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Background: Atrial fibrillation (AF) is the most common cardiac arrhythmia whose incidence
is on the rise globally. However, the pathophysiologic mechanism of AF remains poorly un-
derstood and there has been a lack of circulatory markers to diagnose and predict prognosis
of AF. In the present study, by measuring metabolic profile and analyzing plasma amino acid
levels in AF patients, we sought to determine whether amino acid metabolism was corre-
lated to the occurrence of AF. Methods: Consecutive patients admitted to hospital for AF
were enrolled. Plasma samples were obtained after overnight fast and a profile of 61 amino
acids was then measured using gas chromatography/mass spectrometry (GC/MS). Results:
Twenty-three AF and thirty-seven control patients were enrolled in the study. A number of
plasma amino acids were altered in AF, which showed significant prediction value for AF.
Intriguingly, circulating 4-hydroxypyrrolidine-2-carboxylic was gradually lowered with the
persistence of AF. Plasma amino acid levels were more strongly correlated with each other
in AF as compared with control. Conclusion: By utilizing non-target metabolic profile sur-
veys, we have found a number of altered amino acids, which exhibit diagnostic value for AF.
Enhanced amino acids correlation network further identified AF as a metabolism disorder.

Introduction
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia and its incidence is increasing
globally [1]. Patients with AF have increased risks of death, heart failure, hospitalization, and thromboem-
bolic events [2,3]. However, the pathophysiological mechanism underlying AF remains underexplored,
and there has been a lack of circulatory markers for diagnosing AF and predicting its prognosis [4].

The pathogenesis of AF is well known to be related to alterations in the anatomy and electrophysiology
of the heart. Common risk factors for AF include a genetic predisposition, heart structural alterations, and
myocardial ischemia [5]. It is worth noting that while metabolic diseases including those related to alcohol
intake, diabetes mellitus, and hyperthyroidism are also associated with an increased incidence of AF [6-8],
it has not been established whether alteration of the metabolism profile is related to the pathogenesis of
AF.

Patients with hyperthyroidism have an increased risk of developing AF [9,10]. The biologically active
thyroid hormones include thyroxin (T4) and 3,5,3′-triiodothyronine (T3), which are composed of a phenyl
ring attached via an ether linkage to a tyrosine molecule [11,12]. The biosynthesis and metabolism of thy-
roid hormones involve several amino acids [13]. Previous studies have found that excess thyroid hormone
increased the likelihood of AF in experimental animals, even in the presence of a beta receptor and va-
gal blockade [14]. However, it is unclear whether circulating amino acid levels are directly related to the
incidence of AF in patients with normal thyroid function [12]. This situation means that exploring the
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amino acid profile in AF patients has important clinical implications, since this may affect whether or not AF is also
regarded as a metabolic disorder, and whether certain specific plasma amino acids could be used to diagnose AF and
predict its prognosis.

Metabolomics has emerged as a powerful tool for defining changes in both global and cardiac-specific metabolism
that occur across a spectrum of cardiovascular disease states [15]. The advanced metabolites measurement technol-
ogy allows for simultaneous quantitation of a wide variety of molecular intermediates from multiple bioenergetic
pathways. Previous studies have shown several metabolic biomarkers to be associated with prevalent and incident AF
[16-18], but it is controversial whether the metabolomics alteration could be further validated [19]. In addition, few
studies have investigated the metabolic difference in paroxysmal and persistent AF.

In the present study, we measured the metabolic profile and analyzed plasma amino acid levels in AF patients with
the aim of determining if amino acid metabolism is correlated with the occurrence of AF.

Methods
Study design and population
Consecutive patients admitted to the cardiology department of the First Affiliated Hospital of Xi’an Jiaotong Uni-
versity for AF between March 2016 and June 2016 were selected. AFs were diagnosed upon initial admission. The
diagnosis of AF was made according to 2014 ACC/AHA guidelines [20]. A patient could only be included once.
Written informed consent was obtained from all study participants, with ethnic committee approval at the First Affil-
iated Hospital of Xi’an Jiaotong University. The present study complied with the Declaration of Helsinki, and formal
consent was obtained from all patients.

