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SUMMARY

Expression quantitative trait locus (eQTL) analyses identify genetic markers associated with the expression
of a gene. Most up-to-date eQTL studies consider the connection between genetic variation and expression
in a single tissue. Multi-tissue analyses have the potential to improve findings in a single tissue, and
elucidate the genotypic basis of differences between tissues. In this article, we develop a hierarchical
Bayesian model (MT-eQTL) for multi-tissue eQTL analysis. MT-eQTL explicitly captures patterns of
variation in the presence or absence of eQTL, as well as the heterogeneity of effect sizes across tissues.
We devise an efficient Expectation–Maximization (EM) algorithm for model fitting. Inferences concerning
eQTL detection and the configuration of eQTL across tissues are derived from the adaptive thresholding of
local false discovery rates, and maximum a posteriori estimation, respectively. We also provide theoretical
justification of the adaptive procedure. We investigate the MT-eQTL model through an extensive analysis
of a 9-tissue data set from the GTEx initiative.
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1. INTRODUCTION

Genetic variation in a population is commonly studied through the analysis of single nucleotide polymor-
phisms (SNPs), which are genetic variants occurring at specific sites in the genome. Expression quantitative
trait locus (eQTL) analysis seeks to identify genetic variants affecting the expression of one or more genes:
a gene–SNP pair for which the expression of the gene is associated with the value of the SNP is referred to
as an eQTL. Identification of eQTL has proven to be a useful tool in the study of pathways and networks
that underlie disease in human and other populations (cf. Kendziorski and Wang, 2006; Wright and others,
2012).

To date, most eQTL studies have considered the effects of genetic variation on expression within a
single tissue. A natural next step in understanding the genomic variation of expression is the simultaneous
analysis of eQTL in multiple tissues. Multi-tissue eQTL analysis has the potential to improve the findings
of single tissue analyses by borrowing strength across tissues, and to address fundamental biological
questions about the nature and source of variation between tissues. An important feature of multiple tissue
studies is that a SNP may be associated with the expression of a gene in some tissues, but not in others.
Thus a full multi-tissue analysis must identify complex patterns of association across multiple tissues.

Until recently, understanding of multi-tissue eQTL relationships was limited by a shortage of true
multi-tissue data sets, requiring the assimilation of data or results from different studies involving distinct
populations, measurement platforms, and analysis protocols. In contrast, the GTEx initiative (The GTEx
Consortium, 2015) and related projects are currently generating genetic data from dozens of tissues in
several hundred individuals, greatly expanding our potential understanding of eQTLs across multiple
tissues. The size and complexity of these emerging multi-tissue data sets have created the need to expand
existing statistical tools for eQTL analysis.

In this article, we introduce and study a hierarchical Bayesian model for the simultaneous analysis of
eQTL in multiple tissues. We particularly focus on cis-eQTL, where a SNP is located near the transcription
start site of a gene. We call the method MT-eQTL (MT stands for multi-tissue). The dimension of the MT-
eQTL model is equal to the number of tissues. In this article, we primarily consider a moderate dimension,
typically between 1 and 10. Importantly, we do not seek to model the full expression and genotype data,
but focus instead on the vector z of Fisher transformed correlations between expression and genotype
across tissues. Figure 1b (upper panel) shows a density scatter plot of the z-statistics for the lung and
thyroid data from GTEx pilot data freeze as reported by The GTEx Consortium (2015). The lower panel
illustrates the results of the MT-eQTL model: z pairs close to the origin for which no eQTL are detected
have been removed, resulting in the central white region; detected eQTL are colored according to whether
an eQTL is detected in both tissues (light gray points) or a single tissue (dark gray and black points).
Our model explicitly captures patterns of variation in the presence or absence of eQTL, as well as the
heterogeneity of effect sizes across tissues.

The contribution of the article is 5-fold: (i) introduction of a novel hierarchical Bayesian model for
multi-tissue eQTL analysis; (ii) development of an efficient EM algorithm for estimating the parameters
of the model; (iii) analysis of the properties of the model; (iv) rigorous theoretical arguments showing
that model-based testing procedures control FDR under realistic assumptions; (v) applications to the
GTEx data.

1.1. Related work

Most existing multi-tissue analyses extract eQTL individually from each tissue and then apply post hoc
procedures to assess commonality and specificity (Dimas and others, 2009; Fu and others, 2012; Nica and
others, 2011; Brown and others, 2013). Recently, several joint analysis approaches were proposed. Gerrits
and others (2009) used an ANOVA model to study the genotype effect on a transcript across several cell
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Fig. 1. (a) Illustration of the typical data format with two tissues. Genotype data G is available for m SNPs and each of
n samples. Expression measurements are available for p genes; sample sets for different tissues may not be the same.
(b) z-statistics for lung and thyroid: density plot for all local gene–SNP pairs (top), and scatter plot for significant local
gene–SNP pairs with tissue specificity by gray scale (bottom). The gene–SNP pairs deemed insignificant are omitted,
leading to the white space at the center of the plot. The remaining points are colored according to their assessed tissue
specificity: dark gray points correspond to the Lung-specific eQTL; black points correspond to the Thyroid-specific
eQTL; light gray points correspond to the cross-tissue eQTL.

