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Phenotypic plasticity is a major mechanism of response to global change.

However, current plastic responses will only remain adaptive under future

conditions if informative environmental cues are still available. We briefly

summarize current knowledge of the evolutionary origin and mechanistic

underpinnings of environmental cues for phenotypic plasticity, before high-

lighting the potentially complex effects of global change on cue availability

and reliability. We then illustrate some of these aspects with a case study,

comparing plasticity of blue tit breeding phenology in two contrasted habi-

tats: evergreen and deciduous forests. Using long-term datasets, we

investigate the climatic factors linked to the breeding phenology of the

birds and their main food source. Blue tits occupying different habitats

differ extensively in the cues affecting laying date plasticity, as well as in

the reliability of these cues as predictors of the putative driver of selective

pressure, the date of caterpillar peak. The temporal trend for earlier laying

date, detected only in the evergreen populations, is explained by increased

temperature during their cue windows. Our results highlight the importance

of integrating ecological mechanisms shaping variation in plasticity if we are

to understand how global change will affect plasticity and its consequences

for population biology.

This article is part of the theme issue ‘The role of plasticity in phenotypic

adaptation to rapid environmental change’.
1. Introduction
Global change encompasses modifications of the environment both at a global

scale (e.g. climate) and at a local scale but in such large proportion that the

whole planet is affected (e.g. urbanization, invasive species). It thus represents

complex modifications of the environments in which populations face radically

new conditions (e.g. pesticides, roads), but also new modalities of historically

known environments (e.g. extreme climatic events, invasive predator). Studying

whether and how wild organisms adapt to these rapid environmental changes

is both an opportunity for in-depth evolutionary ecology scrutiny, and a

societal challenge.

Phenotypic plasticity is a major mechanism of response to environmental

variability, which may allow organisms to cope with rapid environmental

changes, including global change. It has indeed been identified as the main

mechanism of phenotypic change in response to climate change [1–3] and

other human-induced rapid changes such as urbanization [4]. Phenotypic plas-

ticity is also suspected to have an important role in colonization of new

environments, geographical range shifts and the success of invasive species [5,6].

However, whether or not plasticity will aid adaptation and population persist-

ence in a new environment depends on whether it is adaptive there. When it is

adaptive, phenotypic plasticity can increase the probability of population persist-

ence [7], as exemplified in two great tit (Parus major) populations where
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phenotypic plasticity is predicted to increase the likelihood of

population persistence under various scenarios of climate

change [8,9]. However, these predictions are based on models

that generally consider a ‘static’ estimate of plasticity, without

taking into account potential changes in reaction norms owing

to plasticity evolution, or the possibility that the adaptive

nature of plasticity may be altered under new environmental

conditions [10], as is the case under global change.

A core prerequisite for adaptive predictive plasticity is the

existence of reliable cues, i.e. accurate environmental infor-

mation about future selection on the expressed plastic

phenotype [11–14]. While the definition of cues is fairly

straightforward in theory, their empirical characterization

may be a very arduous task (electronic supplementary

material, Box S1). Yet it is a crucial step in order to under-

stand how global change can affect adaptive plasticity and

its consequences for population biology. For instance,

theory predicts that if cue reliability decreases, plasticity

may be selected to decrease [15], or else may drive popu-

lations to extinction by increasing the expected load caused

by phenotypic mismatch with the optimum in a fluctuating

environment [16–18]. This is just one possible scenario, but

it illustrates the point that one of the most central tasks for

understanding and predicting the ecological and evolution-

ary roles of phenotypic plasticity under global change is to

decipher which environmental cues are used by organisms,

why (i.e. which selective pressures), and the extent to

which global change is likely to affect cue reliability.

To address these questions, we will start with a brief over-

view of the nature and evolution of cues in wild populations.

We will then outline the potentially complex effects of global

change on plasticity, through its effect on the availability and

reliability of cues. Finally, we will illustrate some of these

aspects with a case study comparing plasticity of phenology

in four blue tit populations from contrasted habitats.
2. Nature and evolution of cues for phenotypic
plasticity

For plasticity to be adaptive, the environment influencing the

development and/or expression of a particular phenotypic

trait (or set thereof) needs to be a reliable cue for the selective

pressure on this trait. In a variable environment, this

reliability implies that the cue(s) should predict the selective

environment, i.e. the environmental conditions driving natu-

ral selection on the expressed plastic trait (figure 1 and

[11,12,14]), so that the plastic response leads to increased fit-

ness [10]. Reliable cues do not require that the same

environmental variable affects both the expression of a trait

and selection on this trait: any environmental variable that

is correlated with the environment of selection through

space or time can act as a reliable cue for phenotypic plas-

ticity (e.g. red/infrared ratio signalling competitor presence

[19]). In fact, environmental variables that are most informa-

tive about the selective environment at the time of

phenotypic determination may differ from the selective

environment itself at this time [20]. For instance, rain may

be a better predictor of the peak of food abundance at time

t þ t (where t is the lag between phenotypic determination

and selection on the trait) than is food abundance itself at

time t. More generally, organisms are expected to respond

to the linear combination of environmental variables that
best predicts variation in the phenotypic optimum [15,20].

