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Abstract

Coronary artery anomalies are common congenital disorders with serious consequences in adult 

life. Coronary circulation begins when the coronary stems form connections between the aorta and 

the developing vascular plexus. We recently identified the WNT signaling modulator R-spondin 3 

(Rspo3), as a crucial regulator of coronary stem proliferation. Using expression analysis and 

tissue-specific deletion we now demonstrate that Rspo3 is primarily produced by cardiomyocytes. 

Moreover, we have employed CRISPR/Cas9 technology to generate novel Lgr4-null alleles that 

showed a significant decrease in coronary stem proliferation and thus phenocopied the coronary 

artery defects seen in Rspo3 mutants. Interestingly, Lgr4 mutants displayed slightly hypomorphic 

right ventricles, an observation also made after myocardial specific deletion of Rspo3. These 

results shed new light on the role of Rspo3 in heart development and demonstrate that LGR4 is the 

principal R-spondin 3 receptor in the heart.
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INTRODUCTION

Coronary arteries are essential for supplying blood to the heart and coronary artery 

anomalies can lead to serious consequences such as sudden cardiac death (Riley and Smart, 

2011). Furthermore, coronary heart disease, resulting from obstruction of the coronary 

arteries, is one of the leading causes of death worldwide (Aisagbhoni et al., 2014). Hence, 

understanding the molecular mechanisms guiding coronary artery formation is crucial for 

developing novel treatments for heart disease.

The coronary arteries are derived from the primitive vascular plexus of the heart in a 

complex remodeling process that begins at embryonic day (E) 11.5 (Red Horse et al., 2010) 

and continues well into the post-natal period (Tian et al., 2014). Coronary circulation begins 

when coronary artery stems form connections between the aorta and the vascular plexus at 

highly stereotyped locations (Tian et al., 2013, Chen et al., 2014). Proper development of the 

coronary stems is essential for supporting the coronary arteries and defects in stem 

formation can lead to improper development of the arterial tree (Chen et al., 2014). 

Cardiomyocytes are one of many cell types essential for coronary vessel development. By 

secreting soluble growth factors, they promote formation of the coronary arteries as well as 

the coronary stems (Wu et al., 2012, Lavine et al., 2006).

R-spondins (RSPO1–4) are secreted activators of both canonical (β-catenin dependent) and 

non-canonical Wnt signaling pathways with highly pleiotropic roles during embryonic 

development and adult homeostasis (de Lau et al., 2012; Scholz et al., 2016). By binding to 

leucine-rich-repeat-containing G protein-coupled receptors (LGRs) they potently increase 

the availability of WNT receptors thus enhancing WNT signalling (de Lau et al., 2014). Of 

particular interest is R-spondin3 (Rspo3), which has been shown to play an important role in 

placental vasculature remodeling and the zonation of various organs (Aoki et al., 2007; 

Kazanskaya et al., 2008; Vidal et al., 2016; Rocha et al., 2015). In the heart, tissue-specific 

ablation of Rspo3 with the Islet1Cre line led to decreased expansion of the secondary heart 

field (SHF), resulting in outflow tract abnormalities, hypomorphic right ventricles and early 

embryonic lethality (Cambier et al., 2014).

More recently, we have shown that Rspo3 also plays a critical role in coronary artery 

formation. Rspo3 is highly expressed around the developing coronary stems and temporal 

ablation of Rspo3 with the ubiquitously expressed CAGGCreER™ line (CAGR3 mutants) 

(Hayashi and McMahon, 2002) leads to improper formation of the arterial tree. We have also 

shown that RSPO3 acts through the Wnt/β-catenin signaling pathway to promote arterial 

specific proliferation of the coronary stems and ensure their proper development (Da Silva et 

al., 2017). The cell types expressing Rspo3 and the receptors that transduce the Rspo3 signal 

remain, however, unknown.

R-spondins can bind to three different LGR receptors, LGR4, LGR5 and LGR6 (Carmon et 

al., 2011; Glinka et al., 2011; de Lau et al., 2011). LGR4 and LGR5 mutants die postnatally 

from various complications in the intestines, kidneys and lungs, while LGR6 mutants are 

viable (Mazerbourg et al., 2004; Morita et al., 2004; Snippert et al., 2010). To date, neither 

coronary nor progenitor defects have been reported in either LGR4, LGR5 or LGR6-null 
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embryos, which may suggest that RSPO3 acts through different receptors in the heart. 

However, a previous study has revealed that approximately 40% of LGR4 mutants die 

during gestation (Mazerbourg et al., 2004; Kinzel et al., 2014). Although the causes are 

unclear, the premature lethality occurring in LGR4 null embryos may be indicative of 

cardiac defects.