types. Petretto and others (2010) used a sparse Bayesian multivariate regression model to identify eQTL
at multiple loci for same transcripts in many tissues. More recently, Flutre and others (2013) developed a
Bayesian model and a permutation-based approach to identify eQTL in multiple tissues. The computation
is prohibitive for a moderate number of tissues and a large number of gene–SNP pairs. Sul and others
(2013) proposed a “Meta-Tissue" method that combines linear mixed models with meta-analysis. It focuses
on one gene–SNP pair at a time. However, the method cannot borrow strength across gene–SNP pairs for
eQTL detection, or provide global parameter estimates to characterize eQTL patterns.

In the literature, eQTL analyses are generally divided into two categories: gene-level analysis and SNP-
level analysis. The former focuses on the identification of eQTL genes, typically by averaging evidence
over all candidate SNPs. The latter treats all gene–SNP pairs equally and aims at identifying significantly
associated pairs. Both Gerrits and others (2009) and Sul and others (2013) studied eQTL at the SNP
level while Petretto and others (2010) and Flutre and others (2013) are gene-level studies. Gene-level
analysis tries to address linkage disequilibrium by assuming there is at most one causal SNP for each
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gene. However, it cannot provide a list of candidate SNP loci which are potential eQTL for a gene. In
this article, we shall focus on the SNP level study, providing a complementary view of the problem. We
will also address the computational issue and the lack-of-power concern by exploiting an empirical Bayes
approach.

2. THE MT-EQTL MODEL

2.1. Format of multi-tissue eQTL data

The general data format for the multi-tissue eQTL problem is as follows. For each of n donors we have
full genotype information, and measurements of gene expression in at least one of K tissues. Let G be an
m × n matrix containing the measured genotype of each donor in the study at m SNPs. The entries take
values 0, 1, and 2, typically coded as the number of minor allele variants. Each column of G corresponds
to a donor, and each row corresponds to a SNP. The measured transcript levels for tissue k are contained
in a p × nk matrix Xk , where p is the number of genes, and nk ≤ n is the number of donors for tissue k .
The number of donors nk can vary widely among tissues, and even if two tissues have similar numbers of
samples, they may have few common donors. The data available for the purposes of multi-tissue eQTL
analysis has the form (G, X1, . . . , XK). Figure 1a gives an illustration of the typical data format with two
tissues.

In most cases, eQTL analysis is preceded by several preprocessing steps and covariate adjustment.
Covariate adjustment is necessary because genotype and expression data usually contain confounding
factors. Some confounders, such as gender, are observed, while others are of unknown technical or
biological origin. To identify the unknown confounding factors, most studies use principal components,
surrogate variables (Leek and Storey, 2007), or PEER factors (Stegle and others, 2012) as covariates. In
Section 4.1, we shall discuss the preprocessing procedure of the GTEx data. For now, we just assume
that the expression data and genotype data have been appropriately residualized for confounders, so the
comparison of these residualized quantities are partial correlations adjusted for covariates.

2.2. Multivariate z-statistic from single tissue correlations

Denote a gene by i ∈ {1, . . . , p} and a SNP by j ∈ {1, . . . , m}. We focus on a subset � of the full index
set {1, . . . , p} × {1, . . . , m} that consists of pairs (i, j) such that SNP j is located within a fixed distance
(usually 100 Kilobases or 1 Megabase) of the transcription start site of gene i.

Let λ = (i, j) be a gene-SNP pair of interest. Let rλk and ρλk denote, respectively, the sample and
population correlation of transcript i and SNP j in tissue k . We use the Pearson product-moment correlation
for several reasons: (i) with proper transformation of transcript data, the sample correlation has a known,
normal distribution (Winterbottom, 1979), which is the basis of the proposed multi-tissue model; (ii) the
Pearson correlation has close connection with the regression coefficient in a simple linear model relating
transcript abundance and genotype (the foundation of most single-tissue eQTL studies). Note that the
sample correlation rλk depends only on the nk measurements from donors of tissue k . The vector of
correlations rλ = (rλ1, . . . , rλK) captures the association between the expression of transcript i and the
value of genotype j in K tissues. Relationships between different tissues will be reflected in correlations
between the entries of rλ. These features make rλ a natural starting point for a multi-tissue eQTL model.