Very few case studies have investigated how an optimum

phenotype is predicted by one environmental variable [21],

and probably even fewer address the joint effect of several

environmental variables. By contrast, many empirical studies

have focused on the multidimensional aspect of plasticity,

and highlighted that organisms respond to different environ-

mental factors in an integrated way [22–25]. Responding to

multiple cues allows organisms to fine tune their phenotype

in complex environments: for example, prey can be simul-

taneously confronted by different types of predators [26,27],

or plants face the need to respond to herbivory as well as

to competition for light and water availability [24].

The aspect of cue reliability that influences the evolution

of plasticity (in models of linear reaction norms) is the

regression slope of the environment of selection on the

environment of development [15,28]. When the time lag

between these two environments increases, cues are expected

to become less informative [29,30], to an extent that depends

on the time scale of environmental fluctuations: strong tem-

poral autocorrelation of the environment may allow the

evolution of plastic responses to early cues. Similarly, disper-

sal between cue perception and selection causes a spatial lag

analogue to the time lag [11], with an effect on plasticity evol-

ution that depends on the degree of spatial autocorrelation

over the typical dispersal distance. However, even a cue

that reliably predicts the environment of selection can lead

to maladaptive plastic responses if there is a development

lag (time between cue perception and phenotype expression

[14]), such that the ‘set value’ corresponding to that cue is

not reached when selection operates on the trait. When the

environment fluctuates on time scales longer than the gener-

ation time and dispersal is low, information about parental

environment can be a reliable cue for offspring, and

transgenerational plasticity is expected to evolve (figure 1,

[31–33]). Transgenerational effects may be especially impor-

tant for traits that are expressed and fixed early in the

ontogeny (including many morphological traits), because

offspring may lack sensory abilities during development

[34], and have less time to integrate information about the

environment. For example, in the nematode Caenorhabditis
elegans, maternal provisioning in glycogen increases offspring

fitness under anoxia. Using experimental evolution, Dey et al.
[35] showed that when normoxia (i.e. normal levels of

oxygen) and anoxia (less than 1% oxygen) were predictably

alternating, mothers experiencing normoxia increased glyco-

gen provisioning to their embryos (and vice versa for anoxia),

demonstrating the evolution of maternal effects under

predictable variation of the environment. In marine stickle-

backs (Gasterosteus aculeatus), where body size is a key

component of fitness, maternal effects could help adaptation

to increased temperature under climate change, as offspring

from mothers acclimated to 218C were larger in this warm

environment than conspecifics from mothers acclimated to

178C thanks to different mitochondrial performance [36].

Recently, there has been growing interest in understand-

ing theoretically how cue variability and reliability at

different time scales interact to shape plastic responses.

Organisms are predicted to integrate various sources of infor-

mation, including cues from the current environment (for

labile traits that change continuously in life), earlier cues per-

ceived during development (early-life or carry-over effects)

and transgenerational cues from the environment to which
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Figure 1. Summarized diagram of the relationships between the environment, cues and phenotypes in the framework of phenotypic plasticity. The multivariate
environment can be used as a cue to initiate a plastic response in an individual (thin black arrows). The focal phenotype (on which selection is acting in our
example, black thunderbolt) can be affected by current environmental conditions, earlier life events and the preceding parental generation. Information about
past environments (either parental or from early-life) includes different sources, such as the phenotype itself (at the same or another trait), or epigenetics. For
phenotypic plasticity to be adaptive, cues in the successive periods and generations have to be correlated with the future selective environment (white arrows).
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previous generations were exposed (figure 1, [33]), including

the parental phenotype itself [37]. The relative weight of these

different types of cues is expected to vary depending on their

predictive power over different time scales (related to the

temporal autocorrelation of the environment) and the

strength of selection [32,33,37].

Cue variation through space and/or time can lead to vari-

ation in plasticity, with an alternation of different ecotypes. A

telling example of within-population variation in plasticity

comes from the wild mosquitofish (Gambusia holbrooki). Fish

born in the early spring (development at cool temperature)

are expected to experience more variable environments than

fish born in early summer (development at a warm tempera-

ture). Accordingly, metabolic rate is plastic in fish born in

early spring, but not in early summer fish [38]. Following

on from such encouraging case studies, more work is

needed to assess, both theoretically and empirically, whether

and how much variation in cue variability and predictability

drives within-species variation in plasticity.
3. How may global change influence cues
and plasticity?

Under global change, several aspects of the environment are

expected to be modified, notably through the emergence of

new environments (owing to local habitat change or dispersal

in new habitats), alteration of covariances among environ-

mental variables and increased climatic variability. These

environmental changes can be gradual, but abrupt changes

are also increasingly likely because of anthropogenic press-

ures [39], e.g. in the form of extreme climate events such as

floods, droughts or storms. Altogether, environmental

changes may affect the expression and evolution of plasticity

through changes in cue reliability, cue perception and

interpretation, and development of the phenotype.

