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Abstract
Research on age-related memory alterations traditionally targets individuals aged ≥65 years.

However, recent studies emphasize the importance of early aging processes. We therefore

aimed to characterize variation in brain gray matter structure in early midlife as a function of sex

and menopausal status. Subjects included 94 women (33 premenopausal, 29 perimenopausal,

and 32 postmenopausal) and 99 demographically comparable men from the New England Family

Study. Subjects were scanned with a high-resolution T1 sequence on a 3 T whole body scanner.

Sex and reproductive-dependent structural differences were evaluated using Box's M test and

analysis of covariances (ANCOVAs) for gray matter volumes. Brain regions of interest included

dorsolateral prefrontal cortex (DLPFC), inferior parietal lobule (iPAR), anterior cingulate cortex

(ACC), hippocampus (HIPP), and parahippocampus. While we observed expected significant sex

differences in volume of hippocampus with women of all groups having higher volumes than

men relative to cerebrum size, we also found significant differences in the covariance matrices

of perimenopausal women compared with postmenopausal women. Associations between ACC

and HIPP/iPAR/DLPFC were higher in postmenopausal women and correlated with better

memory performance. Findings in this study underscore the importance of sex and reproductive

status in early midlife for understanding memory function with aging.
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1 | INTRODUCTION

With the advancing age of our population, age-related health chal-

lenges are rapidly increasing (Koivisto et al., 1995; Ortman, Velkoff, &

Hogan, 2014). Approximately 75% of the aging population report

memory-related problems (Koivisto et al., 1995). The decline in cogni-

tive ability is not limited to neurodegenerative diseases, but also part

of healthy aging (La Corte et al., 2016; van Geldorp et al., 2015) and

has substantial consequences for quality of life (Hannigan, Coen, Law-

lor, Robertson, & Brennan, 2015) and mortality (Connors et al., 2015).

While most aging studies target individuals 65 years and older

(e.g., Boutet, Milgram, & Freedman, 2007; Caselli, Chen, Lee, Alexan-

der, & Reiman, 2008; Metzler-Baddeley, Jones, Belaroussi, Aggleton, &

O'Sullivan, 2011), recent research showed that brain structural and

functional abnormalities can precede classical age-related neurode-

generation decades earlier (Szoeke et al., 2016). Despite outperform-

ing men in most memory-related cognitive domains during

premenopausal years (Bleecker, Bolla-Wilson, Agnew, & Meyers,

1988; Rentz et al., 2016; Ruff, Light, & Quayhagen, 1989; Trahan &

Quintana, 1990; van Hooren et al., 2007; Weiss et al., 2006), women

report increased memory problems after menopause (Epperson, Sam-

mel, & Freeman, 2013; Greendale, Derby, & Maki, 2011; Rentz et al.,

2016), and some show an early memory decline (Weber, Maki, &

McDermott, 2014; Weber, Rubin, & Maki, 2013).

Recent cognitive neuroscience studies demonstrate the impact of

menopause, and in particular, decline in 17β estradiol, on working and

declarative memory performance (Berent-Spillson et al., 2012; Boss,

Kang, Marcus, & Bergstrom, 2014; Epperson et al., 2013; Jacobs &

D'Esposito, 2011; Jacobs et al., 2017; Rentz et al., 2016; Rosenberg &

Park, 2002). A review of human cognitive studies among women aged

60 years and older found higher estradiol levels associated with bet-

ter memory performance across multiple memory domains (Boss

et al., 2014). Human cognitive literature is in line with preclinical stud-

ies demonstrating the impact of decline in 17β estradiol levels on

memory circuitry formation and maintenance of memory performance

(Brinton, 2009; Dumas, Kutz, Naylor, Johnson, & Newhouse, 2010a;

Dumitriu, Rapp, McEwen, & Morrison, 2010; Liu et al., 2008; Morri-

son, Brinton, Schmidt, & Gore, 2006; Woolley & McEwen, 1994).

The impact of estradiol on memory function is not surprising

given that gonadal hormone receptors are relatively dense in critical

brain regions implicated in memory circuitry, brain regions that have

historically exhibited sex differences in volumetric size, such as the

hippocampus (HIPP), dorsolateral prefrontal cortex (DLPFC), anterior

cingulate cortex (ACC), inferior parietal lobule (iPAR), and the parahip-

pocampus (parHIPP; including entorhinal cortex) (Allen, Damasio, Gra-

bowski, Bruss, & Zhang, 2003; Chen, Sachdev, Wen, & Anstey, 2007;

Filipek, Richelme, Kennedy, & Caviness, 1994; Giedd, Raznahan,

Mills, & Lenroot, 2012; Goldstein et al., 2001; Good et al., 2001;

Nopoulos, Flaum, O'Leary, & Andreasen, 2000; Ruigrok et al., 2014;

Schlaepfer et al., 1995; Sowell et al., 2007).

