
Genome-wide association study meta-analysis of the Alcohol 
Use Disorder Identification Test (AUDIT) in two population-based 
cohorts

Sandra Sanchez-Roige1, Abraham A. Palmer1,2, Pierre Fontanillas3, Sarah L. Elson3, The 
23andMe Research Team3, Substance Use Disorder Working Group of the Psychiatric 
Genomics Consortium, Mark J. Adams4, David M. Howard4, Howard J. Edenberg5, Gail 
Davies6,7, Richard C. Crist8, Ian J. Deary6,7, Andrew M. McIntosh4,6, and Toni-Kim Clarke4

1Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA

2Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA

3Collaborator List for the 23andMe Research Team: Michelle Agee, Babak Alipanahi, Adam 
Auton, Robert K. Bell, Katarzyna Bryc, Sarah L. Elson, Pierre Fontanillas, Nicholas A. Furlotte, 
David A. Hinds, Karen E. Huber, Aaron Kleinman, Nadia K. Litterman, Jennifer C. McCreight, 
Matthew H. McIntyre, Joanna L. Mountain, Elizabeth S. Noblin, Carrie A.M. Northover, Steven J. 
Pitts, J. Fah Sathirapongsasuti, Olga V. Sazonova, Janie F. Shelton, Suyash Shringarpure, Chao 
Tian, Joyce Y. Tung, Vladimir Vacic, and Catherine H. Wilson

4Division of Psychiatry, University of Edinburgh, Edinburgh, UK

5Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 
Indianapolis, IN, USA.

6Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK

7Department of Psychology, University of Edinburgh, Edinburgh, UK

8Translational Research Laboratories, Center for Neurobiology and Behavior, Department of 
Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

Corresponding author: Toni-Kim Clarke, toni.clarke@ed.ac.uk. 

URLs:
UK Biobank: http://www.ukbiobank.ac.uk/
FUMA: http://fuma.ctglab.nl/
LD score software: https://github.com/bulik/ldsc/
LDHub: http://ldsc.broadinstitute.org/
METAL: https://genome.sph.umich.edu/wiki/METAL
S-PrediXcan: https://github.com/hakyimlab/S-PrediXcan-Working
The NHGRI GWAS Catalog: http://www.genome.gov/gwastudies/
Regulome DB database: http://www.regulomedb.org/
PredictDB Data Repository: http://predictdb.hakyimlab.org/
Credible set estimation method, R script: https://github.com/hailianghuang/FM-summary

Data availability:
We have provided summary statistics for the top 10,000 SNPs (Supplementary Data Set). Full GWAS summary statistics for the 
23andMe dataset will be made available through 23andMe to qualified researchers under an agreement with 23andMe that protects the 
privacy of the 23andMe participants. Interested investigators should email dataset-request@23andme.com for more information. 
GWAS summary statistics for the UKB GWAS of AUDIT scores will be available on request.

The authors report no conflict of interest

HHS Public Access
Author manuscript
Am J Psychiatry. Author manuscript; available in PMC 2020 February 01.

Published in final edited form as:
Am J Psychiatry. 2019 February 01; 176(2): 107–118. doi:10.1176/appi.ajp.2018.18040369.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ukbiobank.ac.uk/
http://fuma.ctglab.nl/
https://github.com/bulik/ldsc/
http://ldsc.broadinstitute.org/
https://genome.sph.umich.edu/wiki/METAL
https://github.com/hakyimlab/S-PrediXcan-Working
http://www.genome.gov/gwastudies/
http://www.regulomedb.org/
http://predictdb.hakyimlab.org/
https://github.com/hailianghuang/FM-summary


Abstract

Alcohol use disorders (AUD) are common conditions that have enormous social and economic 

consequences. We obtained quantitative measures using the Alcohol Use Disorder Identification 

Test (AUDIT) from two population-based cohorts of European ancestry: UK Biobank (UKB; 

N=121,604) and 23andMe (N=20,328) and performed a genome-wide association study (GWAS) 

meta-analysis. We also performed GWAS for AUDIT items 1–3, which focus on consumption 

(AUDIT-C), and for items 4–10, which focus on the problematic consequences of drinking 

(AUDIT-P). The GWAS meta-analysis of AUDIT total score identified 10 associated risk loci. 

Novel associations localized to genes including JCAD and SLC39A13; we also replicated 

previously identified signals in the genes ADH1B, ADH1C, KLB, and GCKR. The dimensions of 

AUDIT showed positive genetic correlations with alcohol consumption (rg=0.76–0.92) and 

Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) alcohol dependence (rg=0.33–

0.63). AUDIT-P and AUDIT-C showed significantly different patterns of association across a 

number of traits, including psychiatric disorders. AUDIT-P was positively genetically correlated 

with schizophrenia (rg=0.22, p=3.0×10−10), major depressive disorder (rg=0.26, p=5.6×10−3), 

and attention-deficit/hyperactivity disorder (ADHD; rg=0.23, p=1.1×10−5), whereas AUDIT-C 

was negatively genetically correlated with major depressive disorder (rg=−0.24, p=3.7×10−3) and 

ADHD (rg=−0.10, p=1.8×10−2). We also used the AUDIT data in the UKB to identify thresholds 

for dichotomizing AUDIT total score that optimize genetic correlations with DSM-IV alcohol 

dependence. Coding individuals with AUDIT total score of ≤4 as controls and ≥12 as cases 

produced a high genetic correlation with DSM-IV alcohol dependence (rg=0.82, p=3.2×10−6) 

while retaining most subjects. We conclude that AUDIT scores ascertained in population-based 

cohorts can be used to explore the genetic basis of both alcohol consumption and AUD.