(a) Changes in the availability and reliability of cues
The simplest way environmental change may affect cue use is

by disrupting their detection, either by degrading the signal
or by disturbing organisms’ sensory abilities. For example,

juvenile damselfish (Pomacentrus wardi) no longer respond to

predator cues in degraded environments (dead coral reefs),

and the likely mechanism is a degradation of the conspecific

alarm cue [40]. Similarly, eutrophication can impair visual

signals, leading to maladaptive plasticity in male sticklebacks,

as their increased investment in courtship behaviour is not

correlated with female interest [41]. Pervasive electrosmog,

i.e. human-made electromagnetic noise, completely disrupts

the magnetic compass orientation in the migratory European

robin Erithacus rubecula [42].

When cues are still available, their reliability can be

affected if the new environment is similar in some ways to

a known environment. In the most extreme cases, a new

environment is generating a signal similar to a previously

known cue, but completely uncorrelated with both the orig-

inal cue and the environment of selection. For example,

asphalt and ponds polarize light in the same way, leading

mayflies to lay their eggs on the road rather than ponds

[43], and insecticides can trigger costly morphological

defences in Daphnia ambigua in the absence of predators

[44,45]. Such maladaptive responses based on cues that

were previously reliable are termed evolutionary traps

[46,47]. These traps will be all the more effective as the

previous cue was highly reliable [46].

On the other end, the cue can be sampled from the same

historical environmental variable, but the correlation between

this variable and the selective environment may have

decreased or entirely vanished. This is expected under climate

change, for instance, because of increased climate stochasticity

within years, or because the average temperature is not chan-

ging at the same rate for all seasons [48,49]. For example, the

yellow-bellied marmot (Marmota flaviventris) has gradually

emerged earlier from hibernation (study led between 1975

and 1999) because of warmer air temperature earlier in the

spring. However, the date of snowmelt has not changed in

the Rocky Mountains, leading to lower foraging opportunities

at emergence. While warmer air was historically a good

predictor of snow melt, climate change has led to a mismatch

between air temperature and snow cover [50].
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Because species are embedded in networks of ecological

interactions, loss of cue reliability may arise from species

responding differently to environmental changes, or interact-

ing species responding to different cues. Changes in

phenology are the most ubiquitous responses to climate

change [51], and the best-documented cases of disruption

of ecological networks are based on a loss of synchrony

between ecological interactors, such as predators and their

prey, or plants and their pollinators [52,53]. If interacting

species are responding to the same cue, their phenological

mismatch may increase because their reaction norms are

different. This is generally the case in trophic interactions,

where consumers tend to display shallower (flatter) reaction

norms to climate than their resources [54]. This occurs

because consumers generally have longer generation times

than resources (owing to larger body size), and thus longer

developmental lags for the expression of the plastic trait,

which reduces their ability to predict the environment of

selection, as temporal autocorrelation affecting cue reliability

decreases on average with longer time lags [55]. Another

possibility is that interacting species are actually using differ-

ent cues that undergo different time trends. For example, four

tree species of Prunus in Japan are flowering earlier owing to

increased temperatures during the time window most related

to their phenology, yet temperature remains unchanged

during the time window related to the phenology of the but-

terfly Pieris rapae that uses them as host plants. This leads to

strong plasticity of phenology in trees but not in butterflies

[56], resulting in an increasing plant–insect phenology

mismatch owing to warming (see also our case study in §4).

Some mechanisms may mitigate the loss of reliability in

some cues. First, the potentially negative effects of loss of

reliability of a particular environmental variable as a cue

could be greatly alleviated if organisms are using multiple

cues, because partial redundancy in information from differ-

ent environmental sources may increase the robustness of the

signal [57]. For example, in the above-mentioned case of the

coral reef damselfish, the loss of olfactory cue in dead coral

water can be compensated by the use of visual cues [40].

Similarly, we could expect that the mismatch in trophic

webs could be alleviated if species are using each other’s

presence, abundance, or phenotype as cues (as investigated

empirically by Phillimore et al. [58] with butterflies and

their host plants), rather than using a unique climatic variable

such as temperature alone. Second, the expression of mala-

daptive responses to an unreliable cue could be reduced

through learning, for example, if females are able to recalibrate

their cue use based on past experience [59].

(b) Consequences of the expression and evolution
of plasticity

It is difficult to predict in general whether and how much

plasticity will be adaptive in novel environments. It has

been suggested that reaction norms should have random

and erratic shapes in environments that were never or rarely

encountered previously (as is expected to occur under

global change), owing to the absence of past selection in

these environments [10]. However, more quantitative argu-

ments can be made by taking into account two realistic

features of plasticity in new environments. First, environments

are seldom entirely new; instead, major environmental shifts

mostly mean that previously (perhaps very) rare
environments have become common. How rare a new

environment has been prior to the shift determines how

relaxed selection has been in this environment, and the oppor-

tunity there has been for genetic drift to produce erratic

reaction norms there [60]. Second, reaction norms do not

evolve completely freely, even in environments where they

have not been under selection, because their shapes are gener-

ally constrained to some extent by genetic correlations of trait

values across environments. Considering these two points

makes it likely that reaction norms remain at least partly adap-

tive over the new environmental range in the absence of major

changes in the adaptive landscape, and simple quantitative

statements can be made about this question based on the

frequency of extremes and the correlations of trait values

across environments [60].