We recently demonstrated significant reproductive age-related

changes in regional brain activity and network-level connectivity dur-

ing working memory and encoding in early midlife associated with

menopausal changes drawn from the cohort presented here (Jacobs

et al., 2016, 2017). In the current study, we investigated sex differ-

ences and reproductive status on structural brain volumes and their

associations within the memory circuit.

Most of the work investigating sex differences in structural brain

volumes in memory circuitry focuses on one or few individual brain areas

rather than on a network of brain regions. Several methods for structural

imaging have been proposed to investigate associations between regions

within and between brain networks (Caviness, Lange, Makris, Herbert, &

Kennedy, 1999; Kennedy et al., 1998). Among them, techniques based

on covariance modeling have been found particularly useful in a few

brain disorders (Allen et al., 2003; Chen, He, Rosa-Neto, Germann, &

Evans, 2008; Colibazzi et al., 2008; He, Chen, & Evans, 2008; Lerch

et al., 2006; Mechelli, Friston, Frackowiak, & Price, 2005; Mitelman,

Buchsbaum, Brickman, & Shihabuddin, 2005a; Mitelman, Shihabuddin,

Brickman, & Buchsbaum, 2005b; Seeley, Crawford, Zhou, Miller, & Grei-

cius, 2009). Included in this literature was a recent publication of ours

(Abbs et al., 2011) that investigated sex differences in the covariance of

regions within the memory circuitry in schizophrenia compared with

healthy controls. Covariation between the same regions assessed in that

study were examined in the present study, using what is called a “Box's

M-Test” (Box, 1949). An underlying assumption in covariance analyses is

that morphometric features of brain regions within the subjects are cor-

related with each other due to shared neurodevelopmental and func-

tional processes. Inter-individual variation of gyral morphometry would

therefore account for inter-individual differences in brain function

(Kennedy et al., 1998). Further, the approach may have particular rele-

vance to sex differences, given sexual dimorphisms contribute to vari-

ance in brain volumes, especially at the gyral level (Giedd et al., 2012;

Goldstein et al., 2001; Kennedy et al., 1998). While cortical thickness

would be a more sensitive measure to gyral level differences (Winkler

et al., 2010), here we studied gray matter volume to allow for examina-

tion of subcortical structures, like HIPP or parHIPP.

In the present study, we apply this covariance analytic approach

of the memory circuitry (Abbs et al., 2011) to a cross-sectional cohort

of men and women (pre-, peri-, and postmenopausal) in early midlife.

Based on our previous work on sex differences in memory circuitry,

we hypothesized that women will exhibit an advantage compared

with men in verbal memory performance that is associated with sex

differences in structural variation in relationships between brain

regions in memory circuitry. We further predict an attenuation of the

sex differences with menopausal transition.

2 | MATERIALS AND METHODS

2.1 | Subjects

Participants were selected from 17,741 pregnancies that constitute

the New England Family Study (NEFS), a Boston-Providence subsidi-

ary of the national Collaborative Perinatal Project. The NEFS is a pro-

spective study initiated over 50 years ago to investigate prenatal and

familial antecedents of pediatric, neurological, and psychological disor-

ders of childhood (Niswander & Gordon, 1972). Pregnant women,

recruited between 1959 and 1966, were representative of patients

receiving prenatal care in the Boston-Providence area. In a series of
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studies over the last 20 years, we followed the offspring of these preg-

nancies to investigate the fetal programming of adult phenotypes and

sex differences therein. The current study investigated the fetal pro-

gramming of sex differences in memory circuitry aging in early midlife

(Gilman et al., 2016; Goldstein et al., 2014; Goldstein, Buka, Seidman, &

Tsuang, 2010). Offspring were recruited at the time that they were ages

of 46–53 years of age and completed clinical, cognitive, and neuropsy-

chological assessments and functional and structural magnetic reso-

nance imaging (fMRI/sMRI/DTI). Exclusionary criteria included any

history of neurologic disease, central nervous system (CNS) damage,

head injury with loss of consciousness, endocrine disorders, heart dis-

ease, alcohol-related diseases, current or history of psychosis, current

use of hormonal contraceptives, other medical illnesses that may signifi-

cantly alter CNS function, or any MRI contraindication.

The set of analyses reported here focused on structural MRI (sMRI)

and behavioral evaluations of the 202 participants enrolled. One subject

was excluded given an incomplete T1 scan. After enrollment, seven

women reported current use of a hormone replacement regimen and

were therefore excluded from analyses reported here. One additional

subject was excluded after quality check of T1 scans. The remaining

193 participants were separated into four groups: premenopausal, peri-

menopausal, and postmenopausal women and men. Groups were

matched on important demographics—such as body mass index, educa-

tion, parental socioeconomic status, ethnicity, and age (Table 1). The

sample presented here differs slightly from our previously published

fMRI papers (Jacobs et al., 2016), given that a few subjects had either

usable T1 or fMRI scans. Human subjects’ approval was granted by Part-

ners Healthcare and Brown University. All volunteers gave written

informed consent and were paid for their participation.