Introduction

Alcohol use disorders (AUD) are modestly heritable, with twin-studies demonstrating that 

approximately 50% of the phenotypic variance is attributed to genetic factors (1, 2). To date, 

genetic studies of AUD have identified genes that influence pharmacokinetic (e.g. ADH1B, 
ADH1C, ALDH2)(3–8), but not pharmacodynamic factors. The difficulty of assembling 

large, carefully diagnosed cohorts of AUD has stimulated additional studies of non-clinical 

phenotypes, such as alcohol consumption, in populations not ascertained for alcohol 

dependence. This approach has allowed for the relatively rapid collection of much larger 

sample sizes (e.g. >100,000s individuals) and has identified numerous loci associated with 

both pharmacokinetic and pharmacodynamic factors that influence alcohol consumption, 

including ADH1B/ADH1C/ADH5 (9–11), KLB (encoding β-klotho)(9, 11, 12) and GCKR, 

encoding the glucokinase regulatory protein (9, 11). However, the genetic overlap between 

alcohol consumption (units per week) and DSM-IV diagnosed alcohol dependence is 

moderate (rg = 0.38)(13), reinforcing the notion that alcohol consumption cannot be used as 

a surrogate for alcohol dependence or AUD.

The Alcohol Use Disorders Identification Test (AUDIT) is a screening tool designed to 

identify hazardous alcohol use in the past year (14). The test consists of 10 items across 3 

dimensions pertaining to alcohol consumption (items 1–3, often termed AUDIT-C), 

dependence symptoms (items 4–6), and harmful alcohol use (items 7–10) (collectively 
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AUDIT-P). When the AUDIT was developed, a total score of 8 or higher was proposed to be 

indicative of harmful alcohol use (14) and a score of 20 or higher consistent with a diagnosis 

of alcohol dependence (15); however, there is no clear consensus and subsequent studies 

have suggested that additional factors including sex and cultural and social contexts should 

be considered when deriving thresholds for alcohol dependence (reviewed in Supplementary 

Table 1).

A recent population-based GWAS of AUDIT in 20,328 research participants from the 

genetics company 23andMe, Inc., identified a locus near the gene ADH1C (rs141973904; p 

= 4.4 × 10−7)(10) nominally associated with AUDIT total score. AUDIT scores among 

23andMe research participants were low and predominantly driven by alcohol consumption 

(AUDIT-C). The genetic correlation between AUDIT total score from 23andMe and alcohol 

consumption was much stronger (rg = 0.89, p = 9.01 × 10−10) than the genetic correlation 

between AUDIT total score and alcohol dependence (rg = 0.08; p = 0.65)(13).

In this study, we performed a GWAS meta-analysis using the UK Biobank (UKB; N = 

121,604) and the previously published 23andMe cohort (N = 20,328)(10), yielding the 

largest GWAS meta-analysis of AUDIT total score to date (N = 141,932). Using only the 

UKB cohort, we also sought to determine whether the alcohol consumption component of 

the AUDIT had a genetic architecture distinct from the dependence and harmful use 

components by performing GWASs of consumption “AUDIT-C” (items 1–3) and problems 

“AUDIT-P” (items 4–10). Linkage Disequilibrium Score regression (LDSC)(16) was used to 

calculate genetic correlations between AUDIT measures and other substance use, 

psychiatric, and behavioral traits. We also calculated genetic correlations with obesity and 

blood lipid traits, as these have previously been shown to associate with alcohol 

consumption (9, 10). We hypothesized that AUDIT-P would correlate more strongly with 

measures of hazardous substance use, including alcohol dependence, and other psychiatric 

conditions. Finally, in order to determine the thresholds for dichotomizing AUDIT total 

score that would most closely approximate alcohol dependence, we converted continuous 

AUDIT total score into cases and controls using different thresholds, performed GWAS on 

each, and calculated the genetic correlation with DSM-IV alcohol dependence (13).

Materials and Methods

UK Biobank sample

The UK Biobank (UKB) is a population-based sample of 502,629 individuals who were 

recruited from 22 assessment centers across the United Kingdom from 2006–2010 (17). 

157,366 individuals completed a mental health questionnaire as part of an online follow-up 

over a one-year period in 2017. The Alcohol Use Disorder Identification Test (AUDIT)(14) 

was administered to assess alcohol use over the past year, using gating logic (see 

Supplementary Figure 1). After performing quality control to remove participants with 

missing data, and keeping only white British unrelated individuals, 121,604 individuals with 

AUDIT total scores were available. AUDIT total score was created by taking the sum of 

items 1–10 for all participants, including those who endorsed currently never drinking 

alcohol (as they could still endorse past alcohol harm on items 9 and 10). We also created 

AUDIT subdomain scores by aggregating the scores from items 1–3, which include the 
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information pertaining to alcohol consumption (AUDIT-C, N = 121,604), and from items 4–

10, which indexes the information pertaining to alcohol problems (AUDIT-P, N = 121,604). 

These traits were log10 transformed to approximate a normal distribution (Supplementary 

Figure 2).

Genotyping, quality control and imputation

Genotype imputation was performed on 487,409 individuals by the UKB team using 

IMPUTE4 (18) and the Haplotype Reference Consortium reference panel. After quality 

control, 16,213,998 SNPs remained for GWAS analyses. Additional details on genotyping 

and quality control are shown in the Supplementary Material.