We build a multivariate model for the correlation vector rλ. Let h(rλ) = (
h(rλ1), . . . , h(rλK)

)
be the

vector obtained by applying the Fisher transformation h(r) = 1
2 log

(
1+r
1−r

)
to each component of rλ. Let

d1/2 := (
√

d1 − 3, . . . ,
√

dK − 3) be a scaling vector, where dk is the degrees of freedom for Xk and G,
equal to nk minus the number of covariates used to correct genotype and expression for samples in tissue
k . Finally, define the vector zλ = d1/2 · h(rλ) where u · v denotes the Hadamard (entry-wise) product of
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vectors u and v. Let Zλ denote the random vector for zλ. If we assume that the expression measurements Xk

are approximately normal, standard arguments for the Fisher transformation (Winterbottom, 1979) imply
that h(rλk) is approximately normal with mean h(ρλk) and variance (dk − 3)−1. By a routine multivariate
extension of this fact, Zλ is approximately normally distributed with mean μλ = d−1/2·h(ρλ). The variance
stabilizing property of the Fisher transformation and our choice of scaling ensures that the variance of
each entry Zλk of Zλ is close to one, regardless of ρλ. In particular, if the true correlation ρλk between
transcript i and SNP j for tissue k is zero, then Zλk is approximately standard normal. Thus the k-th entry
of the observed vector zλ is a z-statistic for testing ρλk = 0 versus ρλk �= 0.

The use of z-statistics greatly reduces the data complexity and magnitude, without losing much infor-
mation regarding gene-SNP associations. It facilitates statistical modeling and computation. Importantly,
the components of Zλ are not independent due to the correlation of effect sizes and sample overlaps in
different tissues. Capturing this dependence is one of the key features of the MT-eQTL model, which is
described in detail below.

2.3. Hierarchical model

Let λ = (i, j) be a gene–SNP pair in �. MT-eQTL is a multivariate, hierarchical Bayesian model for the
random vector Zλ. In detail, we assume that

Zλ | μλ ∼ NK (μλ, �) , (2.1)

μλ = �λ · αλ, (2.2)

�λ ∼ p on {0, 1}K , (2.3)

αλ ∼ NK(μ0, �), independent of �λ. (2.4)

We briefly explain the rationale behind the model setup. The first relation is a consequence of the Fisher
transformation, where μλ denotes the true effect sizes of the gene–SNP pair λ across the K tissues. The
K ×K covariance matrix � has diagonal values 1; its off-diagonal values capture the correlations between
any two tissues arising from the underlying sampling process. In practice, the off-diagonal values are
typically weakly positive due to overlapping donors for different tissues. Since the true effect sizes are
unknown in practice, in (2.2), we build a hierarchical Bayesian model for μλ based on two assumptions:
when the SNP has no effect on the gene in a tissue, the true effect size is 0; when the SNP regulates the
gene in a tissue, the true effect size follows a random distribution. Thus μλ is represented as a Hadamard
product of two random vectors, �λ and αλ.

The random vector �λ is a configuration vector for the gene–SNP pair λ, indicating whether there is
an eQTL in each of the K tissues. As in (2.3), the prior distribution of �λ is a multinomial distribution
with p being the probability mass function. The multinomial distribution has 2K components, each being
a length-K vector of 0′s and 1′s. In particular, �λ = 0 indicates there is no eQTL in any tissue for the
gene–SNP pair λ, and �λ = 1 indicates there are eQTL in all tissues for this particular gene–SNP pair.
The random vector αλ is an eQTL effect size vector for the gene–SNP pair λ, capturing the true effect size
in each tissue if there is an eQTL. In (2.4), we give αλ a Gaussian prior, with mean μ0 and covariance
�. The mean parameter μ0 is a length-K vector capturing the average eQTL effect sizes in all tissues,
and the K × K matrix � represents the covariance structure of eQTL effect sizes across multiple tissues.
The diagonal values indicate the variation of effect sizes in different tissues; and the off-diagonal values,
typically strongly positive, reflect the relations of effect sizes between tissues.

In the model, there are four major parameters, �, p, μ0 and �. The parameters characterize multi-
tissue effect sizes for all gene–SNP pairs, and carry important biological interpretations. We will exploit
an empirical Bayes approach to estimate all parameters from data.
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2.4. Mixture model and estimation

The hierarchical model (2.1)–(2.4) describing the distribution of Zλ is fully specified by θ = (μ0, �, �, p),
which consists of 2K + K2 + K − 1 real-valued parameters. Estimation of, and inference from, the
hierarchical model is based on an equivalent mixture representation.

If U is distributed as NK(μ, �) and γ is a fixed vector in {0, 1}K , then one may readily verify that the
entrywise product U · γ is distributed as NK

(
μ · γ , � · γ γ T

)
. A straightforward argument then shows that

the hierarchical model (2.1)–(2.4) is equivalent to a mixture model

Zλ ∼
∑

γ∈{0,1}K
pγ NK

(
μ0 · γ , � + � · γ γ T

)
. (2.5)

The mixture model is readily interpretable. Each component of the model corresponds to a unique config-
uration γ , or equivalently, a unique pattern of tissue specificity. The model component corresponding to
γ = 0 represents the case in which there are no eQTL in any tissue, and has associated (null) distribution
NK(0, �). The model component corresponding to γ = 1 represents the case in which there are eQTL
in every tissue, and has associated distribution NK(μ0, � + �). Other values of γ represent intermediate
cases in which there are eQTL in some tissues (those with γk = 1) and not in others (those with γk = 0).

