
Abstract. Background: The global incidence of diabetes
mellitus (DM) has risen precipitously, even in middle- and
low-income countries. Peroxisome proliferator-activated
receptor γ (PPARγ) plays an important role in the control of
cellular glucose metabolism. Activation of PPARγ
beneficially results in increased insulin sensitivity. However,
the expression of PPARγ is reduced by obesity and several
nutritional factors. Here we examined the effect of
geranylgeraniol (GGOH), a bioactive compound found
naturally in fruits, vegetables, and grains, on the expression
and activation of PPARγ. Materials and Methods:
C3H10T1/2 mouse embryonic fibroblasts and 3T3-L1 pre-
adipocytes were used as in vitro models of adipocyte
differentiation and function. Quantitative reverse-
transcriptase polymerase chain reaction, western blotting,
Oil Red O staining, and luciferase assay were performed to
respectively assess mRNA expression, protein levels, lipid
droplet formation and transcriptional activity. Results:

GGOH increased the expression of PPARγ in adipocyte
lineage cells. GGOH also enhanced adipogenesis induced by
rosiglitazone, a thiazolidinedione class PPARγ agonist.
Conclusion: GGOH induces PPARγ expression and
enhances the biological effects of a PPARγ agonist in
adipocyte lineage cells. 

Diabetes mellitus (DM), one of the major chronic metabolic
diseases, occurs either when pancreatic β-cells do not
produce enough insulin or when the body does not respond
efficiently to insulin. Insulin is a key regulator of blood
sugar level. DM is divided into type 1 and type 2. Type 1
results from defective insulin production from pancreatic β-
cells. Type 2 arises from the body’s ineffective usage of
insulin. Type 2 is the most common form of DM worldwide.
DM is a major cause of kidney failure, blindness, stroke,
heart attack, and inferior limb amputation. In 2014, DM
occurred in 8.5% of adults over the age of 18 years. In 2012,
DM was the direct cause of 1.5 million deaths and conditions
involving high blood sugar levels caused another 2.2 million
deaths (1). Therefore, DM is worldwide problem in need of
immediate attention. 

Peroxisome proliferator-activated receptor γ (PPARγ) is a
nuclear hormone receptor, which plays an important role in
controlling the metabolism of cellular glucose. PPARγ is
mainly expressed in adipocytes and immune system cells (2,
3). Two PPARγ isoforms arising from the usage of alternate
promoters and RNA splicing have been identified in humans
and mice (2). PPARγ2 differs from PPARγ1 due to an
additional 28 amino acids at the amino terminus. Activation
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of PPARγ increases insulin sensitivity thus resulting in a
lower serum glucose concentration (4). In human adipocytes,
insulin can in turn increase the expression of both PPARγ1
and PPARγ2. However, obesity and nutritional factors appear
to reduce the expression only of PPARγ2 (5). PPARγ
agonists are, therefore, being explored as potential anti-
diabetic drugs. Indeed, thiazolidinediones, such as
rosiglitazone, are synthetic PPARγ agonists that are clinically
used to maintain glucose homeostasis and enhance insulin
sensitivity (6). PPARγ receptors can also be stimulated by
the binding of micromolar concentrations of various kinds of
lipophilic ligands, such as polyunsaturated fatty acids and
eicosanoid derivatives, to the PPARγ receptor (7). 

Geranylgeraniol (GGOH) is a C20 isoprenoid found in
fruits, vegetables, and grains, including rice. As a food
substance, GGOH is categorized as ‘Generally Recognized
as Safe’ (8). GGOH is an intermediate product in the
mevalonate pathway and acts as a precursor to
geranylgeranylpyrophosphate (GGPP). In the cell, GGOH is
thought to be subsequently converted into the pyrophosphate
moiety, GGPP, by two successive monophosphorylation
events (9, 10). GGPP-induced geranylgeranylation is needed
for the membrane anchoring of intracellular proteins,
especially the small GTP-binding proteins RHO, RAC, RAS
and RAP, which are involved in several signaling pathways
(11). In cell-based studies, GGPP treatment led to increased
expression of PPARγ (12). Statins, such as simvastatin, are
a class of lipid-lowering compounds which inhibit
hydroxymethylglutaryl-CoA (HMG-CoA) reductase. HMG-
CoA reductase is utilized in the initial step in the
biosynthetic pathway of isoprenoid, as well as the rate-
controlling step of cholesterol biosynthesis (13). Simvastatin
reduces the expression of PPARγ and also inhibits
adipogenesis (14). 

Materials and Methods
Cell culture. C3H10T1/2 mouse embryonic fibroblasts and 3T3-L1
pre-adipocytes were purchased from the American Type Culture
Collection (Manassas, VA, USA). Cells were cultured in Dulbecco’s
modified Eagle’s medium containing 10% fetal bovine serum (15,
16). Cells were cultured in the presence of different concentrations
(0, 5, 10, 50, 100 μM) of GGOH (LKT Laboratories, Inc., St. Paul,
MN, USA), 10 μM rosiglitazone (Wako, Osaka, Japan) and 100 or
200 μM Simvastatin Natrium (Wako). 