2.2 | Study design

Subjects were seen at Brigham and Women’s Hospital Outpatient

Clinical Research Center. Pre- and perimenopausal women were

scheduled in the early follicular phase (Day 3–5) of their menstrual

cycle, pursuant to subject report (and validated by serologic evalua-

tion). Subjects fasted for ≥8 hr prior to a morning baseline blood draw.

Subjects were offered a light standardized breakfast (excluding caf-

feine) followed by a 1-hr MRI scanning session. Following the scan,

subjects completed a structured clinical interview, neuropsychological

testing, family medical history, and a reproductive/menstrual cycle

history administered by an experienced clinical interviewer/clinician.

2.3 | Structural magnetic resonance imaging

Structural MR images were acquired using a 3 T whole body Siemens

Tim Trio system (Siemens, Erlangen, Germany) with 12-channel head

coil. MRI data were acquired using a high-resolution 3D MPRAGE

sequence with the following parameters: repetition time (TR) 2530 ms,

echo time (TE) 3.32 ms T1 1,100 ms, flip angle 7�, matrix size

256 × 256, 174 slices, 1 × 1 × 1 mm isotropic voxel size. Images were

checked visually for possible movement artifacts. To correct for head

tilt, each MRI scan was realigned, horizontally to the anterior

commissure–posterior commissure line, and vertically to the sagittal

sulcus. Automatic brain masking was conducted using Multi Atlas Brain

Segmentation (Del Re et al., 2016). Segmentation of the scans was exe-

cuted using FreeSurfer 5.3 (Fischl et al., 2002), and quality of segmenta-

tions was determined by visual inspection. Based on visual inspection,

all FreeSurfer segmentations were included in further analysis. Gray

matter volumes for memory circuitry (ACC, iPAR, parHIPP, HIPP, and

DLPFC) were calculated using FreeSurfer segmentation. Regarding the

hippocampus, HIPP represents a conservative definition of the hippo-

campal formation as per Caviness, Meyer, Makris, and Kennedy (1996)

and Makris et al. (1999), including cornu amonis, dentate gyrus, subicu-

lum, presubiculum, and parasubiculum (but not the entorhinal cortex), a

terminology that has been adopted by the FreeSurfer parcellation sys-

tem (Fischl et al., 2002).

2.4 | Neuropsychological assessment

The neuropsychological tests administered were part of a comprehensive

neuropsychological battery that included digit span (Wechsler, 1997),

Controlled Oral Association Test for verbal fluency of letters and Catego-

ries (Benton, 1968), American National Adult Reading Test (Nelson,

1982), Spielberger State-Trait Anxiety Inventory, Profile of Mood Ques-

tionnaire, and two sleep measures (Pittsburgh Sleep Quality Index,

Insomnia Severity Index). In addition, two episodic memory tests—

Buschke Selective Reminding Test (Grober, Lipton, Hall, & Crystal, 2000;

Lemos, Simoes, Santiago, & Santana, 2015; Masur et al., 1989) and Face

Name Associative Memory Task (Rentz et al., 2011; Sperling et al.,

2003)—were collected. In multiple previous studies of dementia, the lat-

ter two tests were selected because they are particularly challenging and

sensitive to working memory and learning deficits associated with early

aging and have a high sensitivity for early cognitive decline (Hedden

et al., 2012). Z-score summary scores were created for The Buschke

Selective Reminding and the Face Name Associative Memory Task.

2.5 | Menopausal staging

The timing of menopausal transition between the first clinical appear-

ance of decreased ovarian function (i.e., shorter intermenstrual time

periods) to menstrual irregularity and of final amenorrhea is highly vari-

able and can occur over several years. Most women experience meno-

pause between ages 45 and 60 years, with timing being consistent

across societies (Pelosi et al., 2015; Stolk et al., 2012). In our sample,

given the age range, some women were already in menopause with per-

manent amenorrhea, low estradiol levels, and elevated gonadotropins;

some exhibited signs of follicular failure (elevated follicle-stimulating

hormone (FSH) and oligomenorrhea); and some showed normal cycling.

Reproductive histories and serologic hormonal validation were used to

determine the reproductive stage of women in our sample following the

Stages of Reproductive Aging Workshop (STRAW)-10 guidelines

(Harlow et al., 2012). Women were categorized as late reproductive

(“premenopausal,” n = 33), menopausal transition (“perimenopausal,”

n = 29), or early postmenopausal (“postmenopausal,” n = 32).

2.6 | Statistical analyses

Statistical analyses were conducted using the Statistical Package for

Social Sciences version 24.0 (IBMCorp, 2013) and GraphPad Prism
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7 (GraphPadSoftware, 2014). For all analyses, volumes were corrected

for total intracranial volume (ICV) by dividing each individual volume

by ICV. For visualization of analyses, please see Figure 1.