Here we show that Rspo3 is specifically expressed in the cardiomyocytes surrounding the 

coronary stems and that myocardial-specific deletion of Rspo3 phenocopies the coronary 

artery defects seen in CAGR3 mutants. In addition, by using CRISPR-Cas9 technology we 

have generated novel Lgr4 mutants, that, strikingly, display cardiac abnormalities 

resembling the phenotype in Rspo3 mutants

MATERIALS AND METHODS

Mice

All animal work was conducted according to national and international guidelines and was 

approved by the local ethics committee (PEA-NCE/2013/88). The Rspo3flox, mTmG, 
CAGGCre-ER™, Myh6MerCreMer, WT1CreERT2, and Pax3Cre lines have been described 

previously (Rocha et al., 2015; Muzumdar et al., 2007; Hayashi and McMahon, 2002; Yan et 

al., 2015; Zhou et al., 2008; Engleka et al., 2005). Cre activation was obtained by a single 

administration (gavage) of 150 mg/kg tamoxifen (Sigma-Aldrich) dissolved in corn oil 

(Sigma-Aldrich) to pregnant females aged around 8 weeks carrying E8.5 embryos. For 

proliferation assays BrdU (Sigma-Aldrich) dissolved in 0.9% NaCl was administered to 

pregnant dams one hour before sacrificing via intraperitoneal (IP) injection at a dose of 

50mg/kg. Embryos were analyzed at various time-points (E13.5, E16.5 and E17.5) and 

gender was not taken into consideration.

In situ hybridization

Tissues were fixed overnight in 4% paraformaldehyde, progressively dehydrated and 

embedded in paraffin. 7 micrometer thick sections were cut then rehydrated and 

hybridization was performed as described in Wilkinson, 1992. Hybridized DIG-RNA probes 

were detected with alkaline phosphatase-coupled anti-digoxygenin antibody (1:4000, 

Roche). After washing, the chromogenic reaction was performed with NBT-BCIP substrate 

(Promega) for several days at room temperature. For the RNAscope analysis the Lgr4, Lgr5 
and Rspo3 probes were purchased from the manufacturer (Advanced Cell Diagnostics) and 

the protocol was performed according to the manufacturer’s instructions using the 

chromogenic Fast Red dye that can be visualized using light or fluorescence microscopy.

Immunofluorescence and histological analysis

For immunofluorescence experiments, tissues were fixed overnight in 4% paraformaldehyde, 

progressively dehydrated and embedded in paraffin. 5 micrometer thick sections were 

rehydrated, boiled in a pressure cooker for 2 minutes with Antigen Unmasking Solution 

(Vector laboratories) and blocked in PBS solution containing 10% normal donkey serum and 

3% BSA. All antibodies were applied overnight at 4°C at the concentrations listed in the 

antibody table (see Table S1). Secondary antibodies were diluted 1:400 and applied at room 

Da Silva et al. Page 3

Dev Biol. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



temperature for 1 hour. For histological analysis 5 micrometer thick sections were stained 

with haematoxylin and eosin according to standard procedures.

Wholemount Immunohistochemistry

Hearts were fixed in 4% PFA for 1 hour, washed in PBS, incubated in methanol/hydrogen 

peroxide (8:1) for 1 hour and then blocked in PBSST (5% Skim milk powder and 

0.5%Triton X-100 dissolved in PBS) for five hours. The primary antibody used was Rabbit 

anti-mouse Connexin 40 (Alpha Diagnostic International, 1:200). Donkey anti-Rabbit IgG 

(Santa Cruz, 1:100) was used as a secondary antibody and visualization was performed by 

incubating with DAB substrate (Sigma Aldrich). All antibodies were diluted in PBSST and 

incubations were carried out at 4°C overnight. Following each overnight incubation, tissues 

were washed three time 1 hour each at 4°C with PBSST

Isolation and treatment of primary endothelial cells from embryonic hearts

Isolation of endothelial cells from E15.5 hearts was performed as described elsewhere (Da 

Silva et al., 2017). Briefly, hearts were dissected, minced, pooled together and digested for 

30 minutes at 37°C. The cell suspension was then washed and incubated for 15 minutes at 

4°C with magnetic CD31 microbeads (Miltenyi) in PBS supplemented with 2% FBS and 

2mM EDTA Cells were then passed through two MS columns (Miltenyi) attached to a 

magnet, applying several washes and then eluting according to the manufacturer’s protocol. 

The eluted cells were then resuspended in endothelial cell growth medium (DMEM 

+ 20%FBS + 100μg/ml ECGC (Sigma Aldrich)) and grown until confluence. The non-bound 

flow-through cells were kept and grown in the same media as the isolated endothelial cells. 

RNA was extracted using the RNAeasy microkit (QIAGEN) according to the manufacturer’s 

protocol and gene expression levels analyzed by RT-qPCR as described in the supplemental 

materials and methods.