Discovery GWASs using UKB

GWAS analyses were performed using BGENIE v1.1 (18) with AUDIT scores (AUDIT total 

score, AUDIT-C, and AUDIT-P, tested independently) as the outcome variable and age, sex, 

genotyping array and the first 20 principal components derived from genotype data as 

covariates. See the Supplementary Material for extended details. In order to identify 

independently-associated variants (“index variants”), clump-based pruning was applied in 

FUMA using an r2 of 0.1 and a 1 Mb sliding window using the UKB White British sample 

as the LD reference panel. A 1 Mb window was used due to the regions of extended linkage 

disequilibrium on chromosomes 4q23 and 17q21.31, which were associated with AUDIT 

scores in this study.

In addition, we performed a series of 18 case-control GWAS analyses of AUDIT total score 

using different thresholds (cases: ≥8, 10, 12, 15, 18, 20 vs controls: ≤2, 3, 4). The sample 

size at each threshold is shown in Supplementary Table 2. The results of these analyses were 

used to determine which thresholds would produce the highest genetic correlation estimates 

with DSM-IV defined alcohol dependence (13).

SNP-Heritability analyses

The SNP-heritability of UKB AUDIT scores (total, AUDIT-C, AUDIT-P) was calculated 

using a genomic restricted maximum likelihood (GREML) method implemented in Genetic 

Complex Trait Analysis (GCTA)(19) on a subset of 117,072 unrelated individuals using a 

relatedness cut-off of 0.05 and controlling for age and sex. GREML analyses were run using 

genotyped SNPs with a MAF greater than 0.01 to construct the GRM.

GWAS meta-analysis of AUDIT total score using the UKB and 23andMe cohorts

Because the genetic correlation of AUDIT total score between the UKB and 23andMe 

cohorts was high (rg = 0.77, SE = 0.12, p = 7.15 × 10−11), we performed a sample-size 

based meta-analysis of AUDIT total score from the UKB and 23andMe cohorts using 

METAL (version 2011–03-25)(20). This meta-analysis comprises a total of 141,932 research 

participants of European ancestry and 9,519,872 genetic variants that passed quality control. 

We used clump-based pruning (see ‘Discovery GWAS’) to identify independently-associated 

variants. For each GWAS signal we defined a set of credible variants using a Bayesian 

refinement method developed by Maller et al. (21). These credible sets are considered to 

have a 99% probability of containing the ‘causal’ variant at each locus. Credible set analyses 
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were performed in R (https://github.com/hailianghuang/FM-summary) for each of the index 

variants associated with AUDIT total score in the GWAS meta-analysis using SNPs within 1 

Mb with an r2 >0.4 to the index variant. All downstream genetic analyses of AUDIT total 

score were performed using the GWAS meta-analysis summary statistics. The 23andMe 

AUDIT GWAS has previously been published (10) and 30,441 participants from the UKB 

cohort were included in a previous GWAS of alcohol consumption (9).The GWAS of alcohol 

consumption in UKB involved individuals genotyped during the first UKB data release (9). 

The individuals from UKB in the current study are those who completed the mental health 

questionnaire in 2017 and include those genotyped in both first and second UKB data 

release; the sample overlap between these two datasets is 30,441 individuals.

Functional mapping and annotation of GWAS meta-analysis

We used FUMA v1.2.8 (22) to study the functional consequences of the index SNPs, and of 

the SNPs contained in each credible set, which included ANNOVAR categories, Combined 

Annotation Dependent Depletion (CADD) scores, RegulomeDB scores, eQTLs, and 

chromatin states. We also studied the regulatory consequences of the index SNPs using the 

Variant Effect Predictor (VEP; Ensembl GRCh37).

Gene-set and pathway analyses

We performed MAGMA (22) competitive gene-set and pathway analyses using the summary 

statistics from the GWAS meta-analysis of AUDIT total score and the AUDIT-C and 

AUDIT-P subsets. SNPs were mapped to 18,546 protein-coding genes from Ensembl build 

85. Gene-sets were obtained from Msigdb v5.2 (“Curated gene sets”, “GO terms”).

Gene-based association using transcriptomic data with S-PrediXcan

We used S-PrediXcan (23) to predict gene expression levels in 10 brain tissues, and to test 

whether the predicted gene expression correlates with AUDIT scores. We used pre-

computed tissue weights from the Genotype-Tissue Expression (GTEx v7) project database 

(https://www.gtexportal.org/) as the reference transcriptome dataset. Further details are 

provided in the Supplementary Material.

Genetic correlation analysis

We used LD Score regression (LDSC) to identify genetic correlations between traits (24). 

This method was used to calculate genetic correlations (rg) between AUDIT total score, 

AUDIT-C, and AUDIT-P and 39 other traits and diseases (see Supplementary Tables 3, 4 and 

5). We did not constrain the intercepts in our analysis, as we could not quantify the exact 

amount of sample overlap between cohorts. We used False Discovery Rate (FDR) to correct 

for multiple testing (25). We also used LDSC to examine genetic correlations between 

various dichotomized versions of AUDIT and DSM-IV defined alcohol dependence (13). To 

test for significant differences between the genetic correlations, z-score statistics were 

calculated (see Supplementary Table 6).
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Results

UKB sample demographics and characteristics

In the UKB cohort, there were 121,604 individuals with AUDIT scores available for GWAS 

analysis (Supplementary Table 7). The UKB sample was 56.2% female (N = 68,389) and the 

mean age was 56.1 years (S.D. = 7.7). The mean AUDIT total score was 5.0 (S.D. = 4.18, 

range = 0–40); a histogram showing the distribution of the scores is shown in Supplementary 