Following Abbs et al. (2011), covariance patterns were analyzed

between predefined memory networks (i.e., ACC, iPAR, parHIPP,

HIPP, and DLPFC), and covariance structures were compared

between groups. We first compared all women against men. Following

this, reproductive status among the women was compared to investi-

gate the impact of ovarian decline on memory circuitry covariances

(premenopausal women vs. perimenopausal women and perimeno-

pausal women vs. postmenopausal women). For comparison of covari-

ance patterns, we employed the Box's M test (Box, 1949) using the

following statistic:

M¼ n−Tð Þ ln jC j −
XT

i¼1

ni−1ð Þ jCi j

C¼ 1
n−T

XT

i¼1

ni−1ð ÞCi

where Ci is the variance-covariance matrix calculated from the group i,

T is the number of subgroups for which equality of matrices is tested,

and ni is the sample size of each group i.

The Box's M test statistic can be approximated by an F statistic,

whereas the rejection of the null hypothesis on a significant level of

p < .05 is interpreted as the overall covariance pattern between two

groups is different from each other. The Box's M tests allow for the

comparison of covariance matrices, rather than looking at single brain

volumes or multiple correlations (and hence protects for multiple com-

parison issues). If the Box's M test results were significant (p < .05) or

trended toward significance (p < .10), correlation coefficients for each

pair of regions of interest (ROIs) between the two groups were com-

pared. We would argue that the more liberal threshold of p < .10 for

trend significance is justified given that the Box's M test already pro-

tects against multiple comparison errors. A more liberal threshold also

protects against Type II error, likely to occur in correlation compari-

sons with rather small sample sizes. Correlation coefficients were con-

verted to a normal distribution using Fisher’s Z transformation, and Z-

values were used to test for differences between groups.

Additionally, given the relatively low number of participants in

each group, bootstrapping (number of samples = 1,000, 95% confi-

dence intervals, bias corrected accelerated, simple sampling) was per-

formed for these correlation coefficients. Bootstrapping is a method

to assign accuracy to sample estimates by resampling with replace-

ments from the original data. By looking not only at single value

(in this case correlation coefficient), but rather at a confidence inter-

val, one can control and check the stability of original results.

Following this, if significant (p < .05) or trend (p < .1) differences

between correlation coefficients were detected, the corresponding

volumes were also examined (e.g., correlation coefficients of HIPP and

ACC between perimenopausal and postmenopausal women were dif-

ferent, then analysis of covariance models [ANCOVAs] were used to

examine volumes of HIPP and ACC). The ANCOVA model was based

on structural volume as the dependent variable with independent vari-

ables for group status (premenopausal women, perimenopausal

women, postmenopausal women, men), controlled for age.

Finally, we investigated in post hoc exploratory analyses if mem-

ory performance was associated with structural variation in network

connections. Only in the case of significant group differences of corre-

lation coefficients between two groups, we additionally calculated lin-

ear regression for the relevant volumes (e.g., if we observed

differences between peri- and postmenopausal women in correlation

coefficients of HIPP and ACC, we then calculated linear regression

with hippocampus volume as independent variable and ACC volume

TABLE 1 Sample characteristics

Premenopausal women
(n = 33)

Perimenopausal women
(n = 29)

Postmenopausal women
(n = 32) Men (n = 99)

Age (years) 49.24 � 1.71a 49.83 � 1.91a 50.59 � 2.23a 50.08 � 2.31a

BMIb 28.39 � 6.08a 28.59 � 6.15a 27.63 � 5.88a 29.08 � 5.29a

PSESc 5.91 � 2.12a 5.39 � 1.86a 5.87 � 1.89a 5.80 � 1.77a

Race/ethnicity 1× Afro-American (3.0%) 3× Afro-American (10.3%) 6× Afro-American (18.8%) 2× Afro-American (2.0%)

30× white, non-Hispanic
(90.9%)

25× white, non-Hispanic
(86.2%)

26× white, non-Hispanic
(81.3%)

89× white, non-Hispanic
(89.9%)

1× other (3.0%) 1× other (3.4%) 3× white, Hispanic (3.0%)

1 missing value (3.0%) 4× other (4.%)

1 missing value (1.0%)

Education level 6× high school (18.2%) 7× high school (24.1%) 8× high school (25.0%) 2× less than high school
(2.0%)

13× some college (39.4%) 10× some college (34.5%) 11× some college (34.4%) 20× high school (20.2%)

10× 4 years of college
(30.3%)

10× 4 years of college
(34.5%)

9× 4 years of college (28.1%) 44× some college (44.4%)

4× graduate school (12.1%) 2× graduate school (6.9%) 2× graduate school (6.3%) 26× 4 years of college
(26.3%)

2 missing values (6.3%) 6× graduate school (6.1%)

1 missing value (1.0%)

a Mean � SD.
b Body mass index.
c Parental socioeconomic status was a composite index of family income, education, and occupation and ranged from 1.0 (low) to 9.3 (high).

