Skip to main content
. 2019 Feb 6;9:1495. doi: 10.1038/s41598-018-37142-0

Table 1.

Reward comparison among the proposed DQN method, one-size-fit-all, random forest, and experts’ treatment.

Treatments Method Reward 95% Confidence Interval
AGVHD DQN 0.717 (0.683, 0.729)
one-size-fit-all 0.693 (0.659, 0.705)
Random forest 0.677 (0.666, 0.703)
experts’ treatment 0.673 (0.663, 0.694)
CGVHD DQN 0.706 (0.678, 0.722)
one-size-fit-all 0.684 (0.671, 0.712)
Random forest 0.672 (0.663, 0.713)
experts’ treatment 0.671 (0.661, 0.697)