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ABSTRACT Dietary supplementation with linseed, saponins, and nitrate is a promis-
ing methane mitigation strategy in ruminant production. Here, we aimed to assess
the effects of these additives on the rumen microbiota in order to understand un-
derlying microbial mechanisms of methane abatement. Two 2-by-2 factorial design
studies were conducted simultaneously, which also allowed us to make a broad-
based assessment of microbial responses. Eight nonlactating cows were fed diets
supplemented with linseed or saponin in order to decrease hydrogen production
and nitrate to affect hydrogen consumption; also, combinations of linseed plus ni-
trate or saponin plus nitrate were used to explore the interaction between dietary
treatments. Previous work assessed effects on methane and fermentation patterns.
Rumen microbes were studied by sequencing 18S and 16S rRNA genes and ITS1 am-
plicons. Methanogen activity was monitored by following changes in mcrA transcript
abundance. Nitrate fed alone or in combination in both studies dramatically affected
the composition and structure of rumen microbiota, although impacts were more
evident in one of the studies. Linseed moderately modified only bacterial commu-
nity structure. Indicator operational taxonomic unit (OTU) analysis revealed that both
linseed and nitrate reduced the relative abundance of hydrogen-producing Rumino-
coccaceae. Linseed increased the proportion of bacteria known to reduce succinate
to propionate, whereas nitrate supplementation increased nitrate-reducing bacteria
and decreased the metabolic activity of rumen methanogens. Saponins had no ef-
fect on the microbiota. Inconsistency found between the two studies with nitrate
supplementation could be explained by changes in microbial ecosystem functioning
rather than changes in microbial community structure.

IMPORTANCE This study aimed at identifying the microbial mechanisms of enteric
methane mitigation when linseed, nitrate, and saponins were fed to nonlactating
cows alone or in a combination. Hydrogen is a limiting factor in rumen methano-
genesis. We hypothesized that linseed and saponins would affect hydrogen produc-
ers and nitrate would affect hydrogen consumption, leading to reduced methane
production in the rumen. Contrary to what was predicted, both linseed and nitrate
had a deleterious effect on hydrogen producers; linseed also redirected hydrogen
consumption toward propionate production, whereas nitrate stimulated the growth of
nitrate-reducing and, hence, hydrogen-consuming bacterial taxa. This novel knowledge
of microbial mechanisms involved in rumen methanogenesis provides insights for the
development and optimization of methane mitigation strategies.
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Methane emissions associated with ruminant livestock production are an important
contributor to global greenhouse gas emissions (1). Rumen methanogenesis is a

naturally occurring process that involves methanogenic archaea consuming hydrogen
to reduce carbon dioxide. Hydrogen and carbon dioxide production occurs during feed
fermentation by bacteria, protozoa, and fungi; hydrogen availability is a limiting factor
for methane production. In addition, there is a significant linear relationship between
protozoan concentration in the rumen and methane emissions (2). Among the mea-
sures that have been undertaken to reduce methane production by ruminants, diet
composition and inclusion of feed additives have received the most attention (3).
Among them, nitrate added to ruminants’ diets consistently and persistently lowers
methane emissions (4). Linseed oil, which is rich in linoleic acid, has proven to be one
of the most efficient lipid sources used in methane mitigation strategies (4). Saponins
are natural phytogenic feed additives used to improve animal feeding and production
characteristics (5). Theoretically, these three additives lead to decreased methane
production via different modes of action. Nitrate is an alternative electron acceptor, as
its reduction competes with methane production for hydrogen (6). Additionally, nitrate
or its reduced forms might be toxic to rumen methanogens and protozoa (7), but this
effect was not systematically reported (8, 9). Lipids from linseed (and fats in general)
added to diets replace a proportion of dietary carbohydrates and, as rumen microbes
do not ferment them, less hydrogen is produced. Protozoal numbers have been
reported to decrease with supplementary linseed oil (8, 10), although this effect was
not always observed (11). Saponins can reduce methanogenesis by a toxic effect on
rumen protozoa (5), but in vivo results indicate otherwise, as rumen microbes can
deglycosylate and, thus, inactivate saponins (12).

Based on available information, we hypothesized that linseed oil and saponins
would mainly affect hydrogen production (by a toxic effect on protozoa or by providing
alternative substrates for rumen fermentation) and nitrate would mainly modulate
hydrogen consumption pathways (by providing an alternative hydrogen sink). We
performed amplicon-type sequencing analysis of rumen contents, sampled during two
previous studies (8, 13); the first one reported the effect of linseed, nitrate, and linseed
plus nitrate supplementation on enteric methane production; tea saponin replaced
linseed in the second one. The primary aim of the current study was to search for
changes in rumen microbiota structure and methanogenic activity that could explain
observed reductions in methane emissions.

Minor but significant changes induced by treatment can be masked by spurious
between-group differences unrelated to the treatment but rather to the host animal,
the diet, or sample management. Moreover, it is not unusual to find reports on nitrate
and fatty acid supplementation where methane decreased in a similar way, but effects
on rumen microbiota were contrasting (14–17). On the other hand, it was recently
shown that combination of microbial data from multiple sets of hosts with supposed
similar microbiota should increase specificity and allow identification of causal mi-
crobes (18). Therefore, we took advantage of the data available from two independent
studies, analyzed it separately but by following the same procedures, and made an
integrated interpretation. Our secondary objective was to try to find clues to explain
inconsistency in results from published studies.

(This article was submitted to an online preprint archive [19].)

RESULTS

Eight nonlactating dairy cows were randomly allocated to two 2-by-2 factorial
designs. In study 1, dietary treatments consisted of control (CTL) diet, supplemented
alternatively with linseed oil (LIN), nitrate (NIT), and linseed plus nitrate (LIN�NIT); in
study 2, tea saponin (TEA) replaced linseed oil. In order to achieve adequate statistical
power, the statistical model for both studies included cow as random effect, and fixed
effects were experimental period and the following: (i) in study 1, linseed (CTL and NIT
versus LIN and LIN�NIT), nitrate (CTL and LIN versus NIT and LIN�NIT), and their
interaction, termed linseed�nitrate (or lin�nit), and (ii) in study 2, saponin (CTL and NIT

Popova et al. Applied and Environmental Microbiology

February 2019 Volume 85 Issue 4 e02657-18 aem.asm.org 2

https://aem.asm.org


versus TEA and TEA�NIT), nitrate (CTL and TEA versus NIT and TEA�NIT), and their
interaction, saponin�nitrate (sap�nit). Throughout the text, linseed, nitrate, and sa-
ponin will refer to diet contrasts detailed above.