We adopt an empirical Bayes approach, estimating the model parameters θ = (μ0, �, �, p) from the
observed z-statistics {zλ : λ ∈ �} by maximizing the likelihood derived from (2.5). Beginning with the
work of Newton and others (2001) and Efron and others (2001), empirical Bayes approaches have been
applied to hierarchical models in a number of genetic applications, most notably the study of differential
expression and co-expression in gene expression microarrays (Newton and others, 2004; Smyth and
others, 2004; Efron, 2008; Dawson and Kendziorski, 2012).

Directly maximizing the joint log likelihood of the model (2.5) across gene–SNP pairs is computation-
ally intractable. On the one hand, observations for different gene–SNP pairs may be correlated, as each
gene may contain multiple SNPs and neighboring SNPs may have relatively strong linkage disequilibrium.
On the other hand, the likelihood function for each gene–SNP pair has 2K components, each corresponding
to a weighted multivariate Gaussian likelihood function with overlapping model parameters. Note that the
parameters in the model (2.5) determine, and are determined by, the marginal distribution of the vectors
Zλ, and do not depend on their joint distribution. We address the issue of correlated observations by
maximizing a marginal composite likelihood, which is defined as the product of the marginal likelihoods
of all considered gene–SNP pairs. As such, it does not attempt to capture correlation between different
gene–SNP pairs. For typical eQTL analyses, in which the number of gene–SNP pairs is large and average
pairwise correlations are low, we expect the use of marginal composite likelihood estimation has little
effect on statistical efficiency.

To address the difficulty of parameter estimation, we exploit an EM algorithm by treating the under-
lying configuration vector for each gene–SNP pair as a latent variable. As a result, the estimation of the
probability mass function p can be separated from the estimation of μ0, �, and �. The optimization
with respect to p has a closed-form solution in each iteration. Furthermore, in cis-eQTL analysis, the
null configuration γ = 0 and the full alternative configuration γ = 1 together usually account for the
majority of the prior weight. When estimating μ0, �, and �, if we only focus on the log likelihood terms
corresponding to these two configurations, each parameter has an explicit estimate. As such, we use a
modified EM algorithm with the two-term approximation, which greatly reduces the computational cost.
Simulation studies show that such approximation has little affect on the accuracy of the estimation. More
details of the model fitting algorithm can be found in Section 1 of Supplementary material available at
Biostatistics online.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx048#supplementary-data
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2.5. Marginal compatibility

In eQTL studies with multiple tissues, it is desirable if the model for a subset of tissues is compatible
with the model for a superset of tissues in the sense that the former can be obtained from the latter via
marginalization. We refer to this property as marginal compatibility. From the model interpretation point
of view, the property guarantees that parameters (e.g. prior probabilities of different eQTL configurations,
covariance of effect sizes in different tissues) corresponding to a set of tissues do not depend on whether
we observe just those tissues or a superset of the tissues. It is crucial in multi-tissue eQTL studies as we
essentially always analyze a set of some hypothetical superset of tissues that we do not observe. From
the model fitting point of view, with the property, we only need to fit the full model with all available
tissues once. The model for any subset of tissues can be obtained directly through marginalization without
refitting.

To elaborate, let S ⊆ {1, . . . , K} be a subset of r tissues, with 1 ≤ r ≤ K . The mixture model (2.5) has
two important compatibility properties: (i) the marginalization of the full model to S has the same general
form as the model derived from S alone; and (ii) the parameters of the marginal model are obtained
by restricting the parameters of the full model to S. The following definition and lemma makes these
statements precise. See Section 2 of Supplementary material available at Biostatistics online for a proof
of the lemma.

DEFINITION: Let S ⊆ {1, . . . , K}with cardinality |S| = r. For each vector u ∈ R
K let uS = (uk : k ∈ S) ∈ R

r

be the vector obtained by restricting u to the entries in S. Similarly, for each matrix A ∈ R
K×K let

AS = {akl : k , l ∈ S} be the r × r matrix obtained by retaining only the rows and columns with indices in
S. Note that if A is non-negative (positive) definite, then AS is non-negative (positive) definite as well.

LEMMA 2.1 If Z ∈ R
K be a random vector having the mixture distribution (2.5), then

ZS ∼
∑

ζ∈{0,1}r
pS,ζ Nr

(
μ0S · ζ , �S + �S · ζζ T

)
,

where (pS,0, . . . , pS,1) is the probability mass function on {0, 1}r obtained by marginalizing p to S, i.e.
pS,ζ = ∑

γ :γ S =ζ pγ .

3. MULTI-TISSUE EQTL INFERENCE

Once fit, the mixture model (2.5) provides the basis for inference about eQTL across tissues. When the
number of gene–SNP pairs is large, as in the GTEx example in Section 4, θ can be accurately estimated
from data. At the level of posterior inference for gene–SNP pairs, we therefore regard θ as fixed and
known. For data sets with small sample sizes, approximate standard errors for the components of θ can
be obtained from the likelihood via the observed information matrix.