Inclusion and exclusion criteria
The inclusion criteria were: (1) age between 18 and 80 years old; (2) clinical diagnosis of AF; and (3) informed consent
for the present study. The exclusion criteria were: (1) hypothyroid or hyperthyroid disease; (2) active hepatitis or end
stage liver failure; (3) severe non-cardiac disease with expected survival of less than 1 year; (4) other health behaviors
that might affect the study, i.e., dementia, intemperance, etc; and (5) unwillingness to participate.

Demographic and biochemical measurements
Subjects who participated in the physical examination were interviewed by trained interviewers to complete a ques-
tionnaire that included questions, such as age, sex, history of disease(s), drug use, regular exercise, and alcohol con-
sumption. Further information about present medication and a detailed medical history were obtained via hospital
medical records. All participants donated blood samples after ≥10-h overnight fasting for biochemical measurement,
including complete blood count, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density
lipoprotein cholesterol (LDL-C), triglycerides (TG), fasting blood glucose (FBG), serum creatinine (CRE), blood urea
nitrogen (BUN), serum uric acid (UA), cyscatin-c, homocysteine, aspartate aminotransferase (AST), alanine amino-
transferase (ALT), γ-glutamyl transferase (GGT), alkaline phosphatase (ALP), thyroid function, and anticoagulation
function. Additionally, after an overnight fast, venous blood was withdrawn the next morning after admission and
immediately centrifuged at 3000 rpm for 10 min at 4◦C. Plasma was separated and stored at −80◦C until further
processing.

Determination of plasma amino acids
Plasma samples were obtained from 23 AF patients and 37 respective controls. After an overnight fast, venous blood
was withdrawn the next morning after admission and immediately centrifuged at 3000 rpm for 10 min at 4◦C. Plasma
was separated and stored at −80◦C until further processing. Before analysis, plasma samples were collected, thawed,
and 20 μl added to a microcentrifuge tube containing 10 μl of 0.1 mM L-Norvaline and 70 μl of acetonitrile. Samples
were vortexed for 20 s and centrifuged for 10 min at a speed of 15000 g/min. Amino acid profile was then mea-
sured using gas chromatography/mass spectrometry (GC/MS) [21]. A total of 61 serum amino acid metabolites was
measured (Supplementary Table S1).

Statistics
Data were normalized using MetaboAnalyst before analyses [22-31] (Supplementary Figure S1). Amino acids level
between AF and control was compared using Student’s t test. Amino acids level among paroxysmal and persistent
AF and control was compared using one-way ANOVA. Receiver operating characteristics (ROC) was used and areas
under the ROC curve were calculated to compare the effectiveness of different amino acids to identify AF. Pearson’s
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Table 1 Baseline characteristics of the patients in the cohort

AF (n=23) Control (n=37) P-value

Age (y) 62.15 +− 14.18 61.62 +− 7.99 ns

Female 8 11 ns

Hear rate (bpm) 80.76 +− 15.06 72.21 +− 10.76 <0.05

sBP (mmHg) 120.00 +− 14.32 133.15 +− 19.79 ns

dBP (mmHg) 75.65 +− 10.25 75.47 +− 11.49 ns

EF (%) 60.25 +− 11.87 63.74 +− 9.33 ns

AST (U/l) 23.24 +− 5.52 30.40 +− 47.19 ns

ALT (U/l) 25.69 +− 13.00 25.54 +− 15.60 ns

CRE (mg/dl) 8.01 +− 2.62 7.27 +− 1.22 <0.05

UA (mmol/l) 342.58 +− 90.87 282.97 +− 84.11 ns

TC (mg/dl) 142.33 +− 35.27 153.66 +− 37.57 ns

TG (mg/dl) 135.19 +− 105.14 161.47 +− 162.15 ns

HDL-C (mg/dl) 40.03 +− 9.77 42.45 +− 14.69 ns

LDL-C (mmol/l) 1.99 +− 0.80 2.22 +− 0.75 ns

proBNP (ng/ml) 2616.93 +− 7274.73 251.58 +− 553.39 <0.05

FT4 (mmol/l) 16.73 +− 3.43 16.26 +− 2.68 ns

FT3 (mmol/l) 5.12 +− 1.04 5.03 +− 0.88 ns

TSH (mmol/l) 2.50 +− 2.28 1.92 +− 1.17 ns

Current/ex smoker (%) 23.53% 44.12%

Current/ex drinker (%) 11.76% 29.41%

DM (%) 17.39% 29.73%

Hypertension (%) 47.06% 67.65%

CHF (%) 5.88% 0.00%

MI (%) 11.76% 11.76%

Abbreviations: BP, blood pressure; CHF, chronic heart failure; TC, total cholesterol; DM, diabetes mellitus; EF, ejection fraction; FT3, free triiodothyronine;
FT4, free thyroxine; MI, myocardial infarction; TSH, thyroid stimulating hormone.

analysis was performed to compare correlation between amino acids and biochemical indicators using SPSS 17.0.
Pearson’s analysis performed to compare correlation between each amino acid and heatmap was created using R
studio. P-values <0.05 were considered as significant *<0.05, **<0.01, and ***<0.001.