1224 SEITZ ET AL.



as dependent variable). In a second step, we predicted one regional

volume conditional on another, based on our regression model

(e.g., ACC volume conditional on hippocampus volume). The absolute

residual between predicted volume and actual volume is an indicator

of how well actual association of two volumes fits the regression

model.

Last, we correlated the absolute residual with the memory scores,

using Spearman correlation to determine the strength of association.

This was followed by Fisher’s Exact Score to test whether Spearman

correlation coefficients significantly differed from 0.

3 | RESULTS

Comparison of covariance matrixes of the memory circuitry using the

Box's M test (Box, 1949) showed significant differences between

peri- and postmenopausal women (Box's M test = 28.94, F = 1.75,

df1 = 15, df2 = 13,711, p < .035), but no significant differences

between pre- and perimenopausal women (Box's M test = 20.83,

F = 1.26, df1 = 15, df2 = 13,960, p < .22) and all women and men

(Box's M test = 19.06, F = 1.24, df1 = 15, df2 = 144,800, p < .24).

Post hoc analyses of the correlation coefficients comparing peri-

and postmenopausal women revealed significant differences between

HIPP and ACC and a trend toward significant differences between

iPAR and ACC and DLPFC and ACC (Table 2). Postmenopausal

women showed a positive association between these four regional

volumes (Figure 2), while perimenopausal women did not. In order to

address the issue of small sample sizes, bootstrapping was conducted.

Findings (Table 2, confidence intervals) supported differences of cor-

relation coefficients of ACC and hippocampus, DLPFC, and iPAR

between peri- and postmenopausal women. Hence, bootstrapping

confirmed our initial results demonstrating a higher correlation

between ACC and other brain regions among postmenopausal

women.

Following this, we tested for group differences among HIPP,

ACC, iPAR, and DLPFC volumes, controlling for age. Group differ-

ences in brain volumes were significant for HIPP (F = 9.94, df = 3,

p < .0001) comparing men with pre- (p < .0001), peri- (p < .001), and

postmenopausal women (p < .0001), with women consistently having

larger HIPP volumes, relative to intracranial size, than men regardless

of reproductive status. Descriptive statistics are provided in Table 3.

Finally, given that we found significant associations between

ACC and HIPP, DLPFC, and iPAR, among postmenopausal women, we

predicted ACC volume based on HIPP, DLPFC, iPAR volume of all

people using regression models. We afterwards calculated for

FIGURE 1 Image processing and statistical analyses. The four panels showing the cortical regions of interest parcellated in this study are three-

dimensional anterior (upper left), posterior (upper right), inferior (lower left), and superior (lower right) views of a representative brain [Color
figure can be viewed at wileyonlinelibrary.com]
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postmenopausal women the absolute difference between the pre-

dicted and observed volume. This is an indicator of how well the

actual data meet the predicted linear association. For an individual,

high-absolute differences suggest that the association between the

two brain volumes is weaker than for subjects with low-absolute dif-

ferences. We predicted that postmenopausal women who had stron-

ger associations between brain volumes (and therefore smaller

absolute differences) within the memory circuit would show better

memory performance. We therefore—in a post hoc analyses—

correlated the absolute differences between predicted and observed

volumes of postmenopausal women with memory performance. We

observed a negative association between Buschke summary score

and association strength between HIPP and ACC (ρ = −0.35), which

significantly differed from zero (Fisher’s exact score p < .047),

indicating that low-absolute residuals (= higher association between

these areas) were correlated with better memory performance in

postmenopausal women. Face Name Associative Memory Task was

not associated significantly with association strength between HIPP

and ACC (rho = 0.20, p < .27).

4 | DISCUSSION

In this cross-sectional study, we examined structural brain volumes in

the memory circuitry and the co-relationships, or covariances, among

them in healthy early midlife by sex and reproductive status. Covari-

ance analysis assumes brain areas of a functional network are con-

nected through shared neurodevelopmental processes (Abbs et al.,

2011), and thus, suitable to analyze the regions as a network, as dis-

tinct from independent regions. In the present study, covariance pat-

terns among memory circuitry regions significantly differed comparing

peri- with postmenopausal women.

Postmenopausal women showed higher correlations between

ACC and HIPP, iPAR, and DLPFC than perimenopausal women. Inter-

estingly, even though we found the expected differences in HIPP vol-

ume, with women showing overall larger volumes than men, relative

to cerebrum size, the covariance patterns did not significantly differ

between men and women overall, controlled for age.