Generation of CRISPR/Cas9 Lgr4 mutant embryos

The publically available Zhanglab CRISPR software (addgene) was used to design the guide 

RNA template targeting exon 3 of the Lgr4 gene. Potential off-targets were also identified 

using this software. Primers encoding the guide RNA sequence were cloned into the pX330 

plasmid (addgene) and a T7 promoter sequence was added on by PCR to the final construct 

for transcription. Cytoplasmic microinjection of the guide RNA along with Cas9 RNA into 

fertilized B6D2 zygotes was then performed. F1 heterozygotes containing a 5bp deletion 

immediately before the cut site were identified by sequencing the PCR product and then 

backcrossed for three generations before being analyzed.

Statistical Analyses

Statistical Analyses were performed according to the two tailed unpaired Student’s t-test, 

*p<0.05 **p<0.01, ***p<0.001. Error estimates are expressed as standard error of mean 

(SEM). Details of the statistical analyses and the programs used for quantification can be 

found in the figure legends. The letter “n” refers to the number of individual samples/hearts 

(embryonic dissections) or the number of wells (in vitro experiments).
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RESULTS

R-spondin3 is expressed by cardiomyocytes around the developing coronary stems

Our previous work demonstrated that Rspo3 was highly expressed around the developing 

coronary stems during critical time-points in their development. Genetic deletion was 

performed using the CAGGCreER™ line that induces deletion in a ubiquitous manner. To 

determine whether the Rspo3-expressing cells were derived from the cardiac neural crest 

(CNC) or the proepicardial organ (PEO) we crossed an Rspo3 floxed allele (Rspo3fl; Rocha 

et al., 2015 ) with the Pax3Cre (CNC-specific) (Engleka et al., 2005) or WT1CreERT2 

(PEO-specific) (Zhou et al., 2008) lines (Fig. S1A, schematic), respectively. The presence of 

the mTmG reporter allele, which expresses GFP after Cre-induced recombination 

(Muzumdar et al., 2007), allowed detection of cells in which recombination had occurred. In 
situ hybridization analysis on sections of the heart near the developing coronary stems 

revealed persistent expression of Rspo3 when deletion was induced with the Pax3Cre or 

Wt1CreERT2 lines (Fig. S1A). Furthermore, neither the Pax3Cre nor the Wt1CreERT2 

deletion of Rspo3 led to coronary defects (Fig. S1B), demonstrating that Rspo3 is not 

expressed by cardiac neural crest or epicardial-derived cells.

To determine if Rspo3 was expressed by cardiomyocytes, we performed immunostaining 

with the myocyte-specific myosin heavy chain 1E (MF20) antibody on sections of the heart 

near the coronary stems previously stained with an Rspo3 in situ hybridization probe. 

Indeed, close inspection of the staining pattern revealed co-expression of Rspo3 mRNA and 

MF20 (Fig. 1A). We then performed RNAScope analysis with a fluorescent probe specific to 

Rspo3 mRNA followed by immunostaining with the endothelial-specific Platelet endothelial 

cell adhesion molecule (PECAM) antibody. Upon close observation, Rspo3 was not detected 

in the endothelial cells of the coronary stems (Fig, 1A).

Myocardial-specific ablation of Rspo3 leads to coronary artery defects and hypomorphic 
right ventricles

To test whether cardiomyocyte-specific deletion of Rspo3 would reproduce the coronary 

defects observed in our CAGR3 deletion, we employed the inducible Myh6MerCreMer line 

(Myh6 MerCreMer ; Rspo3fl/fl from now on called MYHR3 mutants) (Yan et al., 2015). We 

first attempted to delete Rspo3 at E11.5, a critical time-point in coronary artery 

development. However, deletion at this time-point resulted in a mere 60% reduction 

(p=0.001) in Rspo3 expression (Fig. S2A, B), which was drastically less efficient than the 

CAGR3 deletion (97%, p=0.00028) (Fig. S2C, D). To examine why the deletion efficiency 

was so low we analyzed Myh6MerCreMer hearts crossed with the mTmG line. In accordance 

with Yan et al., 2015, and consistent with the Myh6 expression pattern (Ng et al., 1991), the 

recombination rate with the E11.5/12.5 pulse was very low in the ventricular myocytes of 

the heart (where Rspo3 is expressed) in comparison to atrial myocytes (Fig. S2A). To test if 

we could improve the deletion efficiency of Rspo3, we performed deletion at E8.5 (Fig 1B, 

schematic). With this early deletion we observed very efficient recombination in all 

compartments of the heart as testified by activation of the GFP protein (Fig. 1B). More 

importantly, qPCR analysis revealed an 88% decrease (p=0.0007) in Rspo3 expression levels 

when compared to controls (Fig. 1C). RNAScope analysis confirmed a strong decrease in 
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Rspo3 expression around the coronary stems (PECAM-positive), whereas its expression in 

the interstitial cells of the aortic valves was maintained (Fig. 1D). In some MYHR3 mutants, 

however, persistent expression of Rspo3 was detected around the coronary stems after 

deletion indicating variable recombination rates with the Myh6MerCreMer line (Fig. S2E).