Denote the density of the distribution NK

(
μ0 · γ , � + � · γ γ T

)
associated with the configuration γ ∈

{0, 1}K by fγ . Thus under the mixture model (2.5) the random vector Zλ has density f (z) = ∑
γ pγ fγ (z),

z ∈ R
K . In view of this expression and the hierarchical model (2.1)–(2.4), one may regard Zλ as one

element of a jointly distributed pair (�λ, Zλ), where

�λ ∼ p and Zλ | �λ ∼ fγ . (3.1)

We carry out multi-tissue eQTL analysis based on the posterior distribution of the configuration �λ given
the observed vector of z-statistics zλ. Two inference problems are of central interest: one is eQTL detection,
in all tissues and in a subset of tissues; the other is the assessment of eQTL tissue specificity given eQTL
is present in at least one tissue.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx048#supplementary-data
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3.1. Detection of eQTL using the local false discovery rate

A primary goal of multi-tissue analysis is testing each transcript–SNP pair for the presence of an eQTL
in at least one tissue. This can be formulated as a multiple testing problem:

H0,λ : �λ = 0 versus H1,λ : �λ �= 0 for λ ∈ �. (3.2)

For λ = (i, j) ∈ � the null hypothesis H0,λ asserts that SNP j is not an eQTL for transcript i in any tissue,
while the alternative H1,λ asserts that there is an eQTL between i and j in at least one tissue.

The null hypotheses can also be expressed in the form H0,λ : Zλ ∼ NK

(
0, �

)
. One may derive a

p-value for each λ directly from the null distribution, and convert it to control the overall false discovery
rate (FDR) (cf. Benjamini and Hochberg, 1995; Storey and Tibshirani, 2003). However, this procedure
ignores relevant information about the distribution of Zλ under the alternative that is contained in the
mixture model.

We address the multiple testing problem (3.2) using the local FDR introduced by Efron and others
(2001) in the context of an empirical Bayes analysis of differential expression in microarrays. Other
applications of the local FDR to genomic problems can be found in Newton and others (2004), Efron
(2007), and Efron (2008). To simplify notation, let (�, Z) denote a generic pair distributed as (�λ, Zλ).

DEFINITION: The local FDR of an observed z-statistic vector z under the model (2.5) is defined by

η(z) := P(� = 0 | Z = z) = p0f0(z)
f (z)

. (3.3)

Let α ∈ (0, 1) be a target FDR for the multiple testing problem (3.2). Vectors z for which the local false
discovery rate η(z) is small provide evidence for the alternative � �= 0. We carry out testing of gene–SNP
pairs using a step-up procedure applied to the running average of the ordered local false discover rates
(Newton and others, 2004; Cai and Sun, 2009).
Local FDR Step-Up Procedure: Target FDR = α

1. Given: Observed z-statistic vectors {zλ : λ ∈ �}.
2. Enumerate the elements of � as λ1, . . . , λN so that η(zλ1) ≤ · · · ≤ η(zλN ).
3. Reject hypotheses H0,λ1 , . . . , H0,λL , where L is the largest integer such that

L−1
∑L

l=1 η(zλl ) ≤ α.

3.2. Theoretical justification of the local FDR approach

In order to better understand the local FDR step-up procedure, and to assess its performance, it is useful
to express the procedure in an equivalent form. As noted by Efron and others (2001), the false discovery
rate associated with a rejection region R ⊆ R

k for the multiple testing problem (3.2) is given by P(� =
0 | Z ∈ R). They establish the following elementary fact, which exhibits a connection between FDR and
local FDR.

PROPOSITION 3.1 If R ⊆ R
k is such that P(Z ∈ R) > 0, then P(� = 0 | Z ∈ R) = E(η(Z) | Z ∈ R).

As noted above, vectors z for which η(z) is small provide evidence against � = 0, so it is natural to
reject H0,λ when η(zλ) falls below an appropriate threshold. Consider rejection regions of the form R(t) =
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{z : η(z) ≤ t} for t ∈ (0, 1). Given a target FDR α, we wish to find t such that α = P(� = 0 | Z ∈ R(t)).
By Proposition 3.1 this is equivalent to finding t ∈ (0, 1) such that F(t) = α, where

F(t) := E(η(Z) | η(Z) ≤ t) = E[η(Z) I(η(Z) ≤ t)]
P(η(Z) ≤ t)

.

The empirical analog of F(t) is the ratio

F̂(t) =
∑

λ∈� η(zλ) I(η(zλ) ≤ t)∑
λ∈� I(η(zλ) ≤ t)

,

which depends only on η(·) and the observed vectors {zλ}. The function F(t) is strictly increasing and
continuous (see Section 3.1 of Supplementary material available at Biostatistics online for proof). Thus if
F(t) and F̂(t) were equal, the local FDR step-up procedure and the idealized threshold procedure would
coincide. In general, F(t) and F̂(t) will be different, but multiplying the numerator and denominator
of F̂(t) by |�|−1 it is evident that the two functions will be close if |�| is large and the dependence
among the observed z-vectors is not extreme. Asymptotic control of the FDR by the step-up procedure
is established in Theorem 3.2 below. The proof can be found in Section 3 of Supplementary material
available at Biostatistics online.