Retaining partially adaptive plastic responses in novel

environments also requires that cues remain reliable. In the

specific case of extreme climatic events, whether such cues

exist is still unknown. One recent study tackling this issue

found no evidence that the Eurasian oystercatchers (Haemato-
pus ostralegus) uses cues (lunar cycle, past and current water

height) to avoid flooding of their nests during extreme pre-

cipitation events [61]. Furthermore, global change generally

involves the variation of more than one environmental vari-

able, and an alteration of the correlation structure of these

variables within and between times. This may trigger con-

flicting ecological demands on organisms [24], such that

new combinations of environmental variables become the

best predictors of the optimum phenotype. The ability of

organisms to track these altered patterns of change in the

optimum phenotype is predicted to depend on their ability

to evolve a new combination of environmental variables

used as a cue [20]. This theoretical prediction has not been

tested yet, but a couple of studies suggest that cue use can

evolve relatively fast. A study in the pitcher plant mosquito

(Wyeomia smithii) suggests that, over a period of 5 years, the

critical photoperiod for diapause induction has shifted

towards shorter day length (i.e. later in the season) owing

to longer growing seasons [62]. Antipredator responses of

the Iberian waterfrog (Pelophylax perezi) tadpoles to an inva-

sive species (crayfish, Procambarus clarkia) is also a likely

case of cue evolution. Tadpoles from this species have the

ability to build morphological defences against native

predators [63] but only tadpoles from populations that have

co-existed with P. clarkia during 10–15 generations display

anti-predator response to this new predator [64].

Changes in cue reliability are expected to have a major

impact on the evolution of plasticity, including a transition

between predictive plasticity and bet-hedging as adaptive

strategies [13,65]. In the context of climate change and the

associated increased variability of temperature, decreased

predictability of the environment could, for example,

impact the adaptiveness of transgenerational plasticity, and

select for a strategy of bet-hedging, where parental effects

increase variance in offspring phenotype rather than alter

their mean phenotypes [66].

In terms of predictive plasticity, the reliability of the cue

determines the steepness of the optimal reaction norm: the

less reliable the cue, the shallower the reaction norm that

evolves at equilibrium, as compared to ‘perfect’ plasticity,

defined by how the optimum phenotype is affected by the

environment [12,67]. In the case of an abrupt change in cue

reliability, causing previously adaptive plasticity to become
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maladaptive (for instance because it overshoots the

optimum, as in [16]), plasticity is expected to evolve towards

a shallower reaction norm that matches the current level of

cue reliability. Such plasticity shift may cause evolutionary

rescue by reducing the load caused by stochastic fluctuations

in the environment [17,18].
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4. Case study: local variation of cues in
Mediterranean blue tits and their prey

Investigating the mechanisms of plastic response to climate

change and their limits in the wild is notoriously difficult

(electronic supplementary material, Box S1). However, an

exceptionally well-characterized research model of adaptive

plasticity in wild populations is the earlier egg-laying date

of temperate forest insectivorous passerines during warmer

springs. This earlier breeding phenology allows birds to

track the phenology of the caterpillars they use as the main

food source for their offspring [21,68]. In the following sec-

tion, we investigate in some detail how plastic phenological

change relates to environmental cues and their reliability in

four Mediterranean populations of blue tits (Cyanistes
caeruleus).

The four wild populations of blue tits have been moni-

tored for 20–42 years (electronic supplementary material,

table S1). Two populations breed in forests dominated by

the Deciduous downy oak Quercus pubescens (the D-Rouvière

and the D-Muro populations, in the French mainland close to

Montpellier and Corsica respectively, where ‘D’ stands for

deciduous) and two in forests dominated by the evergreen

holm oak Quercus ilex (the E-Muro and the E-Pirio popu-

lations, both in Corsica; ‘E’ stands for evergreen forest [69]).

These ecological characteristics have induced local adaptation

in birds [70], particularly in their life-history traits. Average

phenology of two of these populations has been changing

over time: mean laying date is increasingly early (more

than three days per decade) for the populations breeding in

evergreen, but not in deciduous forests (figure 2a; electronic

supplementary material, table S2a), despite similar trends

of climate warming in the four sites (electronic supplemen-

tary material, table S2c and figure S1; note that electronic

supplementary material, table S1 reports trends in tempera-

ture over the spring—from April to end-June—while

electronic supplementary material, figure S1 presents trends

in temperature over the entire year). This pattern is all the

more striking as the E-Muro and D-Muro populations are

only 5.6 km apart [70], and connected by gene flow [71].

One plausible explanation behind the different time

trends in laying date could be local variation of environ-

mental cues for phenotypic plasticity. Females from

different populations could be sensitive to different climate

variables (e.g. amount of rain, mean temperature or presence

of extreme climatic events), or to the same variables but at

different time periods during the year (e.g. early versus late

spring). In order to assess the population-specific cues for

laying date plasticity in blue tits, we implemented sliding

windows analyses using the package climwin [72,73]. For

each population, we tested several weather variables: mean,

maximum, minimum for both daily temperature and daily

rain, and positive Extreme Climatic Events of temperature

(ECE hereafter; see electronic supplementary material, Box

S2 for details on the methods). Climate data were obtained
from the national meteorological stations of Saint Martin de

Londres for the mainland (about 24 km from D-Rouvière)

and Calvi for Corsica (9–19 km from the three Corsican

study sites). Temperatures from the meteorological stations

are highly correlated with local temperature in study sites

(electronic supplementary material, table S3).