Since deletion of Rspo3 with the Islet1Cre led to severely hypomorphic right ventricles and 

outflow tract deformations (Cambier et al., 2014), we analyzed our MYHR3 mice for these 

abnormalities. Interestingly, 5 out of 13 embryos died before analysis at E16.5, and 4 out of 

8 MYHR3 mutant hearts displayed hypomorphic right ventricles (Fig. 2A-B). However, no 

outflow tract defects were detected, which is most likely due to the myocyte specific 

expression of the Myh6 gene, in comparison to Islet1 which is more broadly expressed in the 

SHF (Sun et al., 2007). Since a smaller right ventricle is commonly associated with defects 

in secondary heart field expansion we decided to analyze the expression pattern of Rspo3 at 

earlier time-points. RNAScope analysis on E9.5 hearts revealed that Rspo3 was highly and 

specifically expressed in regions with secondary heart field progenitors such as the outflow 

tract and atrio-ventricular canal (Fig. S1C).

To analyze coronary artery development in our MYHR3 mutants we performed wholemount 

immunostaining with the arterial-specific Connexin 40 antibody. Analysis of MYHR3 hearts 

revealed a drastically underdeveloped arterial tree in 5 out of 8 mutant hearts analyzed. 

Indeed, in mutants with coronary vessel defects the main left coronary artery branch was 

almost completely absent (Fig. 2C). Quantification of coronary arterial vessel numbers in 

MYHR3 mutants revealed a significant decrease in all compartments of the heart when 

compared to controls (Fig. 2D). Co-immunostaining of PECAM with the smooth muscle 

marker smooth muscle actin 22 alpha (SM22ɑ) confirmed the absence of larger arteries 

(white arrows) (Fig. 2E). However, contrary to the CAGR3 mutants (Da Silva et al., 2017), 

many smaller arteries were still detected in MYHR3 hearts (Fig. 2E). To confirm that the 

phenotype was related to defective coronary stem proliferation we quantified endothelial 

proliferation rates at E13.5 with BrdU and PECAM co-staining. As expected MYHR3 

mutants exhibited a significant decrease (−34%, p=0.0486) in proliferation of the coronary 

stems when compared to controls (Fig. S2F), which is slightly less, but consistent with that 

observed in CAGR3 mutants (−35–50%).

Lgr4 is the main R-spondin receptor expressed in the heart

We next attempted to determine the Lgr family member(s) that may act as R-spondin 

receptors in the developing heart. RT-PCR analysis with intron spanning primers on cDNA 

from E13.5 hearts revealed strong bands for Lgr4, while Lgr5 and Lgr6 showed very little 

amplification (Fig. 3A). This was confirmed with RNAscope analysis, which demonstrated 

high Lgr4 and very little Lgr5 expression in the heart (Fig. 3B). Limited Lgr5 expression 

was detected in the heart valves and endocardial cushions, which are areas of high WNT 

signaling (data not shown) (Alfieri et al., 2010). Interestingly, upon closer inspection we 

noticed Lgr4 was specifically expressed in the myocardium of the heart and was absent from 

the endocardial cushions and valves (Fig. 3C, Fig. S3A). qPCR analysis of RNA extracted 

from whole hearts revealed Lgr4 expression levels remained similar from E10.5 to E16.5 

(Fig. 3D). To determine, if Lgr4 was expressed in the endothelium of the heart we isolated 
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primary endothelial cells from E15.5 hearts using magnetic beads coupled to a PECAM 

antibody (Fig 3E, schematic). Relative expression analysis by qPCR and RT-PCR indicated 

Lgr4 mRNA levels were high in both the flow through as well as the isolated endothelial 

cells (Fig. 3F). This sharply contrasts expression of Rspo3, which is not detectable in the 

endothelium of the heart (Da Silva et al., 2017). Expression levels for Lgr5 and Lgr6 were 

dramatically lower when compared to Lgr4 expression (Fig. 3G-H). Interestingly, we also 

detected Lgr4 expression in adult hearts with RNAScope analysis. Immunostaining with an 

anti-PECAM antibody further revealed that Lgr4 is expressed in the endothelium of adult 

hearts (Fig. S3B).

Lgr4-null embryos display hypomorphic right ventricles and coronary artery defects

Since Lgr4 was determined to be the only R-spondin receptor expressed at relatively high 

levels in the heart, we decided to search for putative cardiac defects in LGR4-null mice. 

Several mutants targeting exon 1 of Lgr4 have been previously generated, but results 

regarding the phenotypes have been conflicting (Mazerbourg et al., 2004; Medive et al., 

2006; Kinzel et al., 2014; Mustata et al., 2011). Moreover, in silico analysis of the Lgr4 gene 

revealed a putative start codon in exon 2 (Ensembl, data not shown), which may lead to 

persistence of a truncated LGR4 protein in the existing knockout animals. We therefore 

decided to use CRISPR/Cas9 technology to target exon 3 of the Lgr4 gene (Fig. 4A, 

schematic). Sequencing analysis of genomic DNA from our LGR4 CRISPR mice revealed a 

5 base pair deletion immediately before the predicted cut site of the guide RNA (Fig. 4B). 