In study 1, compared to CTL, dietary treatments LIN, NIT, and LIN�NIT decreased
methane production (g/day) by 22%, 29%, and 33%, respectively, and methane yield
(g/kg of dry matter intake [DMI]) by 25%, 29%, and 32% (8). In study 2, NIT and TEA�NIT
decreased methane production by 42% and 34% and methane yield by 36% and 29%,
respectively, compared to CTL (13). TEA alone had no effect on methane production or
on volatile fatty acid (VFA) profiles.

In both studies, Bacteroidales and Clostridiales were the dominant bacterial orders
and accounted for more than 88% of the classified reads, regardless of the dietary
treatment (see Fig. S1 in the supplemental material). Sequences affiliated with the
Methanobrevibacter genus accounted for 80% of all archaeal sequences in both studies,
followed by Methanosphaera, unclassified methanogens, and three Methanomassiliicoc-
caceae genera (Fig. S1). In both studies, Piromyces represented more than 60% of rumen
fungi, followed by Orpinomyces and Caecomyces. Dietary treatments did not affect
fungal community composition or its structure (Fig. S2), and we are not going to
discuss it further.

Linseed moderately affected bacterial community composition with no effect
on rumen methanogens and protozoa. Nonmetric multidimensional scaling (NMDS)
did not reveal any distinct clustering of bacterial communities (Fig. 1), and total
bacterial numbers were similar (Table 1) in cows receiving or not receiving linseed-
supplemented diets. Accordingly, CowPI predictions showed no changes in metabolic
profiles (Table S1). However, the richness index was reduced by the linseed treatment
(Table S2), and linseed increased (P � 0.05) relative abundance of Selenomonadales,
Synergistales, Elusimicrobiales, and Micrococcales (Table 2). Moreover, indicator species

FIG 1 Structure and composition of bacterial, archaeal, and protozoal communities in study 1, related to nitrate or linseed treatments (black symbols) and
respective controls (gray symbols), were examined by multivariate analysis. NMDS plots derived from Bray-Curtis dissimilarities between cows are shown. Each
symbol is representative of a single cow. Samples are plotted along the first two-component axes. Microbial composition was compared using Adonis.
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analysis showed that Ruminococcaceae-related operational taxonomic units (OTUs)
characterized the bacterial community of cows not receiving linseed supplementation
(Fig. 2 and Table S3).

Regarding methanogen concentration, mcrA copy numbers per nanogram of ex-
tracted DNA were not affected by linseed supplementation (Table 1), and neither was
overall community structure (Fig. 1 and Table 3).

Feeding linseed did not modify protozoan community structure and composition
compared to the respective control treatment (Fig. 1 and Table 4). There were 3
indicator OTUs identified, 2 associated with CTL diet and 1 with LIN diet, but they all
represented less than 0.01% of the rarefied data set (13,809 reads per individual).

Tea saponins had only minor effects on rumen microbial population. Adding
tea saponin to diets only affected the low-abundance order of unclassified Deltapro-
teobacteria (Table 2). No changes in diversity indices were noticed (Table S2). NMDS
(Fig. 3) and permutational multivariate analysis of variance (PERMANOVA) analysis did
not reveal significant changes in bacterial community, although Lachnospiraceae were
highly abundant in cows supplemented with saponin (Fig. 2). Similarly, concentration
and taxonomic composition of the archaeal community were not influenced by tea
saponin (Fig. 3 and Table 3), and neither was the protozoan community structure (Fig.
3 and Table 4).

TABLE 1 Abundance of total bacteria and abundance and activity of methanogenic archaea in the rumen of nonlactating cows fed
methane-reducing additives

Parameter

Abundance and activity

Study 1a Effect Study 2b Effect

CTL LIN NIT LIN�NIT SEM Linseed Nitrate lin�nit CTL TEA NIT TEA�NIT SEM Saponin Nitrate sap�nit

Total bacterial concn (log10 rrs
copies/ng DNA)

5.09 4.94 4.95 4.98 0.051 0.50 0.54 0.33 5.04 4.96 5.02 5.15 0.057 0.64 0.12 0.05

Methanogen concn (log10 mcrA
copies/ng DNA)

2.95 2.68 2.72 2.76 0.051 0.36 0.15 �0.1 2.97 2.84 2.97 3.07 0.081 0.84 0.25 0.24

Methanogen activityc

(2�ΔCT � 106)
23.91 21.54 10.49 8.19 3.384 0.51 �0.01 0.99 18.67 16.08 7.40 8.28 4.463 0.76 �0.01 0.53

aIn study 1, cows were fed a control (CTL) diet and CTL diet supplemented with linseed (LIN), nitrate (NIT), and linseed plus nitrate (LIN�NIT). Tested effects were
linseed (CTL and NIT versus LIN and LIN�NIT) and nitrate (CTL and LIN versus NIT and LIN�NIT) and their interaction, lin�nit.

bIn study 2, cows were fed a control (CTL) diet and control diet supplemented with tea saponin (TEA), nitrate (NIT), and tea saponin plus nitrate (TEA�NIT). Tested
effects were saponin (CTL and NIT versus TEA and TEA�NIT) and nitrate (CTL and TEA versus NIT and TEA�NIT) and their interaction, sap�nit.

cMethanogen activity is measured as mcrA expression levels.

TABLE 2 Bacterial orders significantly affected by at least one dietary treatment in the rumen of nonlactating cows fed methane-
reducing additivesc

Bacterial order

Relative abundance (%)

Study 1a Effect Study 2b Effect

CTL LIN NIT LIN�NIT SEM Linseed Nitrate lin�nit CTL TEA NIT TEA�NIT SEM Saponin Nitrate sap�nit

Bacteroidales 46.5 44.0 46.5 44.0 0.010 0.88 0.54 0.35 39.98 37.55 45.92 42.18 0.012 0.12 0.01 0.76
Selenomonadales 1.54 2.27 1.77 2.76 0.002 0.03 0.42 0.82 2.14 1.95 2.11 2.66 0.001 0.40 0.14 0.11
Coriobacteriales 0.29 0.20 0.39 0.36 0.000 0.16 0.01 0.39 0.22 0.19 0.32 0.37 0.000 0.73 0.00 0.18
Gastranaerophilales 0.18 0.17 0.07 0.07 0.000 0.99 0.09 0.83 0.26 0.21 0.11 0.10 0.000 0.34 0.00 0.57
Unclassified 0.14 0.20 0.14 0.05 0.000 0.30 0.02 0.03 0.17 0.18 0.14 0.11 0.000 0.59 0.10 0.47
Synergistales 0.05 0.06 0.03 0.06 0.000 0.04 0.26 0.26 0.05 0.03 0.05 0.03 0.000 0.07 0.96 0.60
Elusimicrobiales 0.02 0.10 0.06 0.08 0.000 0.04 0.56 0.22 0.03 0.04 0.07 0.04 0.000 0.71 0.87 0.46
Burkholderiales 0.01 0.01 0.06 0.06 0.000 0.82 0.00 0.62 0.01 0.01 0.11 0.04 0.000 0.29 0.01 0.44
Unclassified Deltaproteobacteria

