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ABSTRACT

Gene function prediction has proven valuable in formulating
testable hypotheses. It is particularly useful for exploring
biological processes that are experimentally intractable, such
as meiotic initiation and progression in the human fetal ovary. In
this study, we developed the first functional gene network for
the human fetal ovary, HFOnet, by probabilistically integrating
multiple genomic features using a naı̈ve Bayesian model. We
demonstrated that this network could accurately recapture
known functional connections between genes, as well as predict
new connections. Our findings suggest that known meiosis-
specific genes (i.e., with functions only in meiotic processes in
the germ cells) make either no or a few functional connections
but are highly clustered with neighbor genes. In contrast, known
nonspecific meiotic genes (i.e., with functions in both meiotic
and nonmeiotic processes in the germ cells and somatic cells)
exhibit numerous connections but low clustering coefficients,
indicating their role as central modulators of diverse pathways,
including those in meiosis. We also predicted novel genes that
may be involved in meiotic initiation and DNA repair. This
global functional network provides a much-needed framework
for exploring gene functions and pathway components in early
human female meiosis that are difficult to tackle by traditional in
vivo mammalian genetics.

computational prediction, fetus, meiosis, naive Bayesian network,
oocyte development, ovary

INTRODUCTION

Meiosis is a sexual reproduction process that occurs in all
eukaryotes. This program starts with one round of DNA
replication followed by two rounds of cell division (Meiosis I
and Meiosis II) to form haploid gametes. Meiosis I involves the
segregation of homologous chromosomes, whereas Meiosis II
is similar to mitosis with the segregation of sister chromatids
[1, 2].

Human female meiosis is a highly complex process that
takes decades to accomplish [1, 2]. All ovulated eggs initiate
meiosis in the fetal ovary at ;11–12 wk [3]. Oocytes enter
meiotic prophase, and homologous chromosomes synapse and
exchange genetic information (recombination). Oocytes then
become arrested near the end of meiotic prophase (in
dictyotene) before birth [1, 2]. Errors in meiotic initiation,
synapsis, and/or recombination jeopardize the quality and

quantity of oocytes and can lead to infertility, birth defects,
and/or reduced female reproductive span. Indeed, alterations in
maternal meiotic recombination are an important contributor to
both autosomal and sex chromosome trisomies in humans [4].

However, meiotic prophase in female humans is challenging
to study because it takes place in utero, and ovaries from
healthy human fetuses are difficult to obtain. Consequently,
less is known about human female meiosis than male meiosis.
Studies focusing on female meiosis usually apply cytogenetic
approaches to investigate the patterns of meiotic progression
and recombination in oocytes from euploid and aneuploid
fetuses [5–11]. Recent developments in fetal ovary tissue
culture also allow us to explore meiotic progression and the
chromosome pairing process [12, 13].

Mammalian meiotic genes are mainly identified by
laborious procedures such as targeted mutagenesis in mice.
For example, Dazl expression allows germ cells to acquire
meiotic competency [14], and then retinoic acid induces Stra8
expression, which is required for meiotic initiation in the
mouse fetal ovary [15, 16]. Genes involved in chromosome
synapsis and recombination, such as Sycp3, Syce2, Spo11,
Msh4, Mlh1, and Trip13, are essential for germ cell survival
and meiotic progression [2]. Additionally, random chemical
mutagenesis of whole animals and embryonic stem cells has
identified candidate genes required for female meiosis, such as
Mei1 and Ccnb1ip1 (Mei4) [17–19]. The temporal and spatial
dynamics of meiotic gene expression can be further character-
ized in fetal oocytes using immunofluorescence approaches
[20–24].

Despite these discoveries, we still know little of the way in
which genes interact with each other during human female fetal
development and how these interactions lead to differences in
meiotic progression. Microarray approaches provide high
throughput platforms to yield genomewide and unbiased gene
expression measurements and have been used to monitor time-
series expression profiles for the mouse embryonic ovary [25]
and recently for the human fetal ovary [26]. These provide a
valuable resource for probing the pathways and networks that
govern meiotic dynamics in the female. However, the temporal
profiles of gene expression were derived from ovaries that
consist of both germ cells and somatic cells [25, 26]. Although
the dynamic change in transcripts might be driven by germ
cells that undergo meiosis, the contamination by somatic cells
and the mixture of germ cells in different meiotic stages may
confound expression profiles. Moreover, microarray technolo-
gy is only sensitive for detection of transcriptionally regulated
genes.