This deletion is predicted to lead to a frameshift and a 90% truncation of the original LGR4 

protein (CRLGR4 mutants) (data not shown). To exclude the possibility of off-target effects 

caused by unspecific binding of guide RNAs, we sequenced the top 9 possible off-targets. 

None of the top hits displayed mutations (data not shown).

Tests of several LGR4 antibodies on wildtype tissues were unsuccessful. Hence, to confirm 

that the CRISPR/Cas9 deletion led to the truncation of the LGR4 protein we cloned full 

length Lgr4 cDNA from WT and CRLGR4 hearts upstream of the enhanced green 

fluorescent protein (EGFP) into the pcDNA3.1 plasmid and then transfected the constructs 

into HEK293T cells. As a control we cloned wildtype Lgr4 cDNA with an artificial 

truncation at the predicted deletion site in exon 3 of CRLGR4 mutants. As predicted, the 

CRLGR4 mutant construct produced a truncated protein (45 kDa) with a similar size to the 

artificially truncated WT construct when analyzed by western blot with an anti-GFP 

antibody; thus, confirming that our CRLGR4 5 base pair deletion indeed leads to truncation 

of the LGR4 protein (Fig. S4).

To avoid counter-selection of severely affected embryos and better understand the full-

spectrum of the phenotypes resulting from LGR4 deletion, we decided to analyze our mutant 

mice at E16.5 rather than at later time-points. In accordance with previously published data 

(Mazerbourg et al., 2004), CRLGR4-null mice were smaller and weighed less (−23%, n=4) 

than control littermates (Fig. 4C, E and Fig. S5A). Some mutant embryos displayed edema 

(Fig. 4C). CRLGR4 mutant hearts were also significantly smaller (−22%, n=4; Fig. 4D, F, 

and Fig. S5B), although this difference disappeared when taking into account body weight 

(Fig. 4G).
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To ensure that the introduced CRISPR mutation recapitulated the previously published 

knockout strains, we analyzed other organs known to be affected by LGR4 deletion. LGR4 

has been previously shown to be required for stem cell proliferation in the intestinal crypts 

(de Lau et al., 2011; Kinzel et al., 2014). As expected, CRLGR4 mutant mice displayed 

significantly decreased proliferation rates (−40%, p=0.03) in the intestinal crypts (Fig. S5C, 

D). In the kidneys, LGR4 ablation leads to dilated tubules and cyst formation (Kinzel et al., 

2014) and a similar phenotype was detected in CRLGR4 mice (Fig. S6).

Next we decided to analyze various CRLGR4 mutant hearts to see if we could detect SHF 

defects and/or coronary artery anomalies. Interestingly, in 5 out of 18 mutant embryos we 

observed slightly hypomorphic right ventricles. Three of these mutants also had noticeable 

edema (Fig. 4C). qPCR analysis at E10.5 revealed decreased expression of Islet1 (p=0.07) 

which although was not significant, may be indicative of decreased canonical Wnt signaling 

since Islet1 is a direct target of β-catenin (Fig. 5A). In previous works deletion of β-catenin 

(Lin et al. 2007) and Rspo3 (Cambier et al. 2014) in the secondary heart field with the Islet1 
Cre both led to decreased proliferation rates in the heart. To determine if our CRLGR4 

mutants also displayed decreased proliferation rates we performed BrdU staining at E10.5. 

Interestingly, CRLGR4 mutants displayed a slight (−15%) but significant decrease (p=0.043) 

in proliferation. Quantification of the number of coronary arteries revealed that 6 out of 18 

CRLGR4 mutant embryos analyzed had less coronary arteries in all compartments of the 

heart when compared to controls (Fig. 5C, D). Whole-mount immunostaining with a 

Connexin 40 antibody showed that the major branches of the left and right coronary arteries 

were malformed in CRLGR4 mutants (Fig. 5E). However, many smaller coronary arteries 

were still detected, altogether suggesting the phenotype to be less severe than in CAGR3 

mutants (Da Silva et al., 2017).

Finally, to see if the coronary artery defects observed in our CRLGR4 mutants was due to 

decreased proliferation of the coronary stems (as was previously observed in CAGR3 

mutants) we performed co-immunostaining with anti-BrdU and PECAM antibodies on 

sections of the heart near the developing left coronary (a region with high Rspo3 expression) 

(Fig. 5F). Quantification of PECAM/BrdU-positive cells revealed a highly significant 25% 

reduction (p=0.0005, n=3) in CRLGR4 mutant hearts (Fig. 5G). However, the reduction in 

proliferation was less severe than that observed in CAGR3 mutants (35% to 50%) (Da Silva 

et al., 2017), possibly accounting for the milder phenotype in our CRLGR4 mutants. 