Let �∗ ⊆ N × N be an infinite index set, and let �1, �2, . . . ⊆ �∗ be a sequence of finite subsets
of �∗. Let α ∈ (0, 1) be a target FDR that is less than the maximum value of η(z). For each n ≥ 1 let
{(�λ, Zλ) : λ ∈ �n} be jointly distributed pairs having the same distribution as (�, Z). We wish to assess the
performance of the local FDR step-up procedure, which rejects H0,λ whenη(Zλ) ≤ θ̂n = sup{t : F̂n(t) ≤ α}
where

F̂n(t) =
∑

λ∈�n
η(Zλ) I(η(Zλ) ≤ t)∑

λ∈�n
I(η(Zλ) ≤ t)

0 < t < 1.

The number of false discoveries and total discoveries for the procedure are equal to Mn = ∑
λ∈�n

I(�λ =
0) I(η(Zλ) ≤ θ̂n) and Nn = ∑

λ∈�n
I(η(Zλ) ≤ θ̂n).

THEOREM 3.2 Let (�, Z) have joint distribution given by Model (3.1) with parameters (μ0, �, �, p).
Assume that � is positive definite and that the diagonal entries of � are positive. If F̂n(t) → F(t) in
probability for each t ∈ (0, 1) then EMn/ENn → α as n → ∞.

The ratio of expectations EMn/ENn is sometimes referred to as the marginal false discovery rate
(m-FDR). Cai and Sun (2009) established optimality properties and m-FDR control of several local FDR
based testing procedures, including the step-up procedure used here, under independence and monotonicity
assumptions. However, these assumptions are typically violated in the setting of interest to us here. The
monotonicity assumption, which in the present case involves the relationship between the distributions
of the local FDR η(Zλ) under H0,λ and H1,λ, does not appear to hold. Moreover, in eQTL data there are
typically significant correlations between nearby SNPs (linkage disequilibrium), leading to to complex,
non-stationary correlations between the gene-SNP based vectors Zλ.

Theorem 3.2 makes no explicit assumptions on the joint distribution of the vectors Zλ; instead it relies
on the relatively weak condition that F̂n(t) → F(t) in probability. This condition holds, for example,
under the (very mild) assumption that the variance of the numerator and the denominator of F̂n(t) are
of order o(|�n|2). The variance decay assumption concerns the family of all gene–SNP pairs, across
all measured genes instead of a single gene. Although the SNPs co-located with a particular gene may

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx048#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx048#supplementary-data
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be highly correlated, correlations are generally weak, or zero, across distant genes. These distal pairs
dominate the index set �n, and so the variance decay assumption should be satisfied in any cis-eQTL
analysis involving a large number of genes. When the assumption holds, the conclusion of the theorem
may be strengthened to Mn/Nn = α + oP(1).

3.3. Analysis for subsets of tissues

In some problems, a subset S ⊆ {1, . . . , K} of the available tissues may be of primary interest. The multiple
testing framework described above can be adapted to the tissues in S in two primary ways. The first is to
construct a model based only on the tissues in S and use the resulting local FDR to identify multi-tissue
eQTL. However, this approach does not make use of the available data from tissues outside S and as such it
does not borrow strength from commonalities among tissues. As an alternative, one may use the marginal
local FDR for S, defined by

ηS(z) := P(�S = 0 | Z = z) =
∑

γ :γ S =0 pγ fγ (z)

f (z)
. (3.4)

Here �S and γ S denote, respectively, the restriction of the vectors � and γ to the tissues in S, while pγ , fγ
and f correspond to the full model (2.5). We emphasize that the marginal local FDR ηS(z) is a function of
the complete vector of z-statistics, and therefore depends on the fitted model for the full set of tissues. In
Section 4.3, we have shown that the marginal local FDR derived from the full data set is uniformly more
powerful than the local FDR derived from a subset of the data in detecting eQTLs in a subset of tissues.
More numerical results can be found in Section 4.3 of Supplementary material available at Biostatistics
online.

3.4. Assessments of tissue specificity

Testing gene–SNP pairs is typically the first step in multi-tissue eQTL analysis. Rejection of H0,λ is based
on evidence that λ is an eQTL in at least one of the available tissues. More detailed statements about the
pattern of eQTL across tissues can be made using information about the full configuration vector �λ. If
the hypothesis H0,λ is rejected, a natural estimate of �λ is the maximum a posteriori (MAP) configuration
defined by

γ̂ λ = arg max
γ∈{0,1}K \0

p(γ | zλ) = arg max
γ∈{0,1}K \0

pγ fγ (zλ).

As an alternative, one may compute the marginal posterior probability of an eQTL in each tissue k ,
namely p(�λ,k = 1|zλ) = ∑

γ :γ k =1
p(γ |zλ) = ∑

γ :γ k =1
pγ fγ (zλ)/f (zλ), and declare an eQTL in tissue k

if this marginal probability exceeds a predefined threshold. Both MAP and thresholding of the marginal
posterior extend to subsets of tissues.