Results
Baseline characteristics
A total of 60 patients were enrolled in the study, 23 AF and 37 control patients. Table 1 describes the demographic and
biochemical characteristics of the AF and control patients. The mean age was 62.15 +− 14.18 years in AF and 61.62 +−
7.99 years in control patients. No significant difference in risk factors at baseline were seen between AF and control
except for heart rate, creatine, and pro-brain natriuretic peptide (proBNP).

Plasma amino acid profile of AF patients
Amino acid levels were compared between AF and control patients using Student’s t test, which identified sig-
nificant differences in the levels of L-3-aminoisobutyric acid, D-allothreonine, 4-hydroxy-pyrrolidine-2-carboxylic
acid (4HP2C), L-lysine, L-valine, L-threonine, L-methionine, L-isoleucine, glycine, L-leucine, and hypotaurine. A
heatmap of the individual levels of significantly altered plasma amino acids (P<0.05) is shown in Figure 1A, and
Figure 1B shows the overall level of each significantly altered amino acid. A general overview of the plasma amino
acid levels is provided in Figure 1C based on those amino acids with relative changes exceeding 2 and P-values un-
der 0.05. Among the above-listed amino acids that were significantly altered, only 4HP2C and L-threonine showed
changes larger than 2-fold.

ROC analysis of different amino acids for identifying AF
The alterations in circulating amino acids indicated that amino acid levels could be a potential diagnostic marker for
AF. To further identify the diagnostic value of the above-listed amino acids, ROC analysis was performed for each indi-
vidual amino acid. The area under the ROC curve exceeded 0.6 for all 11 of the significantly altered amino acids, while
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(A)

(B)

(C)

Figure 1. Expression profile of amino acids in patients with AF as compared with control

(A) Heatmap of significantly altered plasma amino acids (P<0.05) in AF and control patients. The colors in the heatmap indicated

the log-2-transformed values of each amino acids. (B) The general overview of plasma amino acids levels, when we select amino

acid with fold change beyond 2 and P-value under 0.05. The y-axis represented log-10-transformed P-value for each amino acid,

and the x-axis represented log-2-transformed fold change for each amino acid. Red dots stood for significantly altered amino acids

with more than two times of the fold change. (C) Illustration of the significantly altered amino acids in control and AF group. Data

were analyzed using the Student’s t test. Mean +− s.e.m. *P< 0.05, **P< 0.01, and ***P<0.001.
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Figure 2. ROC analysis of different amino acids to identify AF

(A–K) ROC curve analysis for respective amino acids. Area under the ROC curve and P-value for each amino acid were shown in

each figure.

the P-value was significant for D-allothreonine, 4HP2C, L-lysine, L-threonine, L-methionine, L-isoleucine, L-leucine,
and hypotaurine (Figure 2). The ROC analysis therefore further validated the prognostic value of the plasma levels
of amino acids in AF. We also performed an automated identification and performance evaluation of important fea-
tures using three multivariate algorithms: support-vector machines, partial-least-squares discriminant analysis, and
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(A)

(B)

Figure 3. Relative level of amino acids in control, AF, paroxysmal AF, and persistent AF

(A) Heatmap of relative average amino acid in AF, paroxysmal AF, and persistent AF as compared with control patients. The colors in

the heatmap indicated the relative amino acid levels in each group as compared with control. (B) 4-Hydroxypyrrolidine-2-carboxylic

levels in control, total AF, paroxysmal AF, and persistent AF patients. Data were analyzed using one-way ANOVA. Mean +− s.e.m.

*P< 0.05.

random forests using the MetaboAnalyst software. This additional analysis further validated the diagnostic value of
the above-listed amino acids (Supplementary Figure S3).