Quantification showed a small reduction of Lgr4 RNA (p=0.07), which may reflect reduced 

stability of the mutated RNA. However, Lgr5 and Lgr6 expression persisted in the CRLGR4 

mutants, which may have permitted low levels of RSPO3 signaling (Fig. 5H).

DISCUSSION

Coronary arteries are essential to support the heart with oxygen and coronary artery 

abnormalities can lead to serious consequences in adult life (Riley and Smart, 2011). We 

have previously shown that localized expression of the WNT signaling modulator Rspo3 
promotes proliferation of the coronary stems through the β-catenin signaling pathway (Da 

Silva et al., 2017). Here we demonstrated that the major cell-types responsible for 

expressing Rspo3 around the coronaries are cardiomyocytes and, myocardial-specific 
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deletion of Rspo3 phenocopied the coronary artery defects observed after ubiquitous 

deletion of Rspo3. These results validate the critical role of Rspo3 in coronary stem 

proliferation and they further elucidate the importance of cardiomyocytes in promoting 

coronary vessel development. Particularly striking is the highly restricted regional 

expression pattern of Rspo3 around the coronaries, and it will be important to identify the 

factors involved in activating Rspo3 expression.

It is worth noting that although myocardial-specific deletion of Rspo3 led to an overall 

decrease in coronary arteries, the phenotype was less severe than in CAGR3 mutants. This 

can be explained by incomplete deletion resulting from the Cre line used. Indeed, previous 

work has shown that the Myh6 gene shows variable expression in the ventricles during 

embryonic development (Ng et al., 1991). Alternatively, Rspo3 may not exclusively be 

expressed by cardiomyocytes and indeed we were able to detect sparse expression of Rspo3 
around the coronaries in all MYHR3 mutants analyzed (Fig. 1D, asterisks). It is also 

possible that expression of Rspo3 in the aortic valves contributes to the development of the 

coronary orifices and/or anastomosis of the coronary arteries with the aorta.

In addition to the analysis of tissue-specific deletions for Rspo3, we also report here a novel 

mutant allele for Lgr4 that carries a 5 base pair deletion in exon 3. Homozygous mutants 

recapitulated the intestinal and kidney phenotypes reported for previous Lgr4 alleles, 

suggesting that it indeed acts as a loss of function mutation. By focussing on the heart we 

demonstrate that LGR4 is the principle receptor for Rspo3 during coronary stem formation. 

Given the previous studies with Lgr4 mutant alleles it seems surprising that no cardiac 

defects have been reported. This may be due to the incomplete penetrance of the phenotype 

we have observed. Indeed, in the study by Mazerbourg et al. 2004, 40% of Lgr4 null mutants 

were predicted to die in utero. Although the timing of death was not determined in this work, 

a later study by Kinzel et al. 2014 revealed that many Lgr4/5 double mutants displayed 

autolysis at E16.5 and these embryos were excluded from the analysis. It is therefore 

possible that at E15–16 more severe Lgr4-null mutants begin to die from cardiac 

complications. This is supported by our previous unpublished observations that around 40% 

of CAGR3 mutants also died around E15–16.

Why is the cardiac phenotype so variable in Lgr4 mutants? Including this work, there are 

now at least three independent studies demonstrating that some LGR4 mutants die in utero 
from unknown complications (Mazerbourg et al., 2004; Kinzel et al., 2014). All three 

mutants were generated using different methods in different genetic backgrounds and it is 

unlikely that this variability is due to technical problems or differences in the mouse strains 

used. Instead RSPO3 may be able to bind to LGR5 and/or LGR6 receptors in the absence of 

the LGR4 protein and permit the formation of sufficient coronary vessels for survival. 

Alternatively, a recent study has suggested that, at least in vitro (HAP1 cell line), Rspo3 and 

Rspo2 can activate β-catenin signaling in the absence of LGR4, 5 and 6 by directly binding 

to Glypicans or Syndecans (Lebensohn and Rohatgi, 2018). Whether or not this is the case 

in the developing heart remains to be tested.

On a final note, neither the MYHR3 nor the CRLGR4 mutants displayed outflow tract 

deformations. This is surprising since deletion of Rspo3 with the Islet-1Cre results in severe 
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outflow tract abnormalities (Cambier et al., 2014). This may be explained by the fact that 

both the MYHR3 and CRLGR4 mutants only affect RSPO3-mediated signaling in the 

myocardium, and that somehow this only affects the formation of the right ventricle and not 

the outflow tract. This is an interesting observation since it points to lineage restrictions 

within early progenitor populations that are most likely controlled by an RSPO-LGR4 axis.