The establishment of a functional network by integrating
diverse genomic datasets is invaluable to extend our under-
standing of meiotic initiation and progression in the human
fetal ovary. This allows us to extract high-confidence
functional links between genes and predict new genes through
their connections with known meiotic genes. These predictions
can further direct experiments to discover novel meiotic genes.
Genomic feature integration to infer functional network was
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pioneered in the model organism S. cerevisiae [27–32]. The
recent emergence of genomic information in mammals also
allows us to predict gene functions in humans and mice [33–
35]. Clearly, the prediction of gene function is much more
complicated in mammals due to the complex genome
organizations as well as to different developmental stages
and tissue expression. Nevertheless, the integration of diverse
information sources can improve prediction accuracy [30, 32].

In this article, we describe the development of the first
genomewide functional network for the human fetal ovary,
HFOnet, using a naı̈ve Bayesian model to integrate diverse data
types, including gene expression, protein-protein interaction,
disease phenotype, protein domain, phylogeny, and gene
ontology. Genes with similar functions are linked in the
network, and functional modules are further extracted from the
network. Our results show that the probabilistic integration of
heterogeneous data can generate high-confidence measures for
gene connections and improve prediction accuracy. Our
findings suggest that known meiosis-specific genes (i.e., with
functions only in meiotic processes in the germ cells) make few
connections but are highly clustered with neighbors. In
contrast, known nonspecific meiotic genes (i.e., with functions
in both meiotic and nonmeiotic processes in the germ cells and
somatic cells) tend to interact with numerous neighbors and
exhibit low clustering, indicating that they are multi-taskers.
We also predict novel genes that may be involved in meiotic
initiation and DNA repair through their linkages with known
meiotic genes. Our study leads to the detection of human
meiotic pathways, for which a systematic understanding is
currently lacking. Prediction of novel meiotic genes can be
further validated through targeted experimental procedures.

MATERIALS AND METHODS

Gold Standards

We used protein-protein interactions to define positive gold standards for
functionally linked genes. This is a stringent definition, as functionally linked
genes (e.g., enzymes in a metabolic pathway) need not interact physically.
Human protein-protein interactions were collected from five databases: Human
Protein Reference Database [36], Database of Interacting Proteins [37],
Molecular INTeraction database [38], IntAct [39], and BioGrid [40].
Interactions from these databases were either manually or automatically
curated from the literature. To identify interactions specific to the fetal ovary,
we obtained a list of 7996 genes expressed in human fetal ovarian germ cells.
This list was derived from two gene expression annotation databases—Electric
Genetics (egenetics, http://www.egenetics.com) and Genomics Institute of the
Novartis Research Foundation (gnf) Atlas [41]. We retrieved these expression
data from Ensembl BioMart [42]. Thus, our positive gold standards consist of
20 034 pairs, with both genes expressed in human fetal ovarian germ cells
(Table 1).

Negative gold standards are defined as gene pairs in which neither gene is
expressed in the fetal ovary and in which one gene is exclusively expressed at
the cell membrane and the other in the nucleus, as annotated by the Cellular
Component in Gene Ontology (GO) [43]. In making this definition, we assume

proteins that are physically separated are also functionally unrelated. Pairs that
appear in the above five protein-protein interaction databases were further
filtered out, resulting in 4 513 260 negative gold-standard pairs (Table 1).