(�10�3)
7.08 1.42 2.03 2.66 0.000 0.09 0.26 0.15 4.36 0.31 2.97 1.00 0.000 0.03 0.93 0.43

Victivallales (�10�3) 6.44 4.65 1.09 6.17 0.000 0.28 0.27 0.04 1.38 3.44 1.54 4.18 0.000 0.12 0.97 0.92
Xanthomonadales (�10�3) 4.68 2.37 3.64 8.64 0.000 0.98 0.45 0.48 7.74 1.28 2.77 9.45 0.000 0.99 0.37 0.00
Micrococcales (�10�3) 4.26 13.5 5.16 10.2 0.000 0.01 0.59 0.65 8.22 6.51 15.9 9.85 0.000 0.19 0.13 0.62
Opitutae vadin HA64 (�10�3) 0.36 7.24 1.53 3.94 0.000 0.06 0.78 0.31 0.68 1.16 3.14 - 0.000 0.40 0.97 0.14
aIn study 1, cows were fed a control (CTL) diet and CTL diet supplemented with linseed (LIN), nitrate (NIT) and linseed plus nitrate (LIN�NIT). Tested effects were
linseed (CTL and NIT versus LIN and LIN�NIT) and nitrate (CTL and LIN versus NIT and LIN�NIT) and their interaction, lin�nit.

bIn study 2, cows were fed a control (CTL) diet and control diet supplemented with tea saponin (TEA), nitrate (NIT) and tea saponin plus nitrate (TEA�NIT). Tested
effects were saponin (CTL and NIT versus TEA and TEA�NIT) and nitrate (CTL and TEA versus NIT and TEA�NIT) and their interaction, sap�nit.

cValues are the means from four observations, and analysis was performed on square root-transformed taxonomic tables using the aov function in R.
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Nitrate remodels bacterial and archaeal communities. In order to have an
integrated discussion on the effects of nitrate on microbes from both studies, we
needed to compare like to like. This is why we compared microbial communities of
cows fed CTL diet in each study. Bacterial communities of these cows were similar
(Adonis R2 of 0.16 and P value of 0.26). A small numerical difference was noted in the
Bacteroidales/Clostridiales ratios, which were 1.02 and 0.81 in study 1 and study 2,

FIG 2 Bubble charts showing indicator OTU distribution by dietary treatment in the rumen of nonlactating cows fed methane-reducing additives. Bubble size
reflects the count number in the rarefied data set.

TABLE 3 Archaeal species detected in the rumen of nonlactating cows fed methane-reducing additivesc

Archaeal species

Relative abundance (%)

Study 1a Effect Study 2b Effect

CTL LIN NIT LIN�NIT SEM Linseed Nitrate lin�nit CTL TEA NIT TEA�NIT SEM Saponin Nitrate sap�nit

Methanobacterium alkaliphilum 0.04 0.71 0.03 0.01 0.002 0.166 0.126 0.138 0.01 0.56 0.05 0.00 0.001 0.184 0.173 0.120
Methanobrevibacter acididurans 0.01 0.00 0.01 0.01 0.000 0.966 0.506 0.649 0.00 0.00 0.00 0.01 0.000 0.448 0.876 0.623
Methanobrevibacter boviskoreani clade 2.72 1.44 2.72 1.86 0.018 0.502 0.891 0.887 3.89 0.50 0.40 2.46 0.018 0.776 0.740 0.234
Methanobrevibacter gottschalkii clade 38.08 45.63 21.10 19.28 0.051 0.584 �0.001 0.371 39.39 38.46 29.32 27.01 0.051 0.862 0.203 0.824
Methanobrevibacter oralis 0.47 0.34 0.32 0.25 0.001 0.158 0.115 0.641 0.27 0.46 0.30 0.27 0.001 0.271 0.250 0.137
Methanobrevibacter ruminantium clade 36.28 33.06 54.18 62.10 0.043 0.742 �0.01 0.365 33.80 37.75 47.87 47.66 0.043 0.766 0.107 0.735
Methanobrevibacter sp. strain RT 0.02 0.03 0.01 0.00 0.000 0.999 0.059 0.102 0.04 0.02 0.00 0.01 0.000 0.673 0.078 0.168
Other Methanobrevibacter 2.54 1.64 1.70 1.13 0.002 0.109 0.136 0.712 1.56 2.05 1.52 1.50 0.002 0.331 0.220 0.296
Methanosphaera cuniculi 0.22 0.04 0.25 0.23 0.001 0.575 0.561 0.668 0.05 0.09 0.08 0.10 0.001 0.641 0.760 0.774
Methanosphaera sp. strain A4 0.08 0.03 0.05 0.04 0.000 0.193 0.746 0.456 0.05 0.03 0.02 0.03 0.000 0.912 0.089 0.066
Methanosphaera sp. strain ISO3-F5 7.97 6.41 8.60 8.36 0.011 0.691 0.581 0.777 9.43 8.59 6.26 11.61 0.011 0.143 0.937 0.053
Other Methanosphaera 0.83 0.35 0.88 0.34 0.001 0.081 0.934 0.913 0.45 0.57 0.25 0.50 0.001 0.211 0.375 0.639
Other Methanobacteriaceae 0.07 0.05 0.08 0.05 0.000 0.255 0.976 0.806 0.04 0.05 0.04 0.06 0.000 0.418 0.841 0.565
Other Methanococcales 0.01 0.00 0.00 0.00 0.000 0.337 0.337 0.337 0.00 0.01 0.00 0.00 0.000 0.337 0.337 0.337
Methanomicrobium mobile 0.24 0.08 0.01 0.00 0.003 0.320 0.081 0.376 0.51 0.46 0.62 0.04 0.003 0.399 0.679 0.477
Other 0.09 0.07 0.00 0.01 0.001 0.918 0.156 0.849 0.00 0.23 0.00 0.01 0.001 0.257 0.306 0.311
Group 10 species 0.60 0.00 0.16 0.00 0.003 0.166 0.405 0.405 0.99 0.84 0.61 0.56 0.005 0.820 0.435 0.908
Candidatus “Methanomethylophilus alvus” 0.02 0.01 0.02 0.01 0.000 0.360 0.642 0.689 0.00 0.02 0.01 0.01 0.000 0.243 0.845 0.110
Group 12 species 1.99 2.21 2.50 2.05 0.006 0.902 0.878 0.745 1.51 2.41 3.27 2.36 0.006 0.999 0.244 0.218
Group 8 species 0.10 0.09 0.03 0.00 0.000 0.797 0.234 0.876 0.02 0.00 0.00 0.00 0.000 0.214 0.156 0.297
Group 9 species 0.03 0.02 0.09 0.16 0.001 0.677 0.244 0.648 0.04 0.21 0.03 0.02 0.001 0.052 0.025 0.039
Other Methanomassiliicoccaceae 2.96 3.12 3.87 1.58 0.000 0.842 0.687 0.226 2.74 1.51 3.44 1.67 0.000 0.987 0.859 0.883
Other 4.59 4.66 3.37 2.52 0.001 0.918 0.156 0.849 5.18 5.15 5.92 4.11 0.001 0.257 0.306 0.311