In conclusion, here we have shown that myocardial specific RSPO3 acts mainly through the 

LGR4 receptor to promote coronary stem proliferation in the developing heart. These results 

provide novel insights into the role of RSPO3 and WNT/β-catenin signaling in coronary 

artery formation that in the long run may be useful for the development of novel regenerative 

treatments for patients suffering from coronary heart disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• R-spondin3 (Rspo3) is specifically expressed by cardiomyocytes around the 

csoronary stems

• Myocardial-specific deletion of Rspo3 results in coronary artery defects

• Leucine Rich Repeat G Protein Coupled Receptor 4 (Lgr4) is the main R-

spondin receptor expressed in the heart

• Novel CRISPR/Cas9 Lgr4 mutants display coronary artery defects and 

hypomorphic right ventricles
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Fig. 1. R-spondin3 is expressed by cardiomyocytes around the developing coronary stems.
(A) Rspo3 in situ hybridization analysis (i-iii) overlayed with immunostaining for the 

myocyte-specific MF20 protein (iii) demonstrates Rspo3 is expressed by cardiomyocytes 

around the developing left coronary artery stem. (iv) RNAScope analysis reveals Rspo3 is 

not expressed by endothelial cells (PECAM-positive) of the developing left coronary stem 

(Scale bar 200 μM). (B) The mTmG reporter allele was crossed with the Myh6MerCreMer line 

to evaluate Cre-specific activity in the myocardium. GFP and Troponin T (TROPT) co-

immunostaining shows high recombination efficiency in the myocardium of the atria and 

ventricles when tamoxifen was administered at E8.5 and analyzed at E16.5. (C) Analysis of 

Rspo3 expression levels by qPCR reveals an 88% reduction in Myh6MerCreMer ; Rspo3fl/fl 

(MYHR3-mutant) hearts. Data are expressed as fold change vs. controls and columns are 

means ± SEM. (D) RNAScope analysis of Rspo3 expression in MYHR3 mutant hearts 

reveals a specific reduction around the developing left coronary artery vessels (white 

arrows). Expression in the aortic valves (red arrows) is not affected in MYHR3 mutants. 

Some Rspo3 expression is still detected around the coronary stems in MYHR3 mutants 

(asterisks). For all statistical analyses the paired student t-test was used assuming unequal 

variances, ***p<0.001. LCA=left coronary artery, AV=aortic valve.
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Fig. 2. Myocardial-specific deletion of Rspo3 leads to hypomorphic right ventricles and coronary 
artery defects.
(A) Administration of tamoxifen at E8.5 followed by analysis at E16.5 reveals MYHR3 

mutant hearts have hypomorphic right ventricles when compared to controls. (B) H & E 

staining on sections reveals MYHR3 hearts have smaller right ventricles (RV) when 

compared to controls. No outflow tract (OFT) abnormalities were detected in MYHR3 

mutant hearts (n=8, 4 KO hearts had smaller right ventricles). (C) Whole-mount 

immunostaining with the arterial-specific Connexin 40 antibody reveals gross morphological 

differences in the arterial tree of MYHR3 mutants. Lateral view of hearts shows the left 
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coronary artery is completely absent in MYHR3 mutants (white arrows). The atria and 

outflow tracts of WT and MYHR3 mutant hearts were trimmed to better visualize the 

coronary artery staining. (D) Quantification of coronary vessel number reveals MYHR3 

mutant hearts have less coronary arteries in all compartments of the heart. (n=3, 2 litters). 

Columns are means ± SEM. (E) Co-immunostaining with PECAM and SM22ɑ antibodies 

reveals an absence of large coronary arteries (white arrows) in MYHR3 hearts (n=8, 5 KO 

hearts had coronary defects). All scale bars 200 μM. For all statistical analyses the paired 

student t-test was used assuming unequal variances, *p<0.05.
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Fig. 3. Lgr4 is the main R-spondin receptor expressed in the heart.
(A) RT-PCR analysis on cDNA from E13.5 hearts with intron-spanning primers 

demonstrates Lgr4 is expressed in the heart. Very little amplification of Lgr5 is detected. 

Amplification of both Lgr4 and Lgr5 was detected in control cDNA from intestines (3 

separate hearts and intestines were analyzed). Lgr6 amplification was also detected in E13.5 

hearts, but at very low levels. cDNA extracted from whole embryos was used as a control for 

Lgr6 amplification (2 separate hearts and 2 whole embryos analyzed). (B) RNAscope® 

analysis with fluorescent probes for Lgr4 and Lgr5 reveals Lgr4 is highly expressed in the 
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heart (white dashed outlines) at E13.5 while very little Lgr5 expression is detected. (C) 

Closer inspection of Lgr4 RNAScope® analysis with Fast Red dye staining reveals Lgr4 is 

expressed in the myocardium of the ventricles and interventricular septum, but not in the 

endocardial cushions. (D) qPCR analysis on RNA extracted from whole hearts shows Lgr4 
is consistently expressed at similar levels from E10.5 to E16.5. (E) Schematic demonstrating 

the strategy used to isolate endothelial cells from E15.5 hearts with magnetic microbeads 

coupled to a CD31 antibody. Non-bound flow through cells (FT) were kept to test the purity 

of the isolations. (F) qPCR analysis of RNA extracted from isolated cells demonstrates high 

enrichment of endothelial-specific genes (Pecam1, Sox17 and Vegfr2) in the endothelial 

cells while FT cells express high levels of myocyte-specific markers (TropT and Nkx2–5). 
Lgr4 expression is greater in the FT but is still highly expressed in the endothelial cells. 