Genomic Features

Gene expression. Temporal gene expression patterns from normal human
fetal testes and ovaries between 9 and 20 wk of gestation were obtained from
the literature [26]. The Pearson correlation,

rxy ¼

Xn

i¼1

ðxi � xÞðyi � yÞ

ðn� 1Þsxsy
;

was first calculated between males and females for the same gene over the time
course, where x and y are expression data vectors of length n for males and
females, x̄ and ȳ are means, and s

x
and s

y
are standard deviations. Genes

showing differential expression profiles between males and females (r
xy

,
0.75) were kept for further investigation of possible meiotic genes.
Subsequently the Pearson correlation was calculated for pairwise genes in
fetal ovaries over the time course, where x and y are expression data vectors of
length n for two genes. Gene expression profiles from the mouse embryonic
ovary [25] were analyzed in a similar manner to the human data by mapping
orthologs via InParanoid [44]. However, since mouse gene correlations are not
predictive for gold standards, they were not included in the genomic features.

Gene ontology. GO has three subontologies: Biological Process,
Molecular Function, and Cellular Component [43]. For each subontology,
semantic similarity was calculated for gene pairs to represent annotation
similarity between genes [45].

Phylogeny. Genes that are either both present or both absent in different
organisms are likely to possess similar functions. Phylogenetic profiles of genes
in 34 species (including eukaryotes and prokaryotes) were obtained from the
InParanoid database, and conservation was quantified by the fraction of species
in which two genes were either both present or both absent.

Protein domain. Protein domains can function and evolve independently
of the rest of the protein chain. One domain may appear in a variety of
functionally related proteins. The probability of a protein pair sharing at least k
domains was derived from the hypergeometric distribution

pðx � kÞ ¼
Xminðm;nÞ

x¼k

Cðm; xÞCðt � m; n� xÞ=Cðt; nÞ;

where C(j,k) is the combinatorial factor j!/k!(j–k)!, m and n are the number of
domains each protein has, and t is the total number of domains in Pfam-A
families (curated protein domains) from Pfam 23.0 [46]. The –log10(p)
quantifies the protein domain similarity of two proteins.

Online Mendelian Inheritance in Man phenotype. Genes showing
similar disease phenotypes are frequently functionally related. Co-occurrence
of diseases recorded in Online Mendelian Inheritance in Man (OMIM) [47] for
a pair of genes was quantified with a hypergeometric p value as described
above. The –log10(p) quantifies the phenotype similarity of two genes.

Essential genes. Essential genes may imply function in the same pathway
[48]. We considered whether a pair of genes was essential based on two RNAi
studies that identified human essential genes [49, 50]. Gene pairs were
classified as both essential, one essential, or both nonessential.

Construction of HFOnet

A detailed description of naı̈ve Bayesian networks is provided in the
Supplemental Text S1 (all Supplemental Data are available online at www.
biolreprod.org). The six genomic features described above were considered in
our study. They all exhibited high degrees of overlap with the gold standards
(Supplemental Fig. S1) and showed no significant correlation with each other
(Supplemental Table S1). Integrating the six genomic features by a naı̈ve
Bayesian approach yields a joint likelihood ratio (LR), the quantitative
measurement of functional association for gene pairs. Every gene pair in the
human genome is associated with a joint LR. Any gene pairs with a joint LR
greater than a threshold are predicted to be functionally associated genes.
Connecting functionally associated genes forms the HFOnet.

Clique-Finding Algorithm

A clique is a subgraph in which all nodes are connected (Supplemental Text
S2) [51]. A heuristic algorithm was implemented by first considering each node
as a clique of size one. Smaller cliques were merged into larger ones, starting
from the highest weight edge and proceeding until there were no more possible

TABLE 1. Genomic features and gold standards for predicting gene
functional associations in the human fetal ovary.

Parameter No. of genes No. of gene pairs

Genomic features
Gene expression 16 285 132 592 470
GO process 25 597 327 590 406
Phylogeny 17 800 158 411 100
Protein domain 10 317 53 215 086
OMIM phenotype 2278 2 593 503
Essential gene 727 333 943 246

Gold standards
Positive 4606 20 034
Negative 4339 4 513 260

544 ZHENG ET AL.

D
ow

nloaded from
 w

w
w

.biolreprod.org. 



mergers. Two cliques could be merged if each node in one clique was
connected to each node in another clique.