3.5. Testing a family of configurations

The goal of the multiple testing problem (3.2) is to determine whether the configuration �λ of a gene–
SNP pair is equal to 0 or belongs to the complementary set {0, 1}K \ {0}. More generally, one may test
membership of �λ in any fixed subset T ⊆ {0, 1}K of configurations. The associated testing problem can
be written as

HT
0,λ : �λ ∈ T c versus HT

1,λ : �λ ∈ T , λ ∈ �. (3.5)

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx048#supplementary-data
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A test statistic for (3.5) can be obtained by marginalizing the full local FDR (3.3) as

ηT (z) := P(� ∈ T c | Z = z) =
∑

γ :γ∈T c pγ fγ (z)

f (z)
.

The local FDR step-up procedure can then be applied to the values {ηT (zλ)} in order to control the overall
FDR in (3.5).

4. GTEX DATA ANALYSIS

In this section, we apply the MT-eQTL model and inference procedures to the GTEx pilot data freeze (The
GTEx Consortium, 2015).A pointer to the publicly available data is at http://www.broadinstitute.org/gtex/.

4.1. Data preprocessing

We focus on nine primary tissues having between 80 and 160 samples: adipose, artery, blood, heart, lung,
muscle, nerve, skin, and thyroid. In what follows, tissues will be ordered alphabetically. In total, there are
175 genotyped individuals with expression data in at least one of these tissues (the sample information
can be found in Figure S1 of Supplementary material available at Biostatistics online).

Each entry of the genotype data matrix G records the number of minor allele variants of one donor at
one SNP locus. Any missing value at a locus was imputed by the corresponding row average. Loci with
minor allele frequency less than 5% in all genotyped individuals were discarded, resulting in slightly less
than 7 million SNPs. The expression level for each gene in each tissue and sample is measured by the
number of mapped reads per kilobase per million reads (RPKM). Genes having fewer than 10 samples with
RPKM greater than 0.1 in some tissue were discarded, leaving slightly more than 20 000 genes. To improve
robustness, the gene expression values across samples in a tissue were inverse quantile normalized.

Fifteen PEER factors were identified from the expression data from each tissue, and three principal
components were identified from the genotype data. With an additional covariate for gender, we obtained
nineteen covariates in total. For each tissue, the confounding effects were adjusted by residualizing the
expression data and the corresponding genotype data on nineteen covariates respectively. Consequently,
the degree of freedom for each tissue is equal to the sample size in that tissue minus 19.

4.2. Model fit

We focus on testing of cis-eQTL, restricting our attention to SNPs that lie within 100 kilobases of the
transcription start site of a gene, yielding roughly 10 million gene–SNP pairs of interest. Subsequently,
the full 9D MT-eQTL model was fit using the modified EM algorithm described in Section 2.4 with the
parameter μ0 set to zero. Fitting the full model took less than 24 hours, and required less than 8 gigabytes
of RAM, on a desktop computer with 2.93GHz Intel Xeon CPU. A comparison of timing results for fitting
sub-models of different dimensions between our method and the Meta-Tissue method (Sul and others,
2013) can be found in Section 5 of Supplementary material available at Biostatistics online.

In what follows we denote the estimated model parameters by θ = (�, �, p). Values of the estimated
parameters can be found in Section 5 of Supplementary material available at Biostatistics online. The
off-diagonal values of � are all positive but small in scale (between 0.07 and 0.2), suggesting that donor
overlap among tissues and other features of the experimental design have a weak but positive effect on
the correlations of effect sizes across tissues. The diagonal values of � indicate modest heterogeneity of
effect size variation across tissues. The off-diagonal values of � reflect positive, often large, correlation
of effect sizes arising from commonalities among tissues.

http://www.broadinstitute.org/gtex/
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx048#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx048#supplementary-data
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Fig. 2. Summary of the estimated eQTL probabilities from the cis-eQTL analysis of the GTEx data. Each circle
represents the log (base 10) of the probability of a gene–SNP pair having eQTL in k out of 9 tissues, where k ranges
from 0 to 9.

The fitted probability mass function p assigns probabilities to each of the 29 possible eQTL configura-
tions. The most likely configuration is 0 with p0 = 0.6808, indicating that about 68% of the gene–SNP pairs
do not have an eQTL in any tissue. This is consistent with previous studies (Wright and others, 2014).
To summarize p, we sum up the prior probabilities of configurations with the same Hamming weight
(defined as the number of 1s in a length-9 binary configuration sequence). This provides an overview of
the overall probability of seeing an cis-eQTL in k tissues, where k ranges from 0 to 9. We note, however,
that the probabilities for configurations with the same Hamming weight may be quite different. The total
prior probabilities are shown in Figure 2 in the log scale. The U-shape curve indicates that for cis-eQTL
analysis, the most likely configurations are eQTL in no tissue, in a single tissue, or in all tissues, and the
least likely configurations are those with eQTL in roughly half the tissues. We remark that the pattern may
only apply to cis-eQTL but not to trans-eQTL.