TABLE 2 Pearson correlation coefficients between brain regions defining memory circuit for peri- and postmenopausal women

Perimenopausal women Postmenopausal women Test statistic

Pearson correlation and 95% confidence interval

HIPP-parHIPP .58 (.31–.79) .56 (.19–.80) Z = .10, p < .46

HIPP-iPAR .56 (.23–.82) .42 (.072–.63) Z = .72, p < .24

HIPP-dlPFC .40 (.065–.66) .37 (0.66–.62) Z = .13, p < .45

HIPP-ACC −.33 (−.67 to .080) .57 (.22–.77) Z = −3.67, p < .0001

parHIPP-iPAR .62 (.30–.81) .58 (.18–.81) Z = .23, p < .41

parHIPP-dlPFC .47 (.15–.71) .49 (.039–.75) Z = −0.096, p < .46

parHIPP-ACC .14 (−.29 to .51) .28 (−.12 to .56) Z = −.54, p < .29

iPAR-dlPFC .53 (.23–.76) .45 (.075–.71) Z = .39, p < .35

iPAR-ACC .087 (−.29 to .41) .45 (.11–.68) Z = −1.47, p < .071

PFC-ACC .11 (−.25 to .41) .47 (.17–.67) Z = −1.48, p < .069

ACC = anterior cingulate cortex; DLPFC = dorsolateral prefrontal cortex; HIPP = hippocampus; iPAR = inferior parietal cortex;
parHIPP = parahippocampus.
Confidence intervals were created using bootstrapping (number of samples = 1,000, 95% confidence intervals, bias corrected accelerated, simple
sampling).
Significant (p < .05) or trend towards significant (p < .1) results are highlighted in bold.

FIGURE 2 Associations between anterior cingulate cortex volume and hippocampus/ dorsolateral prefrontal cortex/inferior parietal cortex.

There are no significant correlations between hippocampus/iPAR/DLPFC and ACC for perimenopausal women, but positive associations between
these regions for postmenopausal women [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Descriptive statistics for hippocampal volume

Hippocampal volume
(adjusted for total intracranial volume)

Premenopausal women .008159 � .000914a

Perimenopausal women .008021 � .000754a

Postmenopausal women .008103 � .000731a

Men .007464 � .000788a

a Mean � SD.
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Our findings suggest that, in early midlife, aging of memory cir-

cuitry connections in women is revealed with reproductive aging more

so than chronologic age.

Perimenopause is a period of substantial fluctuations in gonadal

hormone changes. We argue here, as have others in the field, that it is

during the profound fluctuations in gonadal hormone changes that

one sees the greatest changes in brain function and behavior. How-

ever, given the cross-sectional design of our study, this is speculative

and needs to be directly tested.

While menopausal transition may cause structural reorganization,

one also needs to consider the possibility of genetic factors that relate

to both menopause and altered structural covariance pattern

(Alexander-Bloch, Giedd, & Bullmore, 2013).

While the impact of menstrual cycle and hormone replacement

strategies on brain structure and function have been investigated

extensively (Berent-Spillson et al., 2012; Boss et al., 2014; Epperson

et al., 2013; Jacobs & D'Esposito, 2011; Protopopescu et al., 2008;

Rosenberg & Park, 2002), few studies have examined the impact of

ovarian decline on structural brain volumes, and none on the covari-

ance within memory circuitry. Studies that have investigated volumet-

ric outcomes focused on the hippocampus alone, and results were

inconsistent among investigations (Fischer, Gleason, & Asthana,

2014). For example, Goto et al. found a reduction in hippocampal vol-

ume comparing pre- and postmenopausal women (Goto et al., 2011a),

and a greater hippocampal volume loss in women compared with men

during a similar age span (Goto et al., 2011b). However, one earlier

study showed a lack of significant volumetric impact of menopause on

hippocampus (Goldman-Rakic, 1988).

Consistent with Sullivan (2005), we similarly did not observe sig-

nificant overall volumetric differences in memory circuitry regions

among women by menopausal status. We think this lack of volume

change is not surprising given that the women in the current study

were both healthy and in early postmenopause, and thus, ovarian

decline would likely not have a significant impact on brain volumes in

this sample. However, covariance analyses may be more sensitive to

identifying subtle changes in memory circuitry in early midlife, as in our

previous fMRI memory circuitry work on this cohort (Jacobs et al.,

2016, 2017), and therefore more suitable to investigate reproductive

hormone-dependent differences in structural associations within the

memory circuit in early midlife.

Variation in covariance patterns may represent changes in brain

connectivity. Indeed, the memory circuitry regions studied here have

direct or indirect anatomical connections (Goldman-Rakic, 1988;

Goldman-Rakic, Selemon, & Schwartz, 1984). HIPP is connected with

iPAR and DLPFC (Seltzer & Van Hoesen, 1979) as well as with ACC

(Barbas & Pandya, 1989; Sesack, Deutch, Roth, & Bunney, 1989).

Additionally, iPAR is directly connected with DLPFC and ACC (Makris

et al., 2005; Petrides & Pandya, 1984). ParHIPP is connected with

HIPP and other cortical areas (Petrides & Pandya, 1984). While the

latter areas have not been subparcellated herein, they are still consid-

ered part of the more broadly defined hippocampal formation (Makris

et al., 1999; Petrides & Pandya, 1984; Rosene & Van Hoesen, 1977),

which may explain the relatively minor parHIPP associations observed

in our study.