RESULTS

A Probabilistic Functional Network for the Human
Fetal Ovary

Naı̈ve Bayesian networks have been used to identify
protein-protein interactions and gene functional associations
in yeast, mice, and humans, and have the advantage of
combining heterogeneous information and accommodating
missing data (Supplemental Text S1) [29, 32, 33, 35, 48].
We employed a naı̈ve Bayesian approach to construct a
probabilistic functional network for the human fetal ovary

called HFOnet. We assembled six genomic features that are
potentially useful in predicting gene functional associations,
including gene expression [26], GO process [43], phylogeny

[44], protein domain [46], OMIM phenotype [47], and essential
genes [49, 50] (Table 1). The predictive power of each
genomic feature was quantified by the individual LRs (Fig. 1).
GO, protein domain, and OMIM data yielded the highest LR

values. Integrating the six genomic features by naı̈ve Bayesian
approach generates a joint LR, the quantitative measurement of
functional association for gene pairs (Fig. 2). Any possible

combination of gene pairs in the human genome is associated
with a joint LR value. Gene pairs with joint LRs greater than a
threshold are connected to form the HFOnet, with the joint LR

FIG. 1. The predictive power of six geno-
mic features for the functional association of
gene pairs in the human fetal ovary. LR
values represent the predictive power of
each genomic feature and were calculated
based on feature values of gold standards.
For each genomic feature, gene pairs were
grouped according to feature values. A)
Gene coexpression was quantified by cor-
relation coefficients between �1 and 1. B)
GO term similarity in the subontology
Biological Process was quantified by se-
mantic similarity scores ranging from 0 to
10. C) Phylogeny similarity was the fraction
of species in which two genes were either
both present or both absent. D) Protein
domain similarity was quantified by the
–log10(p). Gene pairs were classified into
three groups based on domain similarity
values. E) OMIM phenotype similarity was
quantified by the –log10(p). Gene pairs
were classified into three groups based on
phenotype similarity values. F) Gene pairs
were classified into three groups: both are
essential genes, one is essential, and both
are nonessential.
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as the confidence measurement of functional associations for
gene pairs.

Validation of Functional Links in the HFOnet

We evaluated the functional association of gene pairs in the
HFOnet using precision-coverage curves, which are the
standard for determining classification performance (Fig. 3).
Precision is defined as the number of positive gold standards
divided by the total number of positive and negative gold
standards with LR values above a threshold. A perfect
precision of 1.0 means that every gold standard with the LR
value above the threshold is a positive gold standard. Coverage
is the number of positive gold standards with LRs above the
threshold. A perfect coverage is the total number of positive
gold standards, meaning that all positive gold standards have

LRs above the threshold. The precision-coverage curve is
obtained by using different LRs as the threshold to calculate
precision and coverage values. Ideally, choosing a higher LR
threshold will result in higher precision but lower coverage.
Our results show Bayesian prediction exhibited consistently
higher precision than individual genomic features at the same
coverage, suggesting information integration can improve the
prediction accuracy for the functional relationships between
genes (Fig. 3). Consistent with the LR values (Fig. 1), the best
individual features were protein domain, GO process, and
OMIM phenotype. The predictive power of global gene
expression was low, which is consistent with a previous study
showing that gene expression is one to two orders of magnitude
lower than other features for predicting human protein-protein
interactions [35].

We further validated the functional links in the HFOnet with
GO annotation. Since the GO Biological Process was used to
build the HFOnet, we used the independent subontologies of
Molecular Function and Cellular Component to evaluate

FIG. 2. The joint LR is the product of
individual LRs according to the naı̈ve
Bayesian scheme. The joint LR represents
the quantitative prediction of functional
association between two genes. Individual
LRs were calculated from six genomic
features: gene coexpression, semantic sim-
ilarity in GO Biological Process, phylogeny
similarity, protein domain similarity, OMIM
phenotype similarity, and essential genes.
An individual LR is omitted from the joint
LR calculation if a genomic feature for the
gene pair is missing.