In three of the populations (D-Rouvière, D-Muro and

E-Pirio), the climatic factor that most influences variation in

mean laying date is the mean temperature (electronic sup-

plementary material, table S4), explaining between 54% and

75% of variability in laying date (table 1a). ‘Evergreen’ popu-

lations are also sensitive to the number of ECE. In E-Pirio, this

effect is additive with the mean temperature effect, but not

highly robust. In turn, the number of ECE within a window

is the best predictor of average laying date in the E-Muro

population (electronic supplementary material, table S4),

but the simultaneous use of information from mean tempera-

ture cannot be excluded (mean temperature: 23.47+ 0.88,

t ¼ 23.94, p ¼ 0.001, ECE: 21.59+0.42, t ¼ 23.79, p ¼
0.002, r2 ¼ 0.75). We found no effect of other climate variables

such as rainfall (electronic supplementary material, table S4).

Hence, although some combination of other factors (e.g. bud

development [74] or population density [75]) likely play a

role, temperature is a key driver behind the plasticity of

laying date. This is in line with other correlative studies in

great tits, showing that the average spring temperature

explains more than 50% of the variability of laying date

[68,76], and with experiments showing that laying date

responds to temperature treatments [77]. The underlying

physiological mechanisms remain elusive, as no effect of

temperature on the neuroendocrine system linked to repro-

duction has been detected yet [78,79]. Despite many studies

on bird breeding phenology, knowledge about mechanisms

driving phenological plasticity are still scarce, and the relative

roles of direct and indirect effects of temperature (e.g. for the

latter, a constraint on the timing of egg-laying mediated by

food abundance or quality) are unknown [80].

The populations differ in the specific time window of

mean temperature influencing laying date. Females from

populations in deciduous habitats use a cue based on a long

time period encompassing winter and early spring, while

females from the E-Pirio population use a shorter and later

time period corresponding to a month in spring (figure 3;

electronic supplementary material, table S5). The pattern is

qualitatively similar but not robust in E-Muro (figure 3; elec-

tronic supplementary material, table S4 and S5). Larger

windows in deciduous populations could be related to the

correlation between the best window and other possible win-

dows remaining high across a larger range of time periods

than in evergreen populations (electronic supplementary

material, figure s2). A formal statistical comparison between

the windows used in D-Rouvière and E-Pirio shows signifi-

cant differences between the two populations in terms of

ordinal calendar (electronic supplementary material, Box S2).

The use of different time windows in the four bird popu-

lations leads to contrasted rates of change of the cue over the

study period. In the ‘Evergreen’ populations, where the

window includes only spring temperature, the mean temp-

erature inside the cue window increases over the 1991–2017

period (E-Muro: 0.4+0.078C/decade, t ¼ 6.18, p , 0.0001;

E-Pirio: 0.6+0.088C/decade, t ¼ 7.81, p , 0.0001,

figure 2b), but there is no such increase in the two other

sites where the windows include information from spring
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Figure 2. (a) Temporal trends in annual mean laying dates in the four blue tit populations (mean+ s.e.); (b) temporal trends in mean temperature (in 8C+ s.e.)
for the cue windows used by each population; (c) blue tit reaction norms: annual mean laying date (+s.e.) as a function of the estimated cue (in 8C+ s.e.);
(d ) caterpillar reaction norm (only for E-Pirio and D-Muro): annual caterpillar peak date as a function of the estimated cue (8C+ s.e.); (e) Cue reliability for blue tits
measured as the correlation between the caterpillar peak date and the cue (electronic supplementary material, table S7); ( f ) Synchrony between blue tits and
caterpillars illustrated as the correlation between mean laying date of blue tits (+s.e.) and caterpillar peak date (see electronic supplementary material, table S8).
In all panels, the ‘Evergreen’ sites are in green (dark green for E-Pirio, light green for E-Muro), and ‘Deciduous’ sites are in blue (dark blue for D-Rouvière, light blue
for D-Muro). All dates are ordinal dates with 1 ¼ 1st January. In ( f ), the red dashed line represents the expected optimal relationship between laying date and
caterpillar date. In some cases, error bars are not visible because they are very small compared to the figure scale.
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and winter (D-Rouvière: 0.03+0.38C/decade, t ¼ 0.11, p ¼
0.91; D-Muro 0.22+0.128C/decade, t ¼ 1.76, p ¼ 0.09). This

is in line with the very slow or absent rate of climate

change in winter as compared to spring in these Mediterra-

nean areas (electronic supplementary material, figure S1).