Figure 2. Over the prior year, 91.9% of the participants reported drinking 1 or 2 drinks on a 

single day. Over the prior year, 6.3% of the participants reported they were not able to stop 

drinking once they started, and 10.7% felt guilt or remorse after drinking alcohol 

(Supplementary Table 7). Males had significantly higher AUDIT total mean scores than 

females (6.09 ± 4.45 vs. 4.15 ± 3.72, respectively; β = 0.47, p < 2 × 10−6; Supplementary 

Figure 3). In addition, age was negatively correlated with AUDIT scores (β = −0.02, p < 2 × 

10−6; Supplementary Table 8). Therefore, both sex and age were used as covariates in the 

GWAS analyses. The mean AUDIT-C score was 4.24 (S.D. = 2.83) and the mean AUDIT-P 

score was 0.75 (S.D. = 2.0). As expected, there was a moderate positive phenotypic 

correlation between AUDIT-C and AUDIT-P (r = 0.478, 95% C.I. = 0.473–0.481, p < 2 × 

10−16; Supplementary Table 8).

SNP-heritability in UKB

We estimated the SNP-heritability of AUDIT total score to be 12% (GCTA: ± 0.48%, p = 

4.6 × 10−273; LDSC: 8.6% ± 0.50%), which is similar to the estimate from Sanchez-Roige 

et al. (10). The SNP-heritability for AUDIT-C was 11% (GCTA: ±0.47%, p = 1.5 × 10−211; 

LDSC: 8.4% ±0.55%), and 9% for AUDIT-P (GCTA: ±0.46%, p = 2.0 × 10−178; LDSC: 

5.9% ±0.48%).

GWAS of AUDIT scores in UKB

The significant results (p < 5 × 10−8) of the GWAS of AUDIT total score in the UKB cohort 

are shown in Supplementary Table 9; this analysis revealed 12 independent GWAS signals 

located in 8 loci. The UKB GWAS of AUDIT-C and AUDIT-P subsets are summarized in 

Supplementary Tables 10 and 11 and Supplementary Figure 4. Seven of these 12 

independent GWAS signals also significantly associated with AUDIT-C; the same index 

variants were identified in the two analyses. An additional GWAS signal was also identified 

close to FNBP4. For AUDIT-P, 5 independent GWAS signals were significantly associated 

and these loci were also associated with the total AUDIT and AUDIT-C. The rs1229984 

SNP in ADH1B was not available for meta-analysis in the 23andMe sample and was not in 

Hardy Weinberg equilibrium (HWE) in the UKB sample used in the present study (p = 3.2 × 

10−16); however, in the total UKB White British sample there was no significant deviation 

from HWE (p = 0.13). The association between rs1229984 and AUDIT scores are presented 

in Supplementary Tables 9, 10 and 11. rs1229984 was strongly associated with all AUDIT 

scores in the UKB (β = 0.04–0.06, p ≤ 1.0 ×10−45), but this SNP was not included for 

clump-based pruning and downstream analyses. As such, we performed a conditional 

analysis of the SNPs on 4q23 and 4q24 in the UKB sample to determine whether any of 

these associations were significant after controlling for rs1229984 genotype. While 

rs13107325 on 4q24 remained significantly associated with AUDIT total score after 
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controlling for rs1229984 genotype, the association between rs146788033, rs11733695 and 

rs3114045 and AUDIT total score became non-significant, suggesting that these loci are 

tagging the strong rs1229984 signal in this region.

GWAS meta-analysis of AUDIT total score

The GWAS meta-analysis of the UKB and 23andMe samples found 15 independent GWAS 

signals (Supplementary Table 12) associated with AUDIT total score spanning 10 genomic 

loci (Table 1). Figure 1 shows the Manhattan and QQ plots of the GWAS meta-analysis of 

AUDIT total score and Supplementary Figures 5–14 show the regional association plots for 

the independent signals. The inflation factor of the meta-analysis GWAS was λGC = 1.22 

with an LDSC intercept of 1.008 (SE = 0.007), suggesting that the majority of the inflation 

is due to polygenicity. The 15 independent SNPs show 100% sign concordance for 

association with AUDIT total score across UKB and 23andMe (Table 1); 11 of these SNPs 

were nominally associated with AUDIT total score in 23andMe (p ≤ 0.05), and all index 

SNPs were associated with AUDIT total score in UKB (p < 1.8 × 10−6).

The top hit for the GWAS meta-analysis of AUDIT total score was a variant (rs11733695) 

located downstream (879 base pairs) from ADH6 (p = 3.4 × 10−30), which is a member of 

the alcohol dehydrogenase gene family.rs11733695 is in low LD (r2 = 0.17) with the 

functional SNP in ADH1B, rs1229984, which is known to alter alcohol metabolism (26). In 

addition, two other regions in 4q23 were associated with AUDIT total score in the meta-

analysis: one of the index SNPs was located in the ADH1C gene; however, conditional 

analysis of this region in UKB alone suggests that these multiple hits may in fact be tagging 

the rs1229984 signal. This region has been previously associated with alcohol consumption, 

AUD, and AUDIT scores (6, 7, 9, 10)

We also replicated the association between KLB (Supplementary Table 12), on chromosome 

4q14, and alcohol consumption (9, 11, 12); the index SNP rs11940694, which is located in 

the intron of KLB, was associated with AUDIT total score in the present study. Clump based 

pruning identified rs11940694 and rs4975012 as independent hits in the KLB region. 