FIG. 3. Performance evaluation of Bayesian integration and individual
genomic features. Precision is the ratio of positive gold standards to all
gold standards with LR values above a threshold, while the number of
positive gold standards (coverage) is marked in the x-axis. For precision,
higher numbers are better, and the ideal value is 1. For coverage, higher
numbers are better, and the ideal value is 20 034, representing the total
count of positive gold standards. The precision-coverage curves were
obtained by taking different LRs as the threshold to calculate precision and
coverage values.

FIG. 4. Evaluation of the joint LR as a quantitative predicator for gene
functional associations. The semantic similarity of gene pairs was
calculated as the measure of annotation similarity in GO subontologies
Molecular Function and Cellular Component. Symbols represent means,
and dashed lines represent standard deviations.
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HFOnet predictions (Fig. 4). The Molecular Function ontology
implies a molecular activity for a gene, whereas the Cellular
Component suggests a subcellular location of gene products.
The semantic similarity of GO terms measures annotation
similarity for a pair of genes. We found that the semantic
similarity of the Molecular Function and the Cellular
Component increased with joint LR values, suggesting closer
functional relationships for gene pairs with higher LR values.
This indicates the joint LR scheme from the naı̈ve Bayesian
network is valid in predicting quantitative functional associa-
tions for gene pairs.

Network Properties of HFOnet

In the HFOnet, each node represents a gene, and each link
represents the functional association between two connected
genes (see Supplemental Text S2). The HFOnet can be
constructed by connecting all gene pairs with a joint LR
greater than a threshold value. The threshold LR can be
estimated from the number of genes and gene pairs in the
positive gold standards and was calculated to be 528 (see detail
in Supplemental Text S1). Thus, we can draw the network by
connecting gene pairs with a joint LR greater than 528.
Obviously, the network can be redrawn at less or more
stringent LR cutoff values to identify gene pairs with lower or
higher significance.

The size of the network (the numbers of gene pairs and
genes) decreases with increasing joint LR thresholds (Fig. 5A).
The gene pair number declines faster than the gene number,
indicating less connectivity of genes in smaller networks. The
degree is the number of directly connected genes for a given
gene (Supplemental Text S2). Although the majority of genes
had only a small number of neighbors, a few genes were
connected with a high degree (Fig. 5B). These hub genes were
significantly enriched for metabolic processes, regulation of
biological processes, and cell communication. They were
involved in enzymatic activity, protein binding, and signal
transduction activity (Table 2). These enriched GO terms
suggest that the hub genes serve as the center of diverse
biological pathways and are engaged in cross talk among these
pathways. The clustering coefficient measures the intercon-
nectivity around a gene (Supplemental Text S2). Most genes

FIG. 5. Network properties of the HFOnet by taking different joint LRs as
the threshold value. A) Numbers of genes and gene pairs in the network.
The joint LR value is labeled underneath the symbols. B) The degree
distribution of genes in the network. The degree is the number of directly
connected neighbors for a given gene. C) The clustering coefficient
distribution of genes in the network. The clustering coefficient measures
transitivity around a gene.

TABLE 2. Significant GO SLIM terms enriched in the top 100 most
connected genes in the HFOnet.a

GO term GO name
Hypergeometric

P valueb

Biological process
GO:0043170 Macromolecule metabolic process 2.07E-18
GO:0007154 Cell communication 5.07E-17
GO:0008152 Metabolic process 3.11E-14
GO:0050789 Regulation of biological process 1.22E-13
GO:0009987 Cellular process 2.15E-13
GO:0030154 Cell differentiation 0.00039519
GO:0050896 Response to stimulus 0.000418585
GO:0008219 Cell death 0.005115639

Molecular function
GO:0016301 Kinase activity 1.24E-53
GO:0016740 Transferase activity 3.98E-41
GO:0003824 Catalytic activity 2.17E-17
GO:0005488 Binding 6.56E-12
GO:0005515 Protein binding 4.59E-09
GO:0004871 Signal transducer activity 0.002071487

a The top 100 most connected genes all have more than 400 directly
linked neighbors, and the HFOnet was defined by joint LR . 528.
b GO term significance was defined by hypergeometric P , 0.01.
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are highly clustered by choosing joint LR . 100 as the
threshold (Fig. 5C). With the increase of LR threshold, the
distribution of clustering coefficients gradually shows a
bimodal trend, with both high and low clustering around genes.