aIn study 1, cows were fed a control (CTL) diet or CTL diet supplemented with linseed (LIN), nitrate (NIT), or linseed plus nitrate (LIN�NIT). Tested effects were linseed
(CTL and NIT versus LIN and LIN�NIT) and nitrate (CTL and LIN versus NIT and LIN�NIT) and their interaction, lin�nit.

bIn study 2, cows were fed a control (CTL) diet or CTL diet supplemented with tea saponin (TEA), nitrate (NIT), or tea saponin plus nitrate (TEA�NIT). Tested effects
were saponin (CTL and NIT versus TEA and TEA�NIT) and nitrate (CTL and TEA versus NIT and TEA�NIT) and their interaction, sap�nit.

cValues are the means from four observations, and analysis was performed on square root-transformed taxonomic tables using the aov function in R.
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respectively. Similar to bacteria, methanogenic communities in animals fed CTL diets
were similar between studies (Adonis R2 of 0.028 and P value of 0.942). Regarding
protozoa, some differences were revealed by NMDS and PERMANOVA analyses be-
tween the two control groups. NMDS graphs (Fig. S3) showed only a small overlap
between the protozoan population fed CTL in each study, which was confirmed by an
Adonis test (P � 0.1). Also, Entodinium-related sequences accounted for 60% of total
classified sequences in study 1, whereas they represented 46% of sequences in study

TABLE 4 Protozoa genera detected in the rumen of nonlactating cows fed methane-reducing additivesc

Protozoa genus

Relative abundance (%)

Study 1a Effect Study 2b Effect

CTL LIN NIT LIN�NIT SEM Linseed Nitrate lin�nit CTL TEA NIT TEA�NIT SEM Saponin Nitrate sap�nit

Entodinium 59.84 49.66 46.52 33.94 0.036 0.67 0.05 0.10 46.21 51.05 47.55 50.55 0.040 0.68 0.90 0.88
Polyplastron 11.57 8.50 17.51 10.43 0.021 0.75 0.26 0.27 7.94 9.73 10.39 7.19 0.016 0.62 0.92 0.63
Unclassified Trichostomatia 9.93 11.59 15.26 16.70 0.023 0.97 0.36 0.75 22.28 9.34 14.59 14.16 0.032 0.23 0.72 0.47
Isotricha 1.52 3.92 6.00 4.34 0.009 0.15 0.06 0.68 5.43 5.27 6.72 6.43 0.008 0.56 0.65 0.76
Dasytricha 1.31 0.80 1.86 4.01 0.006 0.65 0.10 0.76 0.90 1.92 1.67 1.77 0.004 0.19 0.34 0.13
Unclassified 0.17 0.17 0.06 0.19 0.000 0.08 0.15 0.06 0.14 0.18 0.17 0.14 0.000 0.85 0.82 0.57
Ophryoscolex 0.16 0.00 0.46 1.33 0.002 0.06 0.00 0.67 3.26 3.08 0.41 1.47 0.010 0.64 0.52 0.78
Unclassified Ciliophora 0.04 0.09 0.04 0.06 0.000 0.59 0.50 0.27 0.03 0.07 0.06 0.05 0.000 0.09 0.81 0.09
Unclassified SARd 0.04 0.02 0.01 0.02 0.000 0.09 0.38 0.66 0.04 0.04 0.01 0.02 0.000 0.15 0.00 0.57
Trichostomatia 0.04 0.28 0.02 0.02 0.000 0.04 0.01 0.06 0.10 0.08 0.24 0.03 0.000 0.41 0.94 0.34
Pseudoplatyophyra 0.00 0.05 0.02 0.00 0.000 0.00 0.18 0.12 0.03 0.00 0.00 0.000 0.21 0.50 0.17
aIn study 1, cows were fed a control (CTL) diet and CTL diet supplemented with linseed (LIN), nitrate (NIT) and linseed plus nitrate (LIN�NIT). Tested effects were
linseed (CTL and NIT versus LIN and LIN�NIT) and nitrate (CTL and LIN versus NIT and LIN�NIT) and their interaction, lin�nit.

bIn study 2, cows were fed a control (CTL) diet and control diet supplemented with tea saponin (TEA), nitrate (NIT) and tea saponin plus nitrate (TEA�NIT). Tested
effects were saponin (CTL and NIT versus TEA and TEA�NIT) and nitrate (CTL and TEA versus NIT and TEA�NIT) and their interaction, sap�nit.

cValues are the means from four observations, and analysis was performed on square root-transformed taxonomic tables using the aov function in R.
dSAR, Stramenopiles-Alveolata-Rhizaria cluster.

FIG 3 Structure and composition of bacterial, archaeal, and protozoal communities in study 2, related to nitrate or saponin treatments (black symbols) and
respective controls (gray symbols), were examined by multivariate analysis. NDMS plots derived from Bray-Curtis dissimilarities between cows are shown. Each
symbol is representative of a single cow. Samples are plotted along the first two-component axes. Microbial composition was compared using Adonis.
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2 (Table 4). Although this difference was not statistically significant, it was accompanied
by significantly higher numbers of Trichostomatia- and Isotricha-related sequences in
study 1 than study 2 (Table 4).