Credible set analysis suggests that rs2046330 is the index SNP in the region represented by 

rs4975012 (Supplementary Table 13). AUDIT total score was also associated with SNPs that 

localized to GCKR on chromosome 2p23.3, which has been previously associated with 

alcohol consumption (9, 11). Five SNPs comprised the credible set at the GCKR locus, 

which also spans the SNX17 gene, including the missense variant (rs1260326) in GCKR that 

was identified as the index SNP.

We identified GWAS signals in several regions that have not been previously implicated in 

the genetics of AUD, including 2p21, 17q21, 3q25, 8q22, 10p11, 11p11 and 19q13. The 

index SNP rs13135092 in the 4q24 region is located in an intron of SLC39A8; the remainder 

of the credible set for this locus is located in a non-coding pseudogene, RN7SL728P. 

SLC39A8 is highly pleiotropic (27) but it is a novel association in relation to alcohol. A 

region of association on 2p21 contains 17 SNPs that are localized to the non-coding RNA, 

LINC01833. A novel region of association was also detected on chromosome 10p11.23; this 

region contains 9 credible SNPs that localize to the JCAD (junctional cadherin 5 associated) 
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gene. JCAD encodes an endothelial cell junction protein, and has previously been associated 

with coronary heart disease (28).

The remaining novel associations on 3q25, 8q, 11p11, 17q21 and 19q13.3 were more 

complex. The index variants on chromosome 8q22.1 were not localized to any genes, and it 

is unclear from the credible set analyses what the causal variants may be at these loci. The 

credible SNP sets for the 3q25.33, 11p11.2, 17q21.31 and 19q13.3 regions contained over 

50 SNPs each, which spanned several genes. For example, the index SNP on chromosome 

17q21.31 was an intronic SNP in MAPT, which encodes the tau protein and has been 

robustly associated with Parkinson’s disease (30, 31) (Supplementary Table 14) and other 

neurodegenerative tauopathies (32), and more recently with neuroticism (33). However, we 

note that the region of association on chromosome 17q21.31 spans the corticotrophin 

receptor gene (CRHR1), which has been associated with alcohol use in animals and humans 

(34). Thus, due to the extended complex LD in this region, we are unable to determine the 

likely causal variant. Similarly, the index SNP (rs2293576) at chromosome 11p11.2 is a 

synonymous SNP of the zinc transporter gene SLC39A13; however, this region includes 54 

associated SNPs, which map to five additional genes. Lastly, the index SNP on 19q13.3 is a 

synonymous variant in FUT2. FUT2 encodes galactoside 2-alpha-L-fucosyltransferase 2, 

which controls the expression of ABO blood group antigens. However, 70 SNPs form this 

credible set and they span 4 genes in total.

We used FUMA to functionally annotate all 1,290 SNPs in the credible sets (see 

Supplementary Table 13). The majority of the SNPs were intronic (76.9%; N = 993) or 

intergenic (11.6%; N = 149), while only 26 SNPs (2.0%) were exonic. Furthermore, 38 

SNPs showed CADD scores >12.37, which is the suggested threshold to be considered 

deleterious (35). The exonic SNPs (rs601338, rs17651549, rs13107325) of FUT2, MAPT 
and SLC39A8, respectively, had the highest CADD scores (>34), suggesting potential 

deleterious protein effects. 164 SNPs had RegulomeDB scores of 1a-1f, showing evidence of 

potential regulatory effects. 90.1% of the SNPs were in open chromatin regions (minimum 

chromatin state 1–7).

Gene-based and pathway analyses

We used MAGMA (22) to perform a gene-based association analysis; which identified 40 

genes that were significantly associated with AUDIT total score (p < 2.70 × 10−6; 

Supplementary Table 15, Supplementary Figure 15). As expected, the majority of these 

genes were in the 10 GWAS loci (i.e. KLB, GCKR); DRD2 and CRHR1 were also among 

the top hits. In addition, the analysis revealed a strong burden signal in CADM2 (p = 1.64 × 

10−9), where the index variant in GWAS meta-analysis did not reach genome-wide 

significance. We did not identify any canonical pathways that were significantly associated 

with AUDIT (Supplementary Table 16).

Gene-based (MAGMA) analyses for the AUDIT-C and AUDIT-P subsets (Supplementary 

Figures 16 and 17, respectively) revealed evidence of overlap (Supplementary Figure 18, 

Supplementary Table 17). Two genes (KLB, CADM2) were associated with all 3 AUDIT 

traits (AUDIT total score, AUDIT-C, and AUDIT-P). There was considerable overlap 

between AUDIT total score and AUDIT-C, with 21 overlapping genes associated at the 
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gene-based level. Only one gene, DRD2, was associated with both AUDIT total score and 

AUDIT-P.

S-PrediXcan

S-PrediXcan identified a positive correlation (p < 1.07 × 10−6) between AUDIT total score 

and the predicted expression of 26 genes across multiple brain tissues (full results are 

presented in Supplementary Table 18), including MAPT (cerebellum), FUT2 (caudate and 

nucleus accumbens), and CRHR1-IT1 (putamen, cerebellum, hippocampus, anterior 

cingulate cortex). SNPs in the region of MAPT and FUT2 were associated with AUDIT total 

score in the GWAS. MAPT (cerebellum), FUT2 (nucleus accumbens) and CRHR1-IT1 
(caudate, cortex, nucleus accumbens, hypothalamus, hippocampus) were also associated 

with AUDIT-C (Supplementary Tables 19). S-PrediXcan for AUDIT-C and AUDIT-P 

(Supplementary Table 20) revealed that lower predicted RFC1 expression in the cerebellum 

and hemisphere, respectively, was associated with higher scores on both AUDIT-C (p = 7.84 

× 10−7) and AUDIT-P (p = 1.54 × 10−6).