Reverse transcription and quantitative polymerase chain reaction
(qPCR) analysis. Total RNA was isolated from cells using Trizol
Reagents (Thermo Fisher Scientific, Waltham, MA, USA) and then
reverse-transcribed into cDNA using ReverTra Ace (Toyobo, Osaka,
Japan). The cDNA was amplified by PCR using specific primers for
murine Pparg2 (forward, tgctgttatgggtgaaactctg; reverse, ctgtgtcaa
ccatggtaatttctt), fatty acid binding protein 4 (Fabp4) (forward,
ggatggaaagtcgaccacaa; reverse, tggaagtcacgcctttcata);, CCAAT-
enhancer-binding protein α (Cebpa) (forward, aaacaacgcaa

cgtggaga; reverse, gcggtcattgtcactggtc); adiponectin, C1Q and
collagen domain-containing (Adipoq) (forward, ggagagaaaggaga
tgcaggt; reverse, ctttcctgccaggggttc); and β-actin (Actb) (forward,
aaggccaaccgtgaaaagat; reverse, gtggtacgaccagaggcatac). SYBR
green-based qPCR was performed using PowerUp SYZBR Green
Master Mix (ThermoFisher Scientific) with QuantStudio 3 system
(Thermo Fisher Scientific). Expression values were normalized to
those for Actb using the 2−ΔΔCt method (17).

Transfection and luciferase assay. Cells were transfected with
FABP4 (aP2)-luc plasmid (18) and phRL-SV40 (Promega, Madison,
WI, USA) with or without FLAG-PPARG2 (18), using
Lipofectamine 2000 (Thermo Fisher Scientific) according to the
manufacturer’s instructions. Luciferase assay was performed using
the Dual-Glo Luciferase Assay System (Promega) as described
previously (19). 

Western blot analysis. The following antibodies were used for
western blot analysis: anti-PPARγ (rabbit monoclonal antibody; Cell
Signaling, Beverly, MA, USA), anti-FABP4 (rabbit monoclonal
antibody; Cell Signaling), and anti-β-actin (mouse monoclonal
antibody; Sigma Aldrich Chemicals, St. Louis, MO, USA). The
target proteins were detected using an anti-mouse or anti-rabbit IgG
antibody conjugated with horseradish peroxidase (Cell Signaling)
and visualized by ImmunoStar LD (Wako).

Oil red O staining. C3H10T1/2s cell and 3T3-L1 cells were treated
with 10 μM rosiglitazone (Wako) to induced adipocyte
differentiation. On day 7, cells were rinsed twice with phosphate-
buffered saline, fixed in 4% paraformaldehyde and stained with oil
red O (Sigma) for 10 minutes at room temperature (18). 

Statistical analysis. Comparisons were made using Wilcoxon’s
signed-rank test and unpaired ANOVA with Tukey–Kramer post-hoc
test. The results are shown as the mean±S.D. The statistical
significance was accepted at values of p<0.05.

Results

GGOH induces the expression of PPARγ and enhances the
biological effect of PPARγ agonist. Firstly, it was examined
whether GGOH affects the expression of PPARγ in
C3H10T1/2 and 3T3-L1 cells. C3H10T1/2 mouse embryonic
fibroblasts and 3T3-L1 pre-adipocytes express PPARγ2 and
have a capacity for adipogenesis in response to PPARγ
agonists (20). Treatment of C3H10T1/2 cells with GGOH
significantly increased messenger RNA (mRNA) levels of
Pparg2 in a dose-dependent manner (Figure 1A). GGOH
also increased the protein levels of not only PPARγ2, but
also PPARγ1 in C3H10T1/2 cells (Figure 1B). It was also
confirmed that GGOH induced Pparg2 expression in 3T3-
L1 cells (Figure 1C). 

The effect of GGOH on the cellular response to the PPARγ
agonist, rosiglitazone, was then examined. Rosiglitazone
induces the expression of a cascade of adipogenic transcription
factors leading to lipid accumulalion and adipogenic
differentiation (18). Here, GGOH synergistically enhanced the
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induction of Pparg2 by rosiglitazone in C3H10T1/2 (Figure
2A) and 3T3-L1 cells (Figure 2E). GGOH also enhanced the
expression of classical adipogenic marker genes, Fabp4,
Cebpa, and Adipoq, following treatment with rosiglitazone
(Figure 2B, C, and F-H). GGOH treatment led to an increase
in the number and size of lipid droplets induced by the PPARγ
agonist. However, GGOH failed to increase the transcriptional
activity of Pparg2 assessed by a luciferase reporter assay
(Figure 2J), suggesting that GGOH does not directly affect
Pparg2 transcriptional activity, at least on the FABP4
promoter. 

GGOH prevents reduction of Pparg2 expression by statin.
Finally, it was examined whether GGOH rescues the
suppressive effect of statin on PPARγ expression. In the
absence of GGOH, simvastatin dose-dependently inhibited
rosiglitazone-induced Pparg2 expression. However, in the
presence of GGOH, simvastatin failed to inhibit Pparg2
expression (Figure 3A). 