Feeding nitrate, in both studies, increased Coriobacteriales and Burkholderiales rel-
ative abundance and decreased (study 2), or tended to decrease (study 1), abundance
of Gastranaerophilales (Table 2). In addition, in study 2, nitrate supplementation in-
creased the relative abundance of Bacteroidales (Table 2). Diversity indices were not
influenced by dietary treatment (Table S2) in any study. NMDS analysis (Fig. 1) revealed
that while in study 1 nitrate supplementation was the major driver of phylogenetic
dissimilarity among bacterial communities (Adonis R2 of 0.11, P value of �0.01), in study
2 nitrate only moderately affected community structure (Adonis R2 of 0.09, P value of
0.09). Indicator species analysis revealed that 10 OTUs in study 1 and 21 in study 2 were
differentially abundant between cows fed and not fed nitrate (P value of �0.05 and
indicator value of �0.7; Table S3 and Table S4). Lachnospiraceae and Sutterellaceae
characterized nitrate-supplemented diets (Fig. 2) in study 1, and Coriobacteriaceae and
the uncultured Mollicutes family were identified as indicator OTUs for nitrate-
supplemented diets in study 2. More interestingly, in both studies Ruminococcaceae-
related OTUs characterized the bacterial community of control cows (Fig. 2).

CowPI predictive analysis suggested that nitrogen metabolism was increased in
both studies when nitrate was fed to cows (Table S1). Nitrate supplementation induced
numerous changes in metabolic profiles. Regarding carbohydrate metabolism, nitrate
supplementation would affect most of the described pathways, but observed changes
were different in each study. Predictions regarding lipid metabolism were more con-
sistent between studies and suggested that dietary supplementation with nitrates
would decrease biosynthesis of fatty acids.

In both studies, feeding nitrate had no effect on methanogen concentration in the
rumen (mcrA copy numbers) but reduced methanogen activity (mcrA expression levels)
(Table 1). When cows were fed nitrate, Shannon and Simpson diversity indices de-
creased or tended to decrease (Table S2), although the overall taxonomic composition
was not affected (Table 3). NMDS and PERMANOVA analyses showed that feeding
nitrates deeply modified archaeal community structure in study 1 but had no effect on
community structure in study 2 (Fig. 1 and 3).

In study 1, Entodinium relative abundance tended to decrease and Isotricha tended
to increase in animals receiving nitrate-supplemented diets (Table 4). Diversity indices
remained similar between diets and contrasts (Table S2). However, there was some
evidence (Adonis R2 of 0.12, P value of 0.05) that nitrate modulated the rumen proto-
zoan population in cows (Fig. 1). In contrast, in study 2, nitrate had no effect on
protozoan community in the rumen of nonlactating dairy cows (Fig. 3).

Correlation patterns of microbial population. We analyzed the correlation be-
tween bacterial families and genera of methanogens and protozoa (Fig. 4 and 5). Values
for methane production (g/day), yield (g/kg DMI), hydrogen production (only for study
1), and (acetate � butyrate)/propionate ratio from the data sets of Guyader et al. (8, 13)
were also included in the analysis. Only significant correlations are discussed.

In study 1 (Fig. 4), methane production (g/day) and yield (g/kg DMI) were positively
correlated (R2 � 0.83 and R2 � 0.69, respectively) with the (acetate � butyrate)/
propionate ratio when cows were not fed nitrate; in these animals, methane yield
correlated positively with Rikenellaceae (R2 � 0.56). In the absence of nitrate, Metha-
nobrevibacter negatively correlated with unclassified Methanomassiliicoccaceae (R2 �

�0.64), and Ruminococcaceae correlated positively with members of the protozoal
Polyplastron genus (R2 � 0.97). When diets were supplemented with nitrate, methane
production and yield as well as (acetate � butyrate)/propionate ratio were strongly
correlated with a group of unclassified Methanomassiliicoccaceae (R2 � 0.69, R2 � 0.85,
and R2 � 0.59, respectively). In addition, when diets were nitrate supplemented, a
positive correlation was established between Prevotellaceae and Dasytricha (R2 � 0.70
and R2 � 0.73). There was a strong negative correlation between Methanobrevibacter
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FIG 4 Spearman’s rank correlation matrix of the dominant ruminal bacterial families, genera of archaea
and protozoa, and fermentation parameters in study 1. Illustrated correlation patterns are for nitrate and
linseed supplementations. Listed microbial populations were detected in at least 50% of the rumen
samples analyzed and represent at least 1% of the bacterial, archaeal, protozoal, or fungal communities.
Strong correlations are indicated by large circles, whereas weak correlations are indicated by small circles.
The colors of the scale bar denote the nature of the correlation, with 1 indicating perfect positive
correlation (dark blue) and �1 indicating perfect negative correlation (dark red) between two microbial
populations.
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FIG 5 Spearman’s rank correlation matrix of the dominant ruminal bacterial families, genera of archaea and
protozoa, and fermentation patterns in study 2. Illustrated correlation patterns are for nitrate and tea saponin
supplementations. Listed microbial populations were detected in at least 50% of the rumen samples analyzed
and represent at least 1% of the bacterial, archaeal, protozoal, or fungal communities. Strong correlations are
indicated by large circles, whereas weak correlations are indicated by small circles. The colors of the scale bar
denote the nature of the correlation, with 1 indicating perfect positive correlation (dark blue) and �1
indicating perfect negative correlation (dark red) between two microbial populations.
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and Methanosphaera independently of nitrate supplementation (R2 of �0.76 in cows
not fed nitrate and R2 of �0.83 in cows fed nitrate).

Methane production and yield when linseed was fed to cows correlated negatively
with the Bacteroidales S 24.7 group (R2 � �0.76) and Dasytricha (R2 � �0.83) popu-
lations and positively with an unclassified archaeal taxon (R2 � 0.83) and unclassified
Methanomassiliicoccaceae (R2 � 0.61). Independently of linseed supplementation, a
negative correlation between Methanobrevibacter and Methanosphaera was observed
(R2 � �0.64 and R2 � �0.95).

In study 2 (Fig. 5), when diets were not supplemented with nitrate, methane
production correlated negatively with Prevotellaceae (R2 � �0.69) and methanogen
group 12 (R2 � �0.50). When diet was supplemented with tea saponin, Prevotellaceae
correlated negatively with methane production (R2 � �0.47) and yield (R2 � �0.43) as
well as with Fibrobacteraceae (R2 � �0.88), Bacteroidales (R2 � �0.76), and two families
of Methanomassiliicoccaceae (R2 of �0.90 for unclassified Methanomassiliicoccaceae and
R2 of �0.70 for group 10).