Functional findings also suggest associations between brain

regions studied here and memory performance (e.g., Addis, Moscov-

itch, & McAndrews, 2007; Eichenbaum, 2004; Krause et al., 1999;

Skinner & Fernandes, 2007; Squire, Stark, & Clark, 2004). A decline in

memory performance during menopause (Fuh, Wang, Lee, Lu, &

Juang, 2006) was associated with resting state brain activity in the

same network as studied here (Maki, 2015), while cognitive impair-

ments in postmenopausal women also showed a disruption in the

cortico-subcortical loop (Huang et al., 2015). Our recent fMRI study

of memory encoding in subjects from the same cohort presented here

(Jacobs et al., 2016) reported enhanced bilateral hippocampal connec-

tivity in postmenopausal women compared with pre- or perimeno-

pausal women. This enhanced functional connectivity was

significantly associated with maintaining successful memory perfor-

mance, further suggesting a recruitment of bilateral brain areas as a

potential mechanism to avoid or attenuate memory decline.

Our current findings suggest enhanced associations between the

volume of ACC and volumes of other memory circuit regions, namely

HIPP, iPAR, and DLPFC, from peri- to postmenopause. The ACC is a

mid-brain structure involved in core executive functions, such as selec-

tive attention (Cassaday, Nelson, & Pezze, 2014; Smith & Jonides,

1999), motor planning and response functions (Peterson et al., 1999;

Weible, 2013), self-processing (Qin & Northoff, 2011) emotional learn-

ing, arousal and control (Allard & Kensinger, 2014; Dolcos, Katsumi, &

Dixon, 2014; Vogt, Finch, & Olson, 1992), and working memory. With

respect to memory, the ACC seems to be particularly important for

long-term consolidation and plasticity (Insel & Takehara-Nishiuchi,

2013) as well as executive operations in association with working mem-

ory (Hartley & Speer, 2000). Given its role in emotion control and mem-

ory consolidation, the importance of ACC for chronic pain (Shyu &

Vogt, 2009; Zhuo, 2007), fear (Toyoda et al., 2011), and many psychiat-

ric disorders, such as depression (Devinsky, Morrell, & Vogt, 1995; Spati

et al., 2015), has been previously discussed.

Several recent resting state and functional MRI studies investi-

gated age-related changes in ACC connectivity and its importance for

memory performance. While results are not unambiguous (Cao et al.,

2014), it appears that healthy older individuals showed increased con-

nectivity between ACC and several other brain areas (Goldstone et al.,

2016) and increased activity in ACC (Erb & Obleser, 2013; Salami,

Rieckmann, Fischer, & Backman, 2014) when compared with younger

individuals. It has been also shown that concentrations of choline, cre-

atine, and N-acetyl aspartate in ACC increase may represent a com-

pensatory mechanism for higher energy demand and lower blood flow

(Vaidya, Paradiso, Boles Ponto, McCormick, & Robinson, 2007), which

may lead to neuronal hypertrophy and glial proliferation (Chiu et al.,

2014). Interestingly, stronger bilateral ACC connections are associated

with better memory performance (Klaassen et al., 2016; Lee, Tan, &

Qiu, 2016), suggesting a protective role of ACC in aging. This assump-

tion is further supported by the fact that in older adults who already

showed mild cognitive impairments, resting state activity in the ACC

was reduced rather than enhanced (Wu et al., 2014). While the associ-

ation of functional and structural covariance is in general an unsettled

issue (Di et al., 2017), our results support functional findings on the

ACC. We find that postmenopausal women who showed higher asso-

ciations between ACC and hippocampus performed better on the
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Buschke memory test when compared with postmenopausal women

with lower associations, additionally suggesting the important role of

ACC in maintaining memory performance in aging individuals (Jacobs

et al., 2016, 2017).

Aside from reproductive-dependent differences in associations

among regions in the memory circuit, our study showed that women

overall have larger hippocampi, relative to cerebrum size, than men.

This is consistent with multiple previous studies of sex differences in

hippocampal volume in healthy populations (Giedd et al., 2012; Gold-

stein et al., 2001; Sowell et al., 2007). The hippocampus is one of the

most highly sexually dimorphic regions in the brain. Animal and post-

mortem studies show a high density of estrogen, androgen (Gillies &

McArthur, 2010; Simerly, Chang, Muramatsu, & Swanson, 1990), and

progesterone (Brinton et al., 2008; Pluchino et al., 2006) receptors in

memory-related brain regions, such as hippocampus and frontal cortex.

Sex differences in hippocampus are initiated during ontogeny through

interaction of exposure to sex steroids and genotype (Arnold, 2009).