Climate change is also associated with increasing frequency

of ECE, and their number increases in the window used by

the E-Muro population (0.49+ 0.16 positive ECE/decade,

t¼ 2.98, p ¼ 0.005; see electronic supplementary material

table S6 for other populations). Hence overall, even though
spring warming has been pervasive in all populations (elec-

tronic supplementary material, table S2c and figure S1), we

only detect climate warming during the cue windows influ-

encing bird phenology in E-Pirio and E-Muro. This

difference of windows across habitats explains why laying

dates are advancing in the evergreen avian populations but

not in the deciduous populations.

It is also possible to investigate the reliability of cues in this

system. The fitness consequences of phenological responses of

blue tits depend on the phenology of caterpillars of Tortrix
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viridana, the main food resource for nestlings [81], thought to

influence reproductive success through offspring survival.

The synchronization of the nesting period (especially when

nestlings reach the peak of their energetic needs, around 9

days after hatching [82]) with date of peak abundance in cater-

pillars depends on how reliably the environmental cue used by

birds to modify their phenology predicts caterpillar peak date.

We can thus measure the linear regression slope of the environ-

ment affecting selection on timing of breeding on the

environment affecting timing of breeding itself, in order to

quantify the reliability of the cue used by birds in a way that

matches theoretical predictions (e.g. [15,28]). Caterpillar

phenology is studied in the four sites thanks to coprometers

(i.e. 50 � 50 cm cloth square collecting the frass of caterpillars

under oak trees). The mass of frass collected during a given

time period allows us to estimate the abundance of caterpillars

throughout the season. The peak date of caterpillar abundance

is the day with the highest collected quantity of caterpillar frass.

To evaluate the cue used by caterpillars, we used the same slid-

ing window analysis as for birds. Dataset sizes allow caterpillar

sliding windows analyses only in E-Pirio and D-Muro (at least

20 years of data are required [73]). Temperature explained ca
60% of the variation in the date of caterpillar peak in both

sites (table 1b and figure 3; electronic supplementary material,

table S5). The reliability of the cue was high in both

populations: 1.02+0.04 (t ¼ 25.17, p , 0.0001) in D-Muro

and 0.70+0.08 in E-Pirio (t ¼ 9.071, p , 0.0001); with lower

reliability in E-Pirio than D-Muro (negative blue tit cue �
E-Pirio interaction: 20.32+0.09, t¼ 23.62, p ¼ 0.0005).

Another quantity of interest is how well the cue used by

birds predicts the food peak itself. The slope of the regression

of the caterpillar date on the cue used by blue tits is the reaction

norm that is favoured by natural selection, if caterpillar date is

taken as the optimum phenotype each year. This relationship

is significantly negative in all sites (figure 2e; electronic sup-

plementary material, table S7): early prey abundance is

associated with high temperature in the cue window. However,

the proportion of variation in the food peak that is captured by

its relationship with the cue for plasticity is lower in E-Pirio

(r2 ¼ 0.21) than in D-Muro (r2 ¼ 0.59, see §5), and also moder-

ate in the two other populations (D-Rouvière: r2 ¼ 0.33, E-Muro

r2 ¼ 0.29). The strength of this relationship in D-Muro is similar

to that found for a Dutch great tit population in Hoge Veluwe

[68]. If the food peak correctly predicts the optimum laying

date, this suggests that plasticity in response to temperature

in the time windows we identified only allows tracking a

moderate proportion of temporal fluctuations in this optimum.

However, note that caterpillar abundance data in the

D-Rouvière site should be used with caution: data collection

stopped in 2002 because of frequent rainfall, and 10 years of

data may not be sufficient for analyses to be reliable.

A plasticity-mediated phenological mismatch between

predators and their food source can arise from the use of

different cues, or from different responses to the same cues.

Regardless of the mechanism, theory predicts that the slope

of the consumer should be shallower than the slope of the

resource, because cue reliability is expected to be lower in

consumers [55]. Accordingly, a wide scale analysis over 812

taxa revealed that secondary consumers have lower climate

sensitivity than other groups (e.g. primary producers or con-

sumers [54]). In line with expectations, in E-Pirio birds are less

sensitive to temperature than caterpillars (figure 2c,d and

table 1, species � temperature interaction: 24.06 (+1.28),
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Figure 3. Estimated mean temperature cue windows for blue tits (a,c,d,f ) and caterpillars (b,e) in each population. The open circles represent the mean phenology
(mean laying date or mean caterpillar peak date). The first and last days of the window are given in ordinal day, with 1 ¼ 1st January. Coloured lines represent the
best windows (from the best model, green for evergreen and blue for deciduous); black lines represent the median windows from the 95% confidence set (see
electronic supplementary material, Box S2 and [72,73]). A good agreement between best and median window is an indicator that the window is precisely estimated.
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t ¼ 23.17, p ¼ 0.002). However, in the D-Muro site, the slopes

of the reaction norms are similar in birds and caterpillars

(figure 2c,d and table 1, species � temperature interaction:

21.32 (+1.02), t ¼ 21.29, p ¼ 0.20). The abundance of cater-

pillars in D-Muro is (much) higher than in the three other

populations (electronic supplementary material, table S1).