DISCUSSION

Guyader et al. (8) showed that combining dietary strategies acting theoretically on
hydrogen production (lipids) and consumption (nitrate) can have an additive effect on
methane reduction. In a second study, they confirmed the antimethanogenic potential
of nitrate supplementation but observed no effect of tea saponin on methane produc-
tion (13). These studies were conducted simultaneously; cows were selected at random
from the same experimental herd and were randomly allocated to a study. Given the
consistency of results for methane production and fermentation patterns reported in
the two articles of Guyader et al. (8, 13), we decided to analyze the rumen microbiota
from both studies at the same time (from DNA extraction up to statistical tests).
Although linseed and nitrate have a medium to high potential methane-mitigating
effect (the effect of saponins being less reproductive) (20), microbial data are scarce and
inconsistent between studies. This could be explained by different methodologies for
rumen sample collection, conservation, and nucleic acid extraction, as well as on how
data were obtained and analyzed (21, 22). Thus, second, we compiled the microbial
data in order to get insight into the mode of action of nitrate on the rumen microbial
ecosystem.

To this aim, we first checked that the microbiota of the two groups of cows was
comparable; hence, we performed a detailed analysis of microbial community structure
and composition in rumen contents sampled during the period when CTL diet was fed
to each animal. No major differences in bacterial communities were observed, except
a nonsignificant shift in the Bacteroidales/Clostridiales ratio, which is known to vary
widely across individual animals (23). However, we observed numerical differences in
the relative abundance of Entodinium (60% in study 1 versus 46% in study 2), which is
consistent with enumeration results reported previously (5.71 and 5.38 log10 cells/ml in
study 1 and study 2, respectively [8, 13]), showing more abundant ciliate populations
in cows from study 1.

In study 1, dietary supplementation with linseed increased the relative abundance
of Selenomonadales. This is in accordance with our previous work exploring the effects
of linseed plus nitrate on rumen microbiota (24) in bulls, where we reported increased
numbers in sequences affiliated with three Selenomonas genera and one unclassified
Selenomonadales genus. As these microbes are potential nitrate reducers (25), we
hypothesized that their growth was supported by the higher nitrate availability, but the
present study suggests that it is a linseed effect. Oleic acid (representing, on average,
20% of linseed oil fatty acids) stimulated the growth of Selenomonas ruminantium in
pure cultures (26). However, for in vivo studies, results are contrasting: Selenomonas was
among the genera explaining differences in bacterial community structure between
lambs fed a linseed diet and those fed a control diet (27), but there was no change in
Selenomonas abundance when cows were fed sunflower oil (30% oleic acid) (23).
Members of the Selenomonadales order are also known to reduce succinate to propi-
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onate, which is in agreement with a higher molar proportion of propionate in the
rumen of cows fed linseed (8). Linseed supplementation also increased abundance of
uncultured Bacteroidetes, and the Bacteroidales S27-7 family was negatively correlated
with methane production and yield. On the other hand, linseed diets were character-
ized by decreased abundance of Ruminococcaceae, which is in agreement with previous
findings that fatty acids are toxic to these cellulolytic microbes (23, 26, 28). We observed
no effect on rumen protozoan numbers (8) and diversity, although Dasytricha corre-
lated negatively with methane emissions and positively with the Bacteroidales S27-7
family. Linseed oil supplementation also had no effect on the abundance or diversity of
the rumen methanogenic community. In accordance with previous results (9, 24), the
antimethanogenic potential of linseed oil fatty acids was not related to archaeal
numbers in the rumen but rather to a lower metabolic activity of these microbes, which
could be explained by lower availability of hydrogen.

Adding tea saponins to the diet had no effect on microbial numbers or on diversity.
This is consistent with the lack of changes in methane production or VFA profiles
reported by Guyader et al. (13). The efficacy of saponins in suppressing methane
production varies considerably depending on the chemical structure, source, dose, and
diet (29). Saponins have been reported to inhibit rumen protozoa (5) and, thus, limit
hydrogen production in the rumen. However, in our previous work (13) and the study
of Ramírez-Restrepo et al. (30), adding tea saponins to ruminants’ diets had the
opposite effect on protozoan numbers. Saponins break down the membrane of pro-
tozoa by interacting with their sterols. However, rumen microbes can degrade the
sugar moiety of saponins, rendering them inactive. To improve the antiprotozoal effect
of saponins, changing their chemical structure and, thus, protecting them from micro-
bial degradation, was recently proposed (12).

Nitrate supplementation induced changes in the relative abundance of CowPI-
generated functional profiles of bacteria, although metabolic pathways were affected
in a dissimilar way between studies. This was expected, as predictions are based on 16S
rRNA gene data and multivariate analysis of OTU tables also show differences between
studies. In study 1, multivariate analysis revealed that nitrate supplementation altered
bacterial and archaeal communities. However, in study 2, NMDS and PERMANOVA
results were less conclusive, although reductions of methane emissions and changes in
fermentation parameters were comparable between experiments. Nevertheless, both
studies pinpointed a limited number of taxa associated with decreased methane
emissions in nitrate-fed cows. Nitrate supplementation increased the abundance of
Coriobacteriales and Burkholderiales orders, which contain taxa with known nitrate-
reducing activity (31–33). This coincides with predicted higher nitrogen metabolism
functions and is in accordance with the numerically higher nitrite concentrations
measured by Guyader et al. (8, 13) in nitrate-fed cows. Also, cows not fed nitrate
presented an enhanced cellulolytic community, which is in accordance with our
previous results showing a toxic effect on Ruminococcaceae in animals fed linseed plus
nitrate diets (24). Ruminococcus flavefaciens and Ruminococcus albus populations de-
creased in the rumen of goats when nitrate was added to the diet (25). An in vitro study
(34) showed that the growth of these two cellulolytic bacteria was inhibited by nitrite
at a level of 3 mmol/liter, but measured nitrite levels in our studies rarely exceeded
0.08 mmol/liter (8, 13). Lower concentrations could still be toxic, as another study
showed that the specific growth rate of R. flavefaciens, but not R. albus, was decreased
by less than 0.03 mmol/liter of nitrate (35). Marais et al. (35) also argued that nitrite
inhibits electron transport systems (R. flavefaciens), so bacteria not possessing an
electron transport system (R. albus) are less affected. R. flavefaciens and R. albus are the
only cultured Ruminococcus species able to degrade cellulose (36), making them an
important part of a functional rumen ecosystem. In vitro, R. albus produces acetate,
hydrogen, and carbon dioxide, and its metabolic activity is stimulated by the presence
of methanogens (37). Thus, reducing Ruminococcaceae numbers by nitrate supplemen-
tation would decrease the amount of hydrogen produced, which could indirectly
reduce methane production. This conclusion is also supported by the decreased
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expression levels of the methanogenic mcrA gene, which has been shown to correlate
with methane emissions (24, 38, 39). However, Ruminococcaceae are an important
group of bacteria inhabiting the rumen and are able to degrade plant cell wall
polysaccharides into metabolizable energy. This implies that inhibition of the rumen
fibrolytic community decreases fiber degradation. In the present studies, nitrate sup-
plementation did not affect total tract digestibility (8, 13), but linseed tended to reduce
fiber digestibility (8).