Genetic correlations

We used LDSC to evaluate evidence for genetic correlations between our three primary traits 

(AUDIT total score, AUDIT-C, and AUDIT-P) and numerous other traits for which GWAS 

summary statistics were available; these included alcohol and substance use traits, 

personality and behavioral traits, psychiatric disorders, blood lipids, and brain structure 

volumes (Supplementary Tables 3–5 and Figure 2).

As expected, AUDIT-C and AUDIT-P were highly genetically correlated (rg = 0.70, p = 4.1 

× 10−70). AUDIT scores (AUDIT total score, AUDIT-C, and AUDIT-P) showed strong 

genetic correlations with alcohol consumption from two other studies (rg = 0.76–0.96, p < 

2.3 × 10−9). Many of the genetic correlations with AUDIT-P were significantly different 

from the correlations with AUDIT-C (Supplementary Table 6). The AUDIT-C had a 

significantly stronger (p = 8.02 × 10−3) correlation with alcohol consumption (rg = 0.92, p = 

7.0 × 10−164) than did AUDIT-P (rg = 0.76, p = 2.7 × 10−52). In contrast, AUDIT total and 

AUDIT-C scores were only modestly correlated with alcohol dependence (rg = 0.39 and 0.33 

respectively, p < 8.2 × 10−5), whereas AUDIT-P showed a nominally stronger genetic 

correlation with alcohol dependence (rg = 0.63, p = 1.8 × 10−8; AUDIT-P vs AUDIT-C, p = 

0.033; see Supplementary Table 6).

We detected positive genetic correlations between AUDIT scores (AUDIT total, AUDIT-C, 

AUDIT-P) and other substance use phenotypes, including lifetime smoking (rg = 0.24–0.41, 

p < 1.6 × 10−5) and cannabis use (rg = 0.26–0.46, p < 1.1 × 10−4). We also observed a 

positive genetic correlation between AUDIT-P and cigarettes per day (rg = 0.28, p = 4.0 × 

10−3).

Several psychiatric disorders and related traits were positively genetically correlated with 

AUDIT-P scores, including schizophrenia (rg = 0.22, p = 3.0 × 10−10), bipolar disorder (rg = 

0.26, p = 1.5 × 10−4), ADHD (rg = 0.23, p = 1.1 × 10−5), and major depressive disorder 

(MDD, rg = 0.26, p = 5.6 × 10−3). Intriguingly, AUDIT-C was negatively correlated with 
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MDD (rg = −0.23, p = 3.7 × 10−3) and ADHD (rg = −0.10, p = 1.8 × 10−2), whereas AUDIT-

P showed positive genetic correlations with these same disease traits (rg = 0.26, p = 5.6 × 

10−3; rg = 0.24, p = 1.1 × 10−5). We observed a positive genetic correlation between AUDIT-

P scores and depressive symptoms (rg = 0.30, p = 3.0 × 10−8) and neuroticism (rg = 0.18, p = 

2.6 × 10−4), and a negative genetic correlation with subjective well-being (rg = −0.24, p = 

4.0 × 10−5).

We observed positive genetic correlations between AUDIT total score, AUDIT-C and 

education, college attainment, and cognitive ability (rg = 0.19–0.24, p < 1.5 × 10−5). The 

AUDIT-P genetic correlations with the same education and college attainment were near 

zero, and were significantly lower than AUDIT C and AUDIT total or education traits 

(Supplementary Table 6).

There were negative genetic correlations between AUDIT total and AUDIT-C scores and 

obesity (rg = −0.16–0.17, p < 1.1 × 10−5), similar to previous reports regarding AUDIT total 

score (10) and alcohol consumption (9). In contrast, obesity was not significantly genetically 

correlated with AUDIT-P scores (rg = 0.01, p = 0.90). Similarly, HDL cholesterol and 

triglycerides were genetically correlated with AUDIT total score and AUDIT-C (rg = 0.19–

22, p < 9.3 × 10−5, rg = −0.16, p < 1.0 × 10−4 respectively), but this association was not 

found for AUDIT-P (rg = 0.11, p = 2.2 × 10−2, rg = −0.03, p = 6.4 × 10−1). Obesity showed 

significantly different correlations with both AUDIT-P and AUDIT-C (Supplementary Table 

6)

Dichotomizing AUDIT total score to more closely approximate alcohol dependence

As AUDIT can be rapidly ascertained in large populations, we explored methods for 

dichotomizing AUDIT total score that optimized the genetic correlation with DSM-IV 

alcohol dependence (13). Higher genetic correlations with alcohol dependence were 

observed as the control threshold was increased from 2 to 4, and with increasingly stringent 

case cut-offs (Figure 3 and Supplementary Table 2). The highest genetic correlation was 

observed for cases with AUDIT total score ≥20 and controls ≤4 (rg = 0.90, SE = 0.25, p = 

3.0 × 10−4), however, this highly stringent threshold produced very few cases (N=1,290). 

The standard error of the estimate is much larger at more stringent case thresholds and 

therefore these estimates should be interpreted with caution. Defining cases as ≥12 yielded 

an rg of 0.82 (SE = 0.18, p = 3.2 × 10−6) while retaining more than 7 times as many cases 

(N=9,130), these genetic correlations were not significantly different from those obtained 

using cases ≥20 and controls ≤4 (p = 0.80).