This makes its likely that in other sites such as E-Pirio, birds

are exploiting other resources, especially when caterpillars

are rare [81,83]. When food sources are diversified, flatter reac-

tion norms in birds than in caterpillars may not imply that the

reaction norms are not adaptive, but that birds are responding

to a more multidimensional environment [20]. An important

next step would thus be to estimate how the cue for avian

phenology and the date of caterpillars jointly predict the

annual optimum laying date [21]. However, this may not be

sufficient to get a full understanding of the role of plasticity

in adaptation in this system. For example, even in D-Muro

where average laying date tracks the caterpillar date accu-

rately, birds are always late compared to the food peak

(figure 2f; electronic supplementary material, table S8), and

there is strong directional selection for earlier laying date

[84]. An integrative estimate of optimal laying date, using

multiple components of fitness such as survival or recruitment

success (as in e.g. [85,86]), could help understand this lag, and

whether or not it is adaptive.
5. Discussion and perspectives
Our literature review and case study make it clear that, if we

wish to understand how global change will affect phenotypic

plasticity and its consequences for population biology, we

need a deeper understanding of the environmental mechanisms

shaping variation in plasticity within species.

Perhaps the most difficult and needed measurements con-

cern spatio-temporal changes in phenotypic selection, which

underlie the evolution of phenotypic cues for plasticity. There

have been repeated calls for measuring the environmental

sensitivity of selection, notably as a way to identify the

causes of natural selection [7,87,88]. This becomes a necessity

when investigating the adaptiveness and evolution of
plasticity, but the available methods and their applications

are still limited [21,89]. In particular, we are not aware of an

attempt to use multiple environmental variables as predictors

of changes in an optimum phenotype as a way to investigate

selection on environmental cues for plasticity, consistent with

predictions from theory [15,20]. Manipulative experimental

approaches are also a powerful yet underused tool for

measuring selection on phenotypic plasticity and understand-

ing the adaptive role of environmental cues. For instance,

Schmitt et al. [90] experimentally shut down plastic stem

elongation in response to crowding in plants, by constructing

genetically modified lines of Brassica rapa that lack the photo-

receptor phytochrome A involved in the detection of the

relevant cue (ratio of wavelength characteristic of shading

by other plants). They showed that the resulting lack of plas-

tically induced elongation is detrimental in a crowded

environment, while constitutive expression of stem elongation

is detrimental in uncrowded environments. Other exper-

iments of this kind, where cue perception/use is disrupted,

or decoupled from the selective pressure, would yield

extremely useful information, but are still too rare.

Furthermore, evaluating whether phenotypic plasticity

will remain adaptive in the face of global change requires

an integrative approach at different levels. The first level of

integration is across life stages. Environmental changes can

affect phenotypic expression at different stages of the life

cycle, so that the effects of global change can be mediated

not only by current cues, but also by transgenerational,

early-life and carry-over effects (figure 1). The investigation

of how these mechanisms of response to the environment

interact is just starting [66,91], but it will provide important

results on the dynamics of expression of plasticity. Second,

there is also a strong need for an integrative approach at

the community and/or ecosystem level. Interactions among

species are a major source of selection for adaptive plasticity

(e.g. synchrony of phenology, antipredator defences, com-

petitive interactions). For example, because the migrant

pied and collared flycatchers display shallower reaction

norms to temperature than blue tits, they breed later in

warmer environments, and suffer from competition with resi-

dent tit species [92]. An important step would be to increase
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the number of studies comparing plasticity of interacting

species in wild populations, notably examining how climate

and environmental change are affecting cues and the

expression of plasticity across trophic levels.

Comparing populations can provide insights as to how

phenotypic plasticity and cue use are shaped by evolution.

In our case study, geographically very close, and connected,

populations occupying different habitats differed extensively

in the cues affecting laying date plasticity, as well as the

reliability of these cues as predictors of the putative selective

pressure, namely the peak of abundance of the main food

source (caterpillars). The populations from evergreen and

deciduous habitats differed in the time windows—and to a

lesser extent, in the environmental variables—that they use.

The difference in time windows among populations is con-

sistent with results from another study showing shorter

windows for populations breeding in ‘late’ habitats, such as

high latitudes [93]. This suggests that these differences in

time windows can be adaptive. However, detection of cues

in wild populations relies on a correlative approach, and

we cannot completely exclude that another unmeasured

environmental factor correlated to temperature drives the

plasticity of laying date, as well as local variation of cue win-

dows. The ecological reality of these populations is certainly

highly complex, and more information on environmental het-

erogeneity would be needed to assess which aspect of

environmental variability can be linked to the difference in

cue use. For instance, the focal populations vary in the abun-

dance of caterpillars, suggesting that the required use of

additional prey may partly explain the apparent difference

among populations in the reliability of cues for predicting

the selective environment. Altogether, understanding the

phenology of blue tits (and other insectivorous passerines

in temperate forests) requires integrating knowledge on—at

least—three trophic levels: an insectivorous bird, a herbivor-

ous caterpillar and an autotroph tree. In temperate regions,

spring temperature seems to be the main environmental

factor influencing hatching and development period in

insects [94], following a period of low metabolic rates

caused by ambient temperature during winter (or even a dia-

pause period mainly driven by photoperiod [95]). Similarly,

tree phenology often includes a chilling period (i.e. a period

of cold temperature required to lift dormancy after winter

[25]). Chilling requirement and cold tolerance vary among

species; more specifically, deciduous oaks seem more sensi-

tive to cold temperatures and freezing stress than evergreen

oaks [96,97]. Cold sensitivity of deciduous oaks suggests

that winter temperature could partly predict tree and thus

insect phenology, offering a potential explanation as to why

winter temperatures are included in the cue window of

birds breeding in deciduous oak forests. Finally, the use of

extreme climatic events as an additional source of infor-

mation in E-Muro (ECE) also requires further investigation

before clear interpretations can be made. Our results overall

highlight that ecological (biotic and abiotic components) vari-

ation can have strong effects on plasticity, but further
empirical work is needed to be able to discuss our results

from a more mechanistic point of view.