Moreover, neurogenesis after birth, prominent in hippocampus

(Clelland et al., 2009), and potentiated by puberty (Barha & Galea,

2010; Duarte-Guterman, Yagi, Chow, & Galea, 2015; Mahmoud, Wain-

wright, & Galea, 2016), contributes to a larger adult hippocampal vol-

ume in females than males (Giedd et al., 1996). Further, healthy women

have shown less age-related decline in hippocampal volume than men

(Pruessner et al., 2010). The human literature is consistent with a long

history of preclinical studies investigating the impact of sex steroid hor-

mones on hippocampal structure and function, including on synapse

density (Hara et al., 2011, 2016; Woolley & McEwen, 1994) and intra-

cellular signaling cascades (Arevalo, Azcoitia, Gonzalez-Burgos, &

Garcia-Segura, 2015; McEwen, Nasca, & Gray, 2016) impacting neuro-

plasticity (Brinton, 2009; Cooke & Woolley, 2005; Hao et al., 2006; Liu

et al., 2008; Micevych & Christensen, 2012; Shanmugan & Epperson,

2014) and facilitating long-term memory potentiation (Bayer et al.,

2015). In fact, parallel to volumetric differences, sex differences in ver-

bal memory performance also emerge shortly post-puberty (Epperson

et al., 2013; Maki, 2015; Rentz et al., 2016).

While our study and others demonstrate the importance of repro-

ductive status on the structural integrity of the memory circuitry, the

exact nature of the impact of sex steroid hormones on aging of memory

circuitry structure is still being elucidated (den Heijer et al., 2003), as are

the effects of hormonal treatment on brain structure (Wnuk, Korol, &

Erickson, 2012), memory performance (Berent-Spillson et al., 2015;

Comasco, Frokjaer, & Sundstrom-Poromaa, 2014), and neurodegenera-

tive diseases (Coker et al., 2010). Timing of the initiation and type of

hormone replacement (Hogervorst, 2013; Maki, 2013), and duration of

therapy (Lord, Buss, Lupien, & Pruessner, 2008), in part explain inconsis-

tencies across studies (McClure, Barha, & Galea, 2013). In addition, sex

steroid hormones also regulate and interact with the expression of cho-

linergic (Dumas et al., 2010b), serotonergic (Hall & Steiner, 2013), dopa-

minergic (Dumas, Filippi, Newhouse, & Naylor, 2016), glucocorticoid

(Ycaza Herrera & Mather, 2015), and other neuronal regulatory systems

(Gonzalez, Diaz, & Alonso, 2008; Harte-Hargrove, Maclusky, & Scharf-

man, 2013), which may contribute to interactions between structure

and function of the memory circuitry with ovarian loss.

Overall, our study demonstrated reproductive-dependent structural

differences in early midlife in women, with differences significant

between peri- and postmenopausal women. Importantly, the covari-

ances in the structural network are accompanied by functional perfor-

mance differences. Thus, we speculate that differences between peri-

and postmenopausal women in covariance patterns may indicate the

presence of a subtle, ongoing process of reorganization of memory cir-

cuitry as a function of menopausal status. Covariance analyses in

healthy aging individuals (age > 65) have demonstrated a more localized

structural organization in older when compared to younger individuals

(Montembeault et al., 2012). However, the differences in associations

among memory circuitry regions we observe occur years before one

would expect classical aging and neurodegeneration. It is unclear how

structural covariance alterations evolve with longer durations of post-

menopause and if so, when structural covariance alterations in meno-

pausal transition may be associated with later pathological aging.

Further longitudinal studies are needed to explore these questions.

In addition, there are other potential confounding variables which

could affect the results. Some previous studies (Apostolova et al.,

2006; Isamah et al., 2010) reported a significant impact of race and

ethnicity on structural brain volumes. The majority of our participants

were Caucasian, thus future studies should include more participants

from different ethnic backgrounds to investigate the impact of ethnic-

ity/race on memory circuitry and sex differences therein.

Interestingly, while we observe sex differences for volume analyses,

covariance patterns in early midlife between women and men overall

did not differ. Further studies are needed to investigate if this can be

explained by a lack of power to detect such differences or if overall sex

differences in memory circuitry structural covariances may emerge later

in life and related to sex differences in the frequency of Alzheimer’s dis-

ease (Nebel et al., 2018), a disorder of severe memory decline.

5 | CONCLUSION

Our results underscore the importance of studying brain systems

rather than individual regions and the impact of sex and reproductive

status. Further studies are needed to understand the mechanisms

underlying these findings and the impact of general health on these

processes. Sex hormones impact many systemic processes, such as

inflammation, general cognitive and emotional processing (Dedovic,

D'Aguiar, & Pruessner, 2009; Frey et al., 2010), and psychiatric disor-

ders, such as depression (Gobinath, Mahmoud, & Galea, 2014; Jacobs

et al., 2015; Messay, Lim, & Marsland, 2012; Rosenblat, Cha, Man-

sur, & McIntyre, 2014; Valkanova, Ebmeier, & Allan, 2013), schizo-

phrenia (Pompili, Arnone, & Gasbarri, 2012), sleep disturbance, and

anxiety (Arpels, 1996). Future longitudinal studies are therefore

needed to investigate the potential associations between sex and

reproductive status on brain volumes and connectivities, how these

may develop over time, and the associations with memory perfor-

mance and sex differences in disorders of brain aging.
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