HFOnet Predicts Novel Meiotic Genes

Biological pathways involved in meiotic initiation and
progression in fetal oogenesis are largely unknown, although
several genes have been identified as essential components of
the process [1]. The HFOnet can serve as a functional map to
predict novel meiotic genes through their linkages with known
meiotic genes. In other words, we can use known meiotic genes
as seeds to identify new genes through computationally
predicted linkages between them. We can further group known
and unknown meiotic genes together to discover pathway
memberships.

Twenty genes known to function during meiotic initiation
and prophase are listed in Table 3 along with their network
properties [1, 2, 4, 14–16, 52–56]. We grouped these genes into

four functional categories: meiotic initiation, homologous
recombination, chromatid cohesion, and synaptonemal com-
plex formation. Among the 20 genes, 13 are meiosis-specific
and seven are nonspecific. Meiosis-specific genes function
only in germ cells in meiotic processes, whereas nonspecific
meiotic genes function in both somatic tissues and in germ cells
(e.g., the mismatch repair protein MLH1 is associated with
DNA repair in somatic cells, as well as with generation of
crossover in meiocytes). One striking observation is that
meiosis-specific genes either have no neighbors or are
connected with only a few neighbors but are highly clustered
with them. This phenomenon might be due to the tight function
of these genes or to the scarcity of data on these genes.
Conversely, nonspecific meiotic genes exhibit high degrees but
low clustering coefficients, possibly serving as modulators of
multiple pathways. An example of one such pair of
‘‘contrasting’’ genes involves the meiosis-specific MSH5 and
nonspecific MLH3, both of which are mismatch repair proteins
with similar degrees (Fig. 6) [53, 54]. MSH5 connects with five
genes, and any two of the five genes are linked with each other,
resulting in a clustering coefficient equal to 1. This indicates a
coherent function of MSH5. In contrast, the subgraph centered
at MLH3 is less densely connected. MLH3 has seven neighbors
and a clustering coefficient of 0.48 because fewer neighbors
connect with each other. This suggests that MLH3 is a player in
multiple pathways, including meiotic recombination. Other
examples of distinctly different network properties for meiosis-
specific and nonspecific genes include the strand invasion
proteins DMC1 (meiosis-specific) and RAD51 (nonspecific) [4]
and the mismatch repair proteins MSH4 (meiosis-specific) and
MLH1 (nonspecific) [2].

HFOnet can predict novel meiotic genes through their
linkages with known meiotic genes. We listed the top
neighbors of 13 known meiosis-specific genes in Table 4.
These top neighbors were defined based on their joint LR
values with meiosis-specific genes. We found these top
neighbors include known meiosis-specific genes, nonspecific
meiotic genes, and genes not known to participate in meiosis.
One key observation is that the nonspecific meiotic genes,
RAD51 and RAD21, exhibit connections with most of the 13
known meiosis-specific genes. This could be because RAD51
and RAD21 are essential genes and share similar functional
annotations with these meiosis-specific genes. Interacting with
nonspecific meiotic genes (RAD51 and RAD21) can reuse core
functional modules during meiosis, such as DNA repair
pathways. The promiscuousness of RAD51 and RAD21 is also
represented by their high degrees (Table 3). A recent study
demonstrated a biochemical interaction between the structural
protein SYCE2 and the repair protein RAD51 in a Syce1
knockout mouse [55], which supports our prediction that

TABLE 3. Topological properties of known meiotic genes in the
HFOnet.a

Categories
Known

meiotic genesb Degreec
Clustering
coefficient

Meiotic initiation DAZL 42 0.58
STRA8 0 –

Homologous recombination SPO11 0 –
RAD51 102 0.18
DMC1 4 1
MSH4 5 1
MSH5 5 1
MLH1 27 0.28
MLH3 7 0.48

Chromatid cohesion RAD21 42 0.57
SMC1A 6 0.6
SMC3 8 0.54
SMC1B 0 –
STAG3 0 –
REC8 0 –

Synaptonemal complex SYCP3 4 0.17
SYCP2 0 –
SYCP1 0 –
SYCE2 0 –
SYCE1 0 –

a HFOnet was defined by joint LR . 528.
b Meiosis-specific genes are in boldface and nonspecific genes are
underlined.
c The degree is the number of directly connected neighbors for a given
gene.