We also observed a strong positive correlation between unclassified Methano-
massiliicoccaceae and methane production when cows were fed nitrate-supple-
mented diets. Veneman et al. (9) also reported an increase in the abundance of
Methanomassiliicoccaceae-related methanogens in the rumen of nitrate-fed animals.
Methanomassiliicoccaceae are obligate hydrogen-dependent methylotrophic methano-
gens (40), whereas most of the other rumen methanogens perform methanogenesis
from hydrogen and carbon dioxide. They are part of a unique methanogen order with
a characteristic set of genes involved in the methanogenesis pathway (40). It is likely
that their particular physiology confers on them a competitive advantage when the
activity of other methanogens is affected in a nitrate/nitrite-enriched environment.

We conducted this study to understand how the rumen microbial ecosystem
responds to dietary methane mitigation by linseed, saponin, and nitrate supplemen-
tation alone or in combination. We hypothesized that adding linseed or saponins to the
diet reduces hydrogen production by a toxic effect on rumen protozoa and by
replacing dietary carbohydrates with nonfermentable fatty acids; additionally, we were
expecting that nitrate supplementation would redirect hydrogen consumption toward
nitrate reduction rather than methanogenesis. Changes in the rumen microbial eco-
system were monitored using archaeon-, bacterium-, eukaryote-, and fungus-specific
primers targeting either 16S or 18S rRNA genes and ITS1. Our sequencing strategy
allowed us to accurately draw the parallel between changes in methane emissions and
microbiota structure. Our study showed that linseed oil decreases methane emissions
by reducing the number of hydrogen producers (cellulolytic Ruminococcaceae) and by
stimulating propionate producers (Selenomonas), thereby diverting hydrogen from
methanogenesis. Nitrate supplementation favored the development of nitrate-
reducing bacteria (Coriobacteriales and Burkholderiales) and had a negative effect on
cellulolytic Ruminococcaceae; as a consequence, nitrate supplementation also signifi-
cantly affected methanogen community structure and activity. In contrast, we did not
show any shifts in rumen microbiota structure and activity due to dietary supplemen-
tation with tea saponins.

In a secondary aim of our work, we capitalized on data available from two inde-
pendent studies, expecting to draw relevant conclusions. It is common that studies
exploring microbial mechanisms of the same methane abatement strategy come to
dissimilar conclusions. Authors generally argue that these differences are due to
differences in diet, animal species, physiologic stage, and different sample processing
or bioinformatics pipelines. In the present work, we minimized the impact of study
design on data interpretation, despite some inconsistent results being observed for
nitrate-supplemented diets from study 1 and study 2. Nitrate reduced methanogen
activity and stimulated nitrate-reducing bacterial populations in both studies. Similarly,
Ruminococcaceae-related OTUs characterized nitrate-free diets in both studies. In con-
trast, multivariate analysis showed that nitrate altered bacterial and archaeal commu-
nities in study 1, whereas only a moderate effect on bacteria was observed in study 2.
In both experiments, each experimental period lasted 5 weeks. It is possible that
microbiota shifted as a result of imposed dietary treatments and did not completely
migrate back to the initial state. In a massive rumen contents exchange study, Weimer
et al. (41) found that cows almost completely reconstructed their microbiota in 3 weeks,
with a complete return to its original host-specific state in 9 weeks. However, pH and
VFA profiles returned to the original values much more quickly, within 1 day. We could
argue that changes induced by nitrate supplementation were at the level of microbe
function rather than species composition. This is supported by the fact that reductions
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in methane emissions and shifts in VFA profiles were comparable between studies. A
metatranscriptomic approach will be more fruitful to further explore microbial mech-
anisms of methane mitigation using linseed and/or nitrate.

MATERIALS AND METHODS
The experiments were conducted at the animal facilities of INRA Herbipôle Unit (Saint-Genès

Champanelle, France). All procedures involving animals were conducted in accordance with the French
Ministry of Agriculture guidelines for animal research and all applicable European guidelines and
regulations on animal experimentation. The experiments were approved by the Auvergne Regional
Ethics Committee for Animal Experimentation, approval number CE50-12.

Animals, experimental design, and feeding management. Animals and experimental design were
described by Guyader et al. (8, 13). Briefly, eight nonlactating Holstein cows were separated into two
groups conducted in parallel according to a two-by-two factorial design. Within each study, four cows
were randomly assigned to four dietary treatments during 5-week experimental periods. In study 1, diets were
on a dry matter (DM) basis: control diet (CTL; 50% natural grassland hay and 50% concentrate), control diet
with 4% linseed oil (LIN; 2.6% added fat), control diet with 3% calcium nitrate (NIT; 2.3% nitrate), and control
diet with 4% linseed oil plus 3% calcium nitrate (LIN�NIT; 2.6% added fat plus 2.3% nitrate) (8). In study 2,
diets were on a DM basis: control diet (CTL; 50% natural grassland hay and 50% concentrate), control diet with
0.77% tea saponin (TEA; 0.5% saponin), control diet with 3% calcium nitrate (NIT; 2.3% nitrate), and control
diet with 0.77% tea saponin plus 3% calcium nitrate (TEA�NIT; 0.5% saponin plus 2.3% nitrate) (13). The
chemical compositions of the diets CTL and NIT were similar between the two studies. Methane emissions and
fermentation parameters are those described in companion papers of Guyader et al. (8, 13).