Relative levels of amino acid in controls, AF, paroxysmal AF, and
persistent AF
Since previous AF guidelines have divided AF into paroxysmal and persistent AF [32], we further compared the
plasma amino acid levels between paroxysmal and persistent AF patient groups. The 23 AF patients comprised 13
with paroxysmal and 10 with persistent AF. Figure 3A shows the levels of significantly altered amino acids in total
AF, paroxysmal AF, and persistent AF relative to controls. Only the circulating level of 4HP2C showed a significant
alteration in paroxysmal AF relative to persistent AF. However, it is worth noting that 4HP2C was not detectable in
any of the ten patients with persistent AF (Figure 3B), suggesting that 4HP2C gradually decreases with the progression
of AF.

Association between amino acid and clinical characteristics
To further assess the relationships between alterations of the amino acid profile and the pathogenesis of AF, the cor-
relations between age, blood pressure, heart function, lipid levels, renal function, coagulation function, and thyroid
function were analyzed (Figure 4). 4HP2C and L-lysine were found to be significantly and positively correlated with
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Figure 4. Association of amino acids level and clinical factors

Correlations between age, blood pressure, heart function, lipid levels, renal function, coagulation function, and amino acid profile

in AF patients. The colors in the heatmap stood for efficiency of the Pearson’s correlation. *P<0.05, **P<0.01, and ***P<0.001.

TC and LDL-C levels, while 4HP2C and L-lysine, together with L-glutamine, L-kynurenine, L-asparagine, pipecolic
acid, L-threonine, L-methionine, and L-phenylalanine were found to be significantly negatively correlated with co-
agulation function.

Analysis of correlation of plasma amino acid levels between AF and
controls
In order to identify interactions of plasma amino acids, we performed a correlation analysis in AF and control patients.
Figure 5A,B shows heatmaps of the Pearson’s correlation coefficients between the respective amino acids, with red
blots indicating the highest positive coefficient of 1 and blue blots indicating the lowest negative coefficient of −1. The
amino acid levels exhibited stronger positive correlations with AF patients than with controls. We then selected the
amino acid pairs with correlation coefficients higher than 0.7 or lower than −0.7 to identify strongly correlated amino
acids. L-2-aminobutyric acid, saccharopine, L-glutamine, L-cysteine sulfinic acid monohydrate, R-aminobutyric acid,
and glycine showed stronger correlations with AF than with controls (Supplementary Figure S4A,B). The respective
correlation networks for AF and controls are shown in Supplementary Figure S4C,D.

Enrichment analysis of plasma amino acids based on pathway and
disease
Finally, we performed an enrichment analysis using MetaboAnalyst to identify sets of amino acids that could be
grouped based on their involvement in the same biological pathways (Figure 6A and Supplementary Table S2) or
disease phenotypes (Figure 6B and Supplementary Table S3). The strongest association was found between AF and
the threonine and 2-oxobutanoate degradation pathway (P<0.001, FDR q<0.001). Also, early markers of myocardial
injuries were found to be significantly increased in AF (P<0.001, FDR q<0.001).

Discussion
The present study analyzed the metabolic profile and network of plasma amino acids in AF patients. Amino acid
metabolism was found to be altered in AF based on the following observations: (1) several plasma amino acids
were altered in AF, most of which also showed significant prediction value for AF; (2) the circulating level of
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Figure 5. Correlation analysis of plasma amino acids between AF and control

(A) Correlations between each amino acid in AF patients. (B) Correlations between each amino acid in control patients. The colors

within each crossover represented the correlation efficiency between the respective amino acids. Blue color indicated decreased

correlation and red color indicated enhanced correlation.
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Figure 6. Enrichment analysis of plasma amino acids based on pathway and disease

(A) Enrichment analysis of plasma amino acids based on pathway. The strongest association was found between AF and threonine

and 2-oxobutanoate degradation pathway (P-value <0.001, FDR q<0.001) in the biological pathways. (B) Enrichment analysis of

plasma amino acids based on disease. The strongest association was found between AF and early markers of myocardial injuries

(P-value <0.001, FDR q<0.001).
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4-hydroxypyrrolidine-2-carboxylic gradually decreased in the presence of persistent AF; and (3) plasma amino acid
levels were more strongly correlated with each other in AF than in controls.