Discussion

We have presented the largest GWAS meta-analysis of AUDIT total score to date, using 

large population-based cohorts from UKB and 23andMe. We identified novel associations 

with AUDIT total score; the genes located in these regions include JCAD and SLC39A8. We 

found evidence for association in several loci previously associated with alcohol use via 

single-variant and gene-based analyses (i.e. KLB, GCKR, CADM2). The SNP heritability of 

all AUDIT phenotypes ranged from 9–12% demonstrating that common genetic factors 

account for a prominent proportion of the variation in alcohol use phenotypes. Furthermore, 
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we showed that there is shared genetic architecture between AUDIT scores and other alcohol 

and substance use phenotypes. AUDIT-P showed a positive genetic correlation with several 

psychiatric diseases, distinguishing AUDIT-P from AUDIT-C. Finally, using LDSC, we 

identified thresholds for dichotomizing AUDIT total score (AUDIT score ≥12 to define 

cases, and ≤4 to define controls) that maximize the genetic correlation with alcohol 

dependence while retaining a large number of participants.

Our top GWAS hits replicated previous association signals for alcohol use traits. The 

strongest associations with AUDIT score in this study spanned the alcohol metabolism genes 

on chromosome 4q23 (10). Variants in this region were associated with AUDIT total score, 

AUDIT-C and AUDIT-P, demonstrating that alcohol metabolism is a risk factor for both 

alcohol consumption and problematic use. The second strongest signal, also associated with 

the three AUDIT phenotypes, is located in KLB, confirming the robust association of this 

gene with both alcohol consumption (9, 11, 12) in humans, and in mice (12). However, the 

biology of this locus could be more complex than previously described. Although the 

credible set analysis suggested that the more probable causal variants are all located on the 

first intron of KLB, one of these variants, rs11940694, is an eQTL for RFC1 expression in 

the brain, and S-PrediXcan analysis predicted that lower expression of RFC1 in the brain is 

associated with higher predicted AUDIT (AUDIT-C and AUDIT-P) scores. Interestingly, a 

gene in the complex GWAS signal on chromosome 19, Fibroblast growth factor 21 (FGF21), 

was associated with AUDIT (AUDIT total score, AUDIT-C, AUDIT-P) at the gene-based 

level (Supplementary Table 17). FGF21 regulates sweet and alcohol preference in mice as 

part of a receptor complex with β-Klotho (KLB) in the central nervous system (33). 

Additionally, we replicated the association between rs1260326 in the gene GCKR and 

alcohol consumption (9, 11), here associated with AUDIT total score and AUDIT-C. Other 

loci previously associated with alcohol consumption include CADM2 (9), which was 

associated at the gene-based level for all three AUDIT traits. Here, the burden analysis 

suggests that multiple (rare and common) variants are necessary to explain the association 

signal. Intriguingly, several of the novel associations with AUDIT scores were mapped to 

highly pleiotropic genes (MAPT, FUT2, SLC39A8)(27).

Genetic analysis of the AUDIT subsets revealed evidence of distinct genetic architecture 

between AUDIT-C and AUDIT-P (alcohol consumption vs. problem use), with support from 

the gene-based (Supplementary Figures 16 and 17), S-PrediXcan (Supplementary Tables 19 

and 20), and genetic correlation analyses (Figure 2). Furthermore, AUDIT-P showed a strong 

genetic correlation with alcohol dependence (13). In contrast, AUDIT-C had a stronger 

genetic correlation with alcohol consumption. Thus, partitioning AUDIT scores into 

different subsets (alcohol consumption vs problem use) may disentangle genetic factors that 

contribute to different aspects of AUD vulnerability.

Genetic overlap was observed for all measures of AUDIT and other substance use traits, 

including lifetime tobacco and cannabis use, as we previously reported (10, 36, 37), 

demonstrating that genetic risk factors for high AUDIT scores overlap with increased 

consumption of multiple drug types.
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We found several significant differences between the genetic correlations with AUDIT-P and 

AUDIT-C. These differences were particularly pronounced for psychiatric and behavioral 

traits. AUDIT-P was positively genetically correlated with psychopathology (schizophrenia, 

bipolar disorder, MDD, ADHD), personality traits including neuroticism, and regional brain 

volumes. These associations have previously been observed at the phenotypic level; AUDs 

commonly co-occur in individuals with schizophrenia (38), bipolar disorder (39), MDD (40) 

and adult ADHD (41). Intriguingly, genetic risk for high AUDIT-C score was negatively 
correlated with MDD and ADHD demonstrating that a distinct genetic component of 

AUDIT-P is shared with genetic risk for psychiatric disease. Regional volume abnormalities 

in subcortical brain regions of AUD individuals have been reported (42–44), however, it is 

unclear whether these alterations are a result of high alcohol drinking or a pre-existing 

susceptibility. We identified a positive genetic correlation between AUDIT-P and increased 

caudate volume; however, the majority of studies report reductions in regional brain volumes 

associated with AUD.

For AUDIT total score and AUDIT-C we showed positive genetic correlations with 

educational attainment and cognitive ability and negative genetic correlations with obesity, 

consistent with earlier reports (9, 10). These associations were not observed for AUDIT-P. 