4.3. Results

Applied to the full 9D model with FDR threshold α = 0.05, the local FDR step-up procedure identified
roughly 1.28 million gene–SNP pairs (roughly 12% of the total) with an eQTL in at least one tissue.
We subsequently applied the MAP rule to each significant discovery in order to assess tissue specificity.
To validate the discoveries, we also applied the Meta-Tissue method to the same data set. Meta-Tissue
produces a p value for each gene–SNP pair for testing the existence of eQTL in any tissue. We further
adjusted the p values (Benjamini and Yekutieli, 2001) to control the FDR. About 80% of the MT-eQTL
discoveries (i.e. 1.03 million) are replicated in Meta-Tissue, providing a highly concordant result. We
further investigated the unique discoveries of each method (about 250 thousand from MT-eQTL, and 177
thousand from Meta-Tissue). The left panel of Figure 3 shows the Meta-Tissue p values of the unique
discoveries from MT-eQTL. Small p values are enriched, indicating the unique MT-eQTL discoveries are
well supported by Meta-Tissue. The right panel of Figure 3 presents the MT-eQTL local FDRs of the
unique discoveries from Meta-Tissue. The unique Meta-Tissue discoveries are only moderately supported
by MT-eQTL. The MT-eQTL provides a systematic way to leverage information across gene–SNP pairs,
and offers explicit estimates of model parameters with critical biological interpretation.
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Fig. 3. The left panel is the histogram of the Meta-Tissue p values for the 250 thousand unique discoveries from
MT-eQTL, from the GTEx analysis of eQTL in at least one tissue; the right panel is the histogram of the MT-eQTL
local FDRs for the 177 thousand unique discoveries in Meta-Tissue.

A unique advantage of MT-eQTL over Meta-Tissue is the ease of eQTL tissue specificity assessment.
To facilitate the visualization of eQTL discoveries, let us focus on a two-tissue MT-eQTL model. As an
example, Figure 1b shows scatter plots of z-statistics for lung and thyroid. The upper panel shows the
density plot of the raw z-statistics (MT-eQTL input); the lower panel only shows the discoveries with
eQTL in at least one of the tissues (MT-eQTL output). The z-statistic vectors deemed insignificant are
omitted, leading to the white space at the center of the plot. The remaining points are colored according to
their assessed tissue specificity based on the MAP approach: dark gray represents the configuration (1, 0)

in which there is an eQTL in tissue 1 but not tissue 2; black represents the configuration (0, 1) in which
there is an eQTL in tissue 2 but not tissue 1; and light gray represents the configuration (1, 1) in which
there is an eQTL in both tissues. The overall shape of each plot is a tilted ellipse, with extreme values
along the main diagonal and, to a lesser extent, along the coordinate axes. As expected, significant points
close to one of the coordinate axes show evidence for an eQTL in a single tissue (tissue specific eQTL),
while those along the positive diagonal show evidence for eQTL in both tissues (common eQTL). We
remark that this analysis easily extends to an arbitrary number of tissues.

MT-eQTL also effectively leverages information in multiple tissues to improve eQTL detection in a
single or a subset of tissues. To investigate how the use of auxiliary tissues increases statistical power,
we studied a sequence of nested MT-eQTL models and focused on eQTL discoveries in a single tissue.
For each of the nine tissues, we first fitted the 1-dimensional model with just the primary tissue and then
added other tissues one by one alphabetically to get a sequence of super-models. For each considered
model, we applied the adaptive thresholding procedure to the marginal local FDR for the primary tissue,
and recorded the number of significant discoveries in that tissue. Figure 4 shows the number of significant
discoveries versus the dimension of a model. Each curve corresponds to a case where one of the nine
tissues is set to be the primary tissue. The number of eQTL discoveries in each primary tissue increases
with the dimension of a model.

5. CONCLUSION

In this article, we proposed a hierarchical Bayesian model, MT-eQTL, for multi-tissue eQTL analysis. We
adopted an empirical Bayes approach to estimate the model and to perform inferences. We also proved
a substantial theoretical property to support the method in a realistic setting. The proposed methodology
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Fig. 4. The number of significant discoveries in a primary tissue versus the dimension of a MT-eQTL model. Each
curve corresponds to a case where one of the nine tissues is set to be the primary tissue. The FDR threshold is fixed
to be 0.05.

greatly enhances classical single-tissue eQTL analysis methods by accounting for the information shared
among tissues.

There are a number of interesting directions for future research. Perhaps the most important is to
extend the proposed framework to a large number (e.g. K ≥ 10) of tissues. The large tissue setting
poses real challenges as the total number of configurations grows exponentially in the number of tissues,
making the current implementation excessively slow and computationally costly. Another direction is to
relax the assumption that the covariance matrix � in Model (2.5) is constant across gene–SNP pairs.
Different genes may have distinct correlation patterns between tissues, which might warrant the use of
gene-specific covariance matrices in setting where the number of samples is large. Lastly, it is of interest
to extend the method to the identification of trans-eQTLs, which exhibit higher levels of tissue-specificity
than cis-eQTLs (Jo and others, 2016).

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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