Rspo3 was used as a control gene that is not expressed in the endothelium of the heart. (G-

H) Analysis of Lgr5 and Lgr6 expression by qPCR and RT-PCR reveals both are expressed 

at relatively low levels compared with Lgr4 in the FT (G) and endothelial cells (H). All 

columns are means ± SEM. For all statistical analyses the paired student t-test was used 

assuming unequal variances, **p<0.01, ***p<0.001. RV=right ventricle, BW=body wall, 

EC=endocardial cushion, IVS=interventricular septum.
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Fig 4. Novel Lgr4 CRISPR/Cas9 mutants display cardiac defects.
(A) Schematic demonstrating the targeting of exon 3 of the Lgr4 gene using CRISPR/Cas9 

technology. (B) DNA sequencing of Lgr4 exon 3 from CRISPR/Cas9 Lgr4 mutants 

(CRLGR4) demonstrates a 5 base pair deletion was introduced into the cut site (red dash). 

Sequence shown is the reverse complement. (C) Analysis of CRLGR4 mutant embryos at 

E16.5 reveals they are smaller and occasionally display edema and haemorrhages when 

compared to wildtype (WT) controls. (D) CRLGR4 mutant hearts are smaller and display 

smaller right ventricles. The outflow tracts of CRLGR4 mutant hearts display normal 
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morphology. (E) Quantification of embryo weight reveals CRLGR4 mutants are smaller 

when compared to controls. (F) CRLGR4 mutant hearts weigh significantly less compared 

to wildtype controls. (G) When taking embryo weight into account there is no significant 

difference in heart weight between CRLGR4 mutants and controls. (H) H&E staining 

reveals CRLGR4 mutant hearts have smaller right ventricles when compared to controls. 

Scale bar 200 μm. (I) Quantification of right ventricle size reveals a significant decrease in 

CRLGR4 mutants when compared to controls. Left ventricle size is not affected. All 

columns are means ± SEM. For all statistical analyses the paired student t-test was used 

assuming unequal variances, ***p<0.001. SP=signal peptide, TMD=Transmembrane 

domain, PAM=Protospacer Adjacent Motif, RV= right ventricle, OFT=outflow tract.
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Fig. 5. Lgr4 mutants exhibit decreased proliferation and have defects in coronary artery 
formation.
(A) qPCR analysis of CRLGR4 KO hearts at E10.5 reveals a decrease in the secondary heart 

field marker and β-catenin target Islet1 when compared to littermate controls although this 

did not reach statistical significance (n=4, 3 litters) (B) Quantification of proliferation in 

CRLGR4 KO hearts at E10.5 reveals a significant decrease when compared to controls (n=3, 

2 litters) (C) Co-Immunostaining with PECAM and SM22ɑ antibodies demonstrates a 

reduction in coronary arteries (white arrowheads) in CRLGR4 mutants. Scale bars: mosaics 

200 μM, close ups 100 μM. (D) Quantification of coronary arteries demonstrates a 
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significant reduction in all compartments of the heart in CRLGR4 mutants when compared 

to controls. (E) Whole-mount immunostaining with the arterial-specific connexin 40 

antibody reveals the major branches of the left and right coronary arteries (white arrows) are 

malformed in CRLGR4 mutants. The atria and outflow tracts of WT and CRLGR4 mutant 

hearts were trimmed to better visualize the coronary artery staining. (F) Co-immunostaining 

with PECAM and BrdU antibodies on sections of the heart near the developing left coronary 

artery reveals CRLGR4 mutants have decreased rates of endothelial proliferation. Scale bars 

mosaics 100 μM, close ups 100 μM. (G) Quantification of endothelial proliferation around 

the developing left coronary artery demonstrates a significant reduction in CRLGR4 mutants 

when compared to controls. Columns are means ± SEM. (H) qPCR analysis of RNA 

extracted from the upper halves of CRLGR4 mutant hearts does not demonstrate any 

significant change in the expression of Rspo3 or the Lgr4,5,6 receptors (n=3, 2 litters). Note 

that Lgr4 message carries the introduced deletion mutation, which may account for the 

slightly reduced expression levels. Data are expressed as fold change vs. controls and 

columns are means ± SEM. For all statistical analyses the paired student t-test was used 

assuming unequal variances, *p<0.05, ***p<0.001. RV= right ventricle, 

IVS=interventricular septum, LV=left ventricle, CA=coronary artery, LCA=left coronary 

artery, RCA= right coronary artery.
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