Discussion

The rapidly rising prevalence of diabetes in middle- and low-
income countries has resulted in a more urgent need for
inexpensive and effective treatments for diabetes (1). GGOH
is a safe, inexpensive, natural, and orally-ingestible
compound. In the present study, we showed that GGOH
increased the expression of PPARγ (Figure 1). Therefore,
GGOH, especially when combined with a PPARγ agonist
may be a potential drug for the prevention or treatment of
diabetes. Needless to say, further experiments are needed to

determine the downstream targets of GGOH, as well as to
assess the effect of GGOH in an in vivo diabetes model.

A broad range of synthetic PPARγ ligands have been
developed. The most commonly used synthetic PPARγ
agonists belong to the thiazolidinedione class of anti-diabetic
medicines. The synthetic ligands troglitazone, rosiglitazone,
and pioglitazone have already been applied clinically for the
treatment of type 2 DM. These therapeutics make use of the
ability of synthetic ligands to increase insulin sensitivity and
to lower blood sugar levels (6). However, troglitazone was
recently withdrawn from the market due to severe adverse
side-effects in the liver (7). Since here GGOH dramatically
enhanced the effects of a PPARγ ligand (Figure 2), GGOH
may reduce the effective dosage and side-effects of these
synthetic agents.

Several naturally-derived compounds including emodin
(21), phloretin (22), and ginsenosides (23, 24) have been
reported to increase adipogenesis and elevate the expression
of adipocytokines capable of stimulating insulin sensitivity.
More specifically, ginsenoside 20(S)-protopanaxatriol and
emodin were demonstrated to be ligands for PPARγ (21,23).
Altogether this suggests that it may be possible to carefully
manage dietary intake to enrich for foods that are high in
GGOH and thus harness natural PPARγ ligand effects in
diabetes prevention.

Statins are used as a frontline therapy to lower plasma
cholesterol and prevent cardiovascular disease. Many clinical
studies have demonstrated that statins are very effective in
reducing death and disorders caused by cardiovascular disease
(25-29). However, recent data show that long-term statin
therapy is associated with an increased occurrence and risk of
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Figure 1. Geranylgeraniol (GGOH) induces peroxisome proliferator-activated receptor γ (PPARγ) expression. C3H10T1/2 cells were treated with
0, 5, 10, 50, or 100 μM GGOH after which the messenger RNA (mRNA) level of Pparg2 (A) was determined by quantitative real-time PCR and
protein levels of PPARγ1 and PPARγ2 (B) were assessed by western blot analysis on day 2. GGOH treatment (50 μM) increased the mRNA level
of Pparg2 in 3T3-L1 cells on day 2 (C). The data are expressed as the mean±SD (n=3). **Significantly different at p<0.01 versus 0 μM GGOH or
control (Ctrl; DMSO) treatment. 



insulin resistance and type 2 DM (30-33). Since 2012, the
United States Food and Drug Administration requires statin
drug package inserts to include a warning of the risk of type
2 DM (34). Reduction of GGPP-induced PPARγ expression
by inhibition of the isoprenoid biosynthetic pathway may be
involved in the occurrence of insulin resistance and type 2
DM. Since GGOH counteracts the effect of statin on PPARγ
(Figure 3), this also suggests that GGOH, a GGPP precursor,

may be a potential drug for the prevention or treatment of
statin-induced diabetes without interfering with the beneficial
plasma cholesterol-lowering effects of statin.
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Figure 2. Geranylgeraniol (GGOH) enhances adipocyte differentiation of C3H10T1/2 mouse embryonic fibroblasts and 3T3-L1 pre-adipocytes.
C3H10T1/2 cells were treated with 0, 5, 10, 50, or 100 μM GGOH with or without 10 μM rosiglitazone. The mRNA levels of A: Peroxisome
proliferator-activated receptor γ2 (Pparg2) and B: Fatty acid binding protein 4 (Fabp4) were determined on day 2. C: GGOH treatment (50 μM)
enhanced the protein expression of FABP4 induced by 10 μM rosiglitazone in C3H10T1/2 cells after 3 days. D: Cells were treated with 0, 5, 10,
50, or 100 μM GGOH with or without 10 μM rosiglitazone. Adipocytes were stained with oil red O on day 7. 3T3-L1 cells were treated with 
50 μM GGOH with or without 10 μM rosiglitazone and the mRNA levels of E: Pparg2, F: CCAAT-enhancer-binding protein α (Cebpa), G: Fabp4
and H: adiponectin, C1Q and collagen domain-containing (Adipoq) were determined after 2 days. I: Adipocytes were stained with oil red O on day
7. J: C3H10T1/2 cells were transfected with PPARG2 or an empty vector along with FABP4-luciferase vector and treated with or without 50 μM
GGOH. Luciferase activity was determined on day 1. The data are expressed as the mean±SD (n=3). **Significantly different at p<0.01 versus
0 μM GGOH or control (Ctrl; DMSO) treatment. Scale bar indicates 20 μm (D and I). 
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