Rumen content sampling for microbial analysis. At the end of each experimental period, whole
rumen content samples (200 g) were taken, through cannula, from multiple sites within the rumen.
Sampling was done 3 h after the morning feeding, when methane emission differences between diets
measured in the same animal were maximal (42). A part of each sample (�30 g) was mixed with 30 ml
ice-cold phosphate-buffered saline (PBS), pH 6.8, and homogenized using a Polytron grinding mill
(Kinematica GmbH, Steinhofhalde, Switzerland) for three cycles of 1 min with intervals of 1 min on ice.
Approximately 0.5 g was transferred to a 2.5-ml Eppendorf tube and mixed with 1 ml of RNAlater
stabilization solution (Applied Biosystems, Austin, TX, USA). Tubes were immediately stored at �80°C
until further processing.

Total nucleic acid extraction and cDNA synthesis. Total nucleic acids (DNA and RNA) were
coextracted from all samples by bead beating and phenol-chloroform extraction, followed by saline-
alcohol precipitation (43). The yield and purity of extracted DNA and RNA were assessed using a
NanoDrop lite spectrophotometer (Thermo Fisher Scientific, Wilmington, DE); RNA integrity was
estimated with an Agilent RNA 6000 Nano kit on an Agilent 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA) according to the manufacturer’s instructions. Following extraction and quality
assessment, RNA was reverse transcribed using a reverse transcriptase kit with random primers
(Promega, Madison, WI), according to the manufacturer’s instructions, on a T-100 thermocycler
(Bio-Rad, Hercules, CA).

Quantification and gene expression of microbial communities. Samples from each cow from the
two sampling days of each experimental period were pooled by mixing an equal quantity of DNA or
equal volumes of cDNA. Quantification of gene targets was performed on microbial DNA and cDNA by
quantitative PCR (qPCR) using a StepOnePlus apparatus (Applied Biosystems, Villebon sur Yvette, France).
Reactions were run in triplicate in 96-well plates, using 15.5 �l of 1� TaKaRa SYBR Ex Taq premix (Lonza,
France), 0.25 �mol each forward and reverse primer, and 20 ng of DNA or 2 �l of cDNA in a final volume
of 20 �l. Primer description, average amplification efficiency, slope, and R2 values from qPCR are
described in Table S4 in the supplemental material as required by MIQE guidelines for PCR (44). Negative
controls without templates were run in each assay to assess overall specificity.

Abundances of total bacteria (based on 16S rRNA gene copies) and methanogens (based on mcrA DNA
copies) were assessed using absolute quantification as previously described (39). The level of expression of the
functional mcrA gene (based on mcrA cDNA copies) was assessed using the 2�ΔCT method (45) (CT is threshold
cycle) with 16S rRNA gene copies as an internal reference: 2�ΔCT � 2�(CT mcrA � CT rrs).

Technical triplicates were averaged while checking overlaying of amplification plots at the CT value.
Absolute quantification of total bacteria and methanogenic archaea was expressed as log10 16S rRNA
gene and mcrA copies/ng extracted DNA, respectively.

Sequencing strategy and data analysis. Approximately 3 �g of extracted DNA was sent to the Roy
J. Carver Biotechnology Center (Urbana, IL, USA) for fluidigm amplification and sequencing of bacterial
and archaeal 16S rRNA genes, eukaryotic 18S ribosomal DNA (rDNA) for protozoa, and internal tran-
scribed region 1 (ITS1) for fungi (Table S5). The libraries were sequenced on a 250-paired-end MiSeq run
and generated 8,249,698 raw reads for bacterial 16S rRNA genes, 1,778,521 for archaeal 16S rRNA genes,
836,803 for ITS1, and 2,245,531 for eukaryotic 18S rDNA (Table S6). Data were analyzed on an in-house
Galaxy-based graphic user interface for QIIME (46), PIPITS (47), and IM Tornado (48) (Table S5). All
pipelines included a quality control step, removing sequences with Phred scores of �33 and trimming
based on expected amplicon lengths, as well as merging paired reads, chimera search, and removal and
OTU picking (Table S6). Merging paired-end archaeal 16S rRNA gene reads was performed by mothur’s
(49) make.contigs command before input in the QIIME pipeline. Taxonomic classification for Bacteria and
Protozoa was based on the SILVA v123 database (50), for Archaea on RIM-DB (51), and for fungi on the
UNITE database (52). CowPI (53), the rumen microbiome-focused version of PICRUSt (Phylogenetic
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Investigation of Communities by Reconstruction of Unobserved States) (54), was used to predict dietary
treatment-induced changes in bacterial metabolic profiles.

Statistical analysis. Results from qPCR quantification, relative abundance (after square root trans-
formation) of microbes at different taxonomic levels, diversity indices, and CowPI functional gene relative
abundances were analyzed by analysis of variance (ANOVA) in R (version 3.4.0). The statistical model
included the random effect of cow (n � 4); fixed effect of period (n � 4); contrasts for nitrate (CTL and
LIN versus NIT and LIN�NIT in study 1, CTL and TEA versus NIT and TEA�NIT in study 2), linseed (CTL
and NIT versus LIN and LIN�NIT in study 1), and tea saponin (CTL and NIT versus TEA and TEA�NIT in
study 2); and the interaction linseed�nitrate or saponin�nitrate. Significance was considered at a P value
of �0.05. Trends were discussed at 0.05 � P � 0.1. Least-square means are reported throughout.

OTUs with fewer than 3 sequences were withdrawn from further analysis. OTU tables were imported
in R and rarefied to minimize the variations created by different sample depths of subsampling. Further
analysis was performed using the vegan R package (55). Alpha diversity values for all microbial
communities were obtained using various diversity indices (Shannon and Simpson diversity indices,
richness, and evenness) and analyzed by ANOVA for the effect of contrasts and the interactions
described above. NMDS was used to ordinate microbial libraries (4 cows and 4 experimental periods
per study and per microbial group). We used the betadisper function to check the homogeneity of
group dispersions before performing a PERMANOVA analysis via the Adonis function of vegan. The
multipatt function from R package indicspecies (56) was used to find indicator OTUs using a 5%
significance level for selecting indicators in cows fed linseed, tea saponin, and nitrate. The species-
site group association parameter was IndVal.g.

Correlation analyses between microbial populations and some fermentation parameters (methane,
hydrogen, and VFA ratio) were performed in R. Only microbial groups that represented more than 1%
(average of all samples) of the total community within each of the three microbial groups (bacteria,
archaea, or protozoa) and that were detected in at least 50% of rumen samples were included in the
analysis. Spearman’s rank correlations and P values were calculated by the above-described contrasts and
plotted using the packages hmisc (57) and corrplot (58).

Accession number(s). Raw sequence data are available in the Sequence Read Archive (SRA) under
BioProject ID PRJNA415383.
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