Similarly, HDL cholesterol showed a significant positive correlation, and triglycerides a 

negative correlation, with AUDIT total score and AUDIT-C, but not AUDIT-P. These 

patterns were previously observed for alcohol consumption (9). We could speculate that 

these differences may be linked to socioeconomic status (SES). Alcohol consumption is 

often higher in individuals with higher SES (45), whereas alcohol-related problems, such as 

binge drinking (46) and alcohol related mortality (47), are more prevalent in individuals with 

lower SES. Furthermore, individuals with low SES are more likely to have AUDs with 

psychiatric co-morbidities (48). Consistent with this idea, we find positive genetic 

correlations between AUDIT-C and education, a trait correlated with SES (49), and positive 

genetic correlations between AUDIT-P and psychopathology. Our findings provide further 

evidence that different dimensions of alcohol use associate differently with behavior and that 

these differences may have a biological underpinning.

A clinical diagnosis of AUD is often required to define cases for genetic studies. An 

alternative strategy would be to use AUDIT to infer AUD case status; however, it has not 

been clear whether and how to perform meta-analyses between AUDIT scores and alcohol 

dependence. A GWAS meta-analysis for AUDIT and alcohol dependence could be 

simplified if a threshold could be used to define cases and controls based on AUDIT scores, 

an approach that was used by Mbarek et al. (50). We have provided empirical evidence about 

genetic correlations between AUDIT and alcohol dependence using dichotomized AUDIT 

scores, and found thresholds for AUDIT that produced high genetic correlations with AUD 

(Figure 3). Genetic correlations increased as the upper threshold for cases was made more 

stringent, although the standard errors for all of these estimates were overlapping. The 

genetic correlation with alcohol dependence appeared to asymptote when case status was 

defined as ≥12; therefore, this threshold could be used to define case status. We also 

considered various thresholds for defining controls and found that ≤4 produced a high 

genetic correlation with alcohol dependence while also retaining the largest number of 

subjects.
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Our study is not without limitations. AUDIT specifically asks about the past year, and thus 

may not capture information on lifetime alcohol use and misuse. This is suboptimal for 

genetic studies because it effectively measures a recent state rather than a stable trait. 

Measures capturing drinking and AUD across the lifespan may be preferable. Also, although 

mean scores for the AUDIT-C dimension were 4.24, the mean of the AUDIT-P dimension 

was considerably lower (0.75). Thus, we were not able to perform a more refined 

categorization (e.g. 3 subsets: consumption [items 1–3], dependence [items 4–6], hazardous 

use [items 7–10]) as fewer individuals endorsed the items comprising AUDIT-P (see 

Supplementary Table 7). Furthermore, our study uses data from UKB and 23andMe research 

participants, who were volunteers not ascertained for AUD, and hence our findings may not 

generalize to other populations showing higher rates of alcohol use and dependence. 

Additional alcohol-related phenotypes (e.g. age at first use; patterns of alcohol drinking, 

including binge drinking) could be used in subsequent genetic studies to identify additional 

sources of genetic vulnerability for AUD. Lastly, we offered guidelines to identify cases to 

use in genetic studies of AUD (i.e. AUDIT score ≥12) based on genetic correlations; 

however, these recommendations are not intended to determine thresholds for diagnosing 

dependence in a clinical setting. Future studies will be able to test whether using AUDIT as 

a surrogate for AUD will be beneficial for gene discovery. In addition, several studies have 

argued that lower thresholds should be used for females, which has not been addressed in the 

present study.

We have reported the largest GWAS of AUDIT ever undertaken. We replicated previously 

identified signals (i.e. ADH1B, ADH1C; KLB; GCKR), and identified novel GWAS signal 

(i.e. JACD, SLC39A8) associated with AUDIT. We show that different portions of the 

AUDIT (AUDIT-C, AUDIT-P) correlate with distinct traits, which will aid in dissecting 

genetic vulnerability towards alcohol use and dependence. The genetic factors that 

predispose to high alcohol consumption inevitably overlap with those for problem drinking, 

as heavy drinking is generally a prerequisite for the development of hazardous use and 

dependence. However, not everyone who consumes alcohol experiences the same level of 

harmful consequences. By studying the different subsets of AUDIT, we identify genetic 

factors that may be specific to problem drinking. Larger studies of cohorts with a wider 

range of AUDIT-P scores are required to both replicate and expand these findings. Finally, 

we describe an alternative strategy to rigorous ascertainment for genetic studies of AUD, i.e. 

AUDIT score ≥12 to define cases and ≤4 to define controls, which could be used to achieve 

large sample sizes in a cost-efficient manner.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Manhattan and QQ plots for the SNP-based GWAS meta-analysis of AUDIT total score (N = 

141,932)
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Figure 2. 
Genetic correlations between the three AUDIT phenotypes (total score, AUDIT-C, AUDIT-

P) and several traits measured in independent cohorts as described in the Supplementary 

Tables 3–5: alcohol-related traits, tobacco and cannabis use, neuropsychiatric, personality, 

cognition, anthropomorphic and blood lipids. ADHD, attention-deficit/hyper-activity 

disorder; BMI, body mass index; SE, standard error; IQ, intelligence quotient; HDL, high-

density lipoprotein. * p < 0.05, ** p < 0.01, *** p < 0.0001; # AUDIT-P vs AUDIT-C, p < 

0.01 FDR 5%, (#) AUDIT-P vs AUDIT-C, p < 0.05
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Figure 3. 
Genetic correlations between AUDIT cases (8 [N = 25,423], 10 [N = 15,151], 12 [N = 

9,130], 15 [N = 4,471], 18 [N = 2,099], 20 [N = 1,290]) vs controls (2, 3, 4) in the UK 

Biobank and DSM-IV derived alcohol dependence from the Psychiatric Genetics 

Consortium. The orange line is a visualization of the number of cases used at each threshold, 

corresponding to the N on the right hand y-axis.
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