AF was traditionally considered a heart rhythm disorder caused by disorganized electrical impulses usually origi-
nating in the roots of the pulmonary veins [33,34]. However, there is accumulating evidence for a correlation between
metabolic disorders and the occurrence of AF [6-8]. In the present study, we used a selective analytic platform to per-
form an in-depth investigation of amino acid metabolism. We investigated metabolite levels in AF and control patients
in order to identify biomarkers that are correlated with the incidence of AF. Our initial analysis revealed differentially
regulated amino acids, which further confirmed the presence of pathogenic dysfunctional metabolism in AF. The
ROC analysis further identified several circulatory markers that show prognostic value for AF. Thus, the findings of
the present study suggest that plasma amino acid levels are potential biomarkers for diagnosing or predicting AF.

We have also shown that the circulating level of 4HP2C is significantly decreased in the presence of persistent AF.
4HP2C is biosynthetically derived from the amino acid proline, which is a non-essential amino acid in the body that
can be synthesized from L-glutamate. Proline is reportedly involved in the synthesis of collagen and fibrosis in the
human body [35]. Since the plasma L-proline level was not significantly altered in our AF patients, we speculate that a
defect in proline metabolism could contribute to the pathogenesis of AF. Moreover, in addition to electrophysiological
alterations, patients with AF also displayed elevated levels of atrial fibrous tissue, along with increased expression
levels of collagen I and III [36]. Thus, identifying that altered amino acids could lead to dietary or other interventions
that are effective therapeutic targets for AF.

The main novelty of the present study is its investigation of the pathogenesis of AF from a metabolomics perspective
and the description of metabolic alteration in AF based on a non-targeted metabolomics approach. Although it is well
established that age, alcohol intake, and hyperthyroidism can cause AF [6-8], the precise underlying mechanisms are
still poorly understood. The present findings point to the utility of non-targeted metabolic profile surveys for iden-
tifying predictors of clinical diseases [19,21], and we have applied such a survey to 61 amino acids. The correlation
matrix in Figure 4 shows significant correlations between various amino acids and clinical factors. The separate cor-
relation matrices in Figure 5 for AF and control patients show all of the correlations of amino acids within each group.
It is noteworthy that interactions between amino acids play an important role in the pathogenesis and development
of AF. Identifying the basis for these interactions could be helpful for improving the diagnosis of AF and predicting
its prognosis.

Recent advances in metabolic profiling technologies have enhanced the feasibility of high-throughput pa-
tient screening for diagnosing various disease states [37,38], and an increasing number of studies are utilizing
metabolomics approaches to identify metabolic alterations and pathogenic factors in AF [39-42]. However, one pre-
vious study has not found altered metabolites in AF, making the metabolic regulation in AF controversial [19]. In our
study, we have further validated the metabolic alteration in AF patients, focusing on significantly altered amino acids
levels. Moreover, as compared with paroxysmal AF, the circulating level of 4HP2C is significantly decreased in the
presence of persistent AF. The present study could potentially add to our diagnostic armamentarium for AF patients.

The main limitation of the present study is that it had a case–control observational design. Since relatively few
patients were enrolled, selection and observation bias might be present. Further investigations are therefore war-
ranted to investigate metabolic alterations in AF and between paroxysmal and persistent AF based on larger cohorts.
Moreover, the plasma amino acid levels were measured using non-targeted metabolic methods, which restrict precise
evaluations of amino acid levels. We therefore suggest that these findings also require further investigation. Finally,
animal studies and clinical trials are required to further validate the predictive function of single amino acids and to
exclude compensatory actions.

In conclusion, the present study has established that measuring the levels of plasma amino acids can improve
the ability to predict AF. Altered levels of amino acids have diagnostic value for AF, and the analysis of amino acid
correlations further identified AF as a metabolism disorder. Our data suggest that plasma amino acids are poten-
tial circulatory markers for diagnosing AF and that therapeutic strategies of amino acid supplementation should be
considered.

Clinical perspectives
• The pathophysiologic mechanism of AF remains underexplored, and there has been a lack of circu-

latory markers to diagnose and predict prognosis of AF.
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• Altered amino acids exhibit diagnostic value for AF and enhanced amino acids correlation network
further identifies AF as a metabolism disorder.

• Our data suggest that plasma amino acids could be potential circulatory markers for diagnosing
AF and therapeutic strategies of amino acids supplementation could be considered as a potential
treatment.
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