define such subgroup, with the population 
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frequency of 25%. Using more sophisticated trees and random forests method, we built a 

multi-SNP classifier that includes 28 moderately significant SNPs and predicts 36% of men 

could benefit from finasteride. Second, related to its potential for preventing prostate cancer, 

finasteride is commonly used to treat benign prostate hyperplasia (BPH). Our analysis 

suggests that there are men who, if taking finasteride, would have substantially increased 

risk (e.g. relative risk ~2 or greater) to develop high-grade prostate cancer. For example, men 

carry the CC genotype at rs472402 had RR=1.87, which raises a cautionary note that these 

men may not use finasteride as the treatment for BPH.

As the set of SNPs we analyzed were picked from candidate genes related to prostate cancer, 

some of the identified effect-modifying SNPs have been reported to be associated with risk 

of prostate cancer in previous PCPT analyses. Five of the six effect-modifying SNPs we 

detected in SRD5A1 (rs3736316, rs3822430, rs472402, rs1560149, and rs248797) were also 

significantly associated with risk of high-grade cancer in the placebo arm (19). Interestingly, 

the GG genotype for SNP rs472402 was associated with increased risk of high-grade cancer 

(OR=1.7, 95% C.I. [1.05,2.75], reference 19) but not with low-grade cancer, and we found 

that this GG genotype is also associated with a 55% reduction of high-grade cancer risk by 

finasteride. This SNP has recently been shown to be associated with d-amphetamine 

response in a genome-wide association study (22). It has been suggested that SNPs in 

SRD5A1 could modulate both expression and enzymatic activity of SRD5A1. The SNP 

rs3736544 from the circadian rhythm gene CLOCK has been found to be located in a 3-SNP 

haplotype associated with obesity and metabolic syndrome in men (23). Genotypes in the 

circadian genes including CLOCK and PER2 have been reported to be associated with 

prostate cancer risk (24). The functional annotation of rs12795870 in the intergenic region 

between RASSF10 and ARNTL (a circadian gene) is undermined. The SNP rs1052536 from 

LIG3, a gene encoding a protein involved in mismatch repair, has been previously linked to 

the risk of young-onset lung cancer (25).

The strengths of this work include a relatively large number of high-grade and low-grade 

cases from PCPT, and the use of efficient case-only methods for discover SNPs that predict 

subgroup/individual treatment effects. We have showcased several case-only analyses to 

estimate marker-specific treatment effects in the relative risk scale, including univariate and 

multivariate trees and random forests. It is reassuring that the standard case-control estimates 

yielded slightly less significant p-values (Table 3). As we have shown recently, other 

machine-learning methods such as LASSO can be adopted in the case-only analysis (8). The 

simplicity and the efficiency of case-only methods make it ideal for exploring high-

dimensional gene-treatment interactions in randomized clinical trials.

Our study has several weaknesses. First, lack of blood samples for some cancer cases (~40% 

all PCPT high-grade cases) have substantially reduced the sample size and the power of the 

case-only analysis. Chance of false positives cannot be ruled out even for SNP rs472402 that 

attains statistical significance in association with high-grade cancers after Bonferroni 

correction. The statistical significance will be attenuated if accounting for multiple tests 

incurred by separate analyses for high-grade and low-grade cancers. Second, it is difficult to 

establish a validation dataset for these newly discovered effect-modifying SNPs since PCPT 

is the only trial that tests the effect of finasteride for preventing prostate cancer. There are 
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prostate cancer prevention trials for dutasteride (26), which inhibits both SRD5A1 and 
SRD5A2, however genes interacting with dutasteride may not be the same as genes 

interacting with finasteride.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
The quantile-quantile plots for p-values for assessing individual SNP-finasteride interactions 

by the case-only method. (a) SNP-finasteride p-values for interactions for high-grade 

prostate cancer. The red solid dot represents rs472402. (b) SNP-finasteride p-values for 

interactions for low-grade prostate cancer.
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Figure 2: 
Case-only trees and random forests identified more SNPs collectively predicting genotype 

specific treatment effects. (a) The classification tree for subgroup treatment effects (relative 

risk) depending on genotypes in the two SNPs selected by cross validation. (b) The 

distribution of individual treatment effects for the population of PCPT men based on 28 

SNPs identified by random forests. A portion of PCPT men (36%, the left of the red line) 

did not have increased risk by finasteride.
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Table 1:

Characteristics of prostate cancer cases included in case-only analyses in comparison to all cases included in 

the PCPT primary analysis.

Cases used in Case-only analyses N=1157 All cases in PCPT
N=2003

Type of diagnosis For cause 431 (37%) 811 (41%)

End of study 726 (63%) 1163(59%)

Quantile of follow-up time (years)  10% 4.1 3.3

 20% 6.0 5.1

 30% 6.8 6.4

 50% 7.0 7.0

 75% 7.1 7.1

Treatment assignment Finasteride 477 (41%) 820 (41%)

Placebo 680 (59%) 1183 (59%)

Gleason Sum  < 7 851 (74%) 1412 (73%)

 >=7 306 (26%) 524 (27%)

Age Median (25%,75%) 63
(59, 67)

63
(59, 67)

Race Caucasian 1081 (93%) 1868 (93%)

Others 76 (7%) 135 (7%)

Family history Yes 244 (21%) 415 (21%)

No 913 (79%) 1588 (79%)

BMI Median (25%, 50%) 26.6
(24.7, 29.2)

26.8
(24.8,29.3)

Diabetes Yes 51 (4%) 88 (4%)

No 1106 (96%) 1914 (96%)
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Table 2:

The finasteride effect on high-grade prostate cancer and low-grade prostate cancer estimated by univariate 

case-only methods and stratified by rs472402.

Genotype Treatment effect (Relative risk comparing 
finasteride to placebo)

95%CI p-value for case-only interaction

High-grade
cancer

All high grade 1.22 (0.97,1.52) 8 × 10−5

 CC (n=69) 1.87 (1.14,3.08)

 CG(n=169) 1.52 (1.11,2.07)

 GG (n=68) 0.45 (0.27,0.75)

Low-grade cancer All low grade 0.57 (0.50,0.66) 0.08

 CC (n=223) 0.47 (0.36,0.63)

 CG (n=444) 0.57 (0.48,0.71)

 GG (n=184) 0.69 (0.51,0.92)
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