We find little evidence for multiple redundant climatic

cues, but we cannot exclude that some other, unmeasured

cues, such as tree phenology, could also be important in

determining laying date [74]. Although partial redundancy

should increase the reliability of the information [57], infor-

mation acquisition is also expected to be costly [98]. An

open remaining question is thus the circumstances under

which we can expect organisms to use several, partly redun-

dant sources of information, and whether this could mitigate

the effects of global change. For example, while temperature

in late winter/early spring may not remain a reliable cue, tree

phenology could provide more robust information on the

long term. Detecting redundant environmental cues is chal-

lenging because of collinearity among factors leading to

statistical issues (as is probably the case in our analysis),

especially in short time series (but see [99]).

If a cue is no longer informative, there could be evolution

of cue use. In general, we know little about the evolutionary

potential of cue use but a couple of studies suggest some gen-

etic variation exists for this. For example, in Daphnia magna,

the integration of different cues for plasticity of life-history

traits varies among clones [100]. In Arabidopsis thaliana, the

knowledge of genetic pathways involved in determining

flowering time allows us to understand variability in plastic

responses and how multiple cues are integrated, and thus

to predict the effects of environmental changes on plasticity

[101,102]. Similar approaches in the wild seem very challen-

ging for now, but laboratory experiments could provide

very useful results in this as yet little-explored area.
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27. Teplitsky C, Plénet S, Joly P. 2004 Hierarchical
responses of tadpoles to multiple predators. Ecology
85, 2888 – 2894. (doi:10.1890/03-3043)

28. de Jong G. 1999 Unpredictable selection in a
structured population leads to genetic differenciation
in evolved reaction norms. J. Evol. Biol. 12,
839 – 851. (doi:10.1046/j.1420-9101.1999.00118.x)

29. Bradshaw AD. 1965 Evolutionary significance of
phenotypic plasticity in plants. Adv. Genet. 13,
115 – 155. (doi:10.1016/S0065-2660(08)60048-6)

30. Padilla DK, Adolph SC. 1996 Plastic inducible
morphologies are not always adaptive: the
importance of time delays in a stochastic
environment. Evol. Ecol. 10, 105 – 117. (doi:10.
1007/BF01239351)

31. Mousseau TA, Fox CW. 1998 The adaptive
significance of maternal effects. Trends
Ecol. Evol. 13, 403 – 407. (doi:10.1016/S0169-
5347(98)01472-4)

32. Leimar O, McNamara JM. 2015 The evolution of
transgenerational integration of information in
heterogeneous environments. Am. Nat. 185,
E55 – E69. (doi:10.1086/679575)

33. McNamara JM, Dall SRX, Hammerstein P, Leimar O.
2016 Detection vs. selection: integration of genetic,
epigenetic and environmental cues in fluctuating
environments. Ecol. Lett. 19, 1267 – 1276. (doi:10.
1111/ele.12663)

34. Uller T. 2008 Developmental plasticity and the
evolution of parental effects. Trends Ecol. Evol. 23,
432 – 438. (doi:10.1016/j.tree.2008.04.005)

35. Dey S, Proulx SR, Teotónio H. 2016 Adaptation to
temporally fluctuating environments by the
evolution of maternal effects. PLoS Biol. 14, 1 – 29.
(doi:10.1371/journal.pbio.1002388)

36. Shama LNS, Strobel A, Mark FC, Wegner KM. 2014
Transgenerational plasticity in marine sticklebacks:
maternal effects mediate impacts of a warming
ocean. Funct. Ecol. 28, 1482 – 1493. (doi:10.1111/
1365-2435.12280)

37. Kuijper B, Hoyle RB. 2015 When to rely on maternal
effects and when on phenotypic plasticity? Evolution
69, 950 – 968. (doi:10.1111/evo.12635)

38. Seebacher F, Beaman J, Little AG. 2014 Regulation
of thermal acclimation varies between generations
of the short-lived mosquitofish that developed in
different environmental conditions. Funct. Ecol. 28,
137 – 148. (doi:10.1111/1365-2435.12156)

39. Ratajczak Z, Carpenter SR, Ives AR, Kucharik CJ,
Ramiadantsoa T, Stegner MA, Williams JW, Zhang J,
Turner MG. 2018 Abrupt change in ecological
systems: inference and diagnosis. Trends Ecol. Evol.
33, 513 – 526. (doi:10.1016/j.tree.2018.04.013)
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