FIG. 6. Topological properties of meiosis-
specific and nonspecific meiotic genes.
MSH5 provides an example of a meiosis-
specific gene with high clustering. The
clustering coefficient of MSH5 is 1, because
any two of its five connecting genes are
linked with each other. MLH3 is an example
of a nonspecific meiotic gene with low
clustering. The clustering coefficient of
MLH3 is 0.48, because fewer of its linked
genes connect with each other. Connections
are defined by joint LR . 528.
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RAD51 is a top functional neighbor of SYCE2. Another
interesting observation is that the top neighbors also include
known meiosis-specific structural proteins, cohesins STAG3
and REC8 [52], and synaptonemal complex components
SYCP1, SYCP2, and SYCE2 [56]. These structural proteins
make top connections with themselves.

We further applied a heuristic clique-finding algorithm to
identify cliques formed by high-confidence links. A clique is a
set of genes in which each has a connection to each of the
others, providing a stringent definition for functional modules
(Supplemental Text S2). Therefore, we can identify novel
meiotic genes with high confidence if they are in the same
clique with known meiotic genes. This is more reliable than
simply mapping top neighbors of known meiotic genes. Three
out of 13 meiosis-specific genes and six out of seven
nonspecific meiotic genes (Table 3) were located in cliques
(Fig. 7). The mouse gene Dazl has been demonstrated to be an
intrinsic factor that enables germ cells to acquire meiotic
competence [14]. In the HFOnet defined by LR . 528, DAZL
has 42 direct neighbors with a clustering coefficient of 0.58
(Table 3). Our clique-finding algorithm identified DAZL in a
clique with 13 other genes, most of which are involved in the
regulation and initiation of translation (Fig. 7). DAZ1 and
BOLL were found to be the top two ranked neighbors of DAZL.
This result is supported by the evidence that they are all RNA-
binding proteins with physical interactions with each other and
may regulate the translation of key genes [57]. Interestingly,
BOLL exhibits a similar gene expression profile as DAZL in the
fetal ovary (Pearson correlation 0.77), although the expression
level of BOLL is much lower than that of DZAL [26]. This

suggests that BOLL might work together with DAZL in the fetal
ovary to prepare germ cells for meiotic entry. Other
components in the DAZL clique include translation initiation
factors (EIF3G, EIF4B, EIF4H (WBSCR1)) and RNA binding
proteins (IGF2BP1, IGF2BP2, IGF2BP3, CPEB2, RBM38,
A1CF) for mRNA editing and translation regulation.

RAD51 and DMC1 are essential components of the meiotic
homologous recombination machinery. However, RAD51 also
functions in mitosis and participates in a common DNA
damage response pathway, whereas DMC1 is meiosis specific
[1, 4]. This is reflected by the high degree of RAD51 (102
neighbors) and low degree of DMC1 (four neighbors; Table 3).
RAD51C, RAD51L1 (RAD51B), and XRCC3 are in the same
clique with RAD51 and DMC1 (Fig. 7), suggesting their
common role in the meiotic homologous recombination repair
pathway. The formation of this clique is well supported by the
evidence of physical interactions among RAD51 paralogs [58].

MSH4 and MSH5 are meiotic recombination proteins and
form heterodimers [53]. Similar to MSH5 described above,
MSH4 exhibits low degree and high clustering (Table 3),
suggesting its coherent function in meiotic mismatch repair
pathway. The clique of MSH4 and MSH5 includes MSH3, a
component of mismatch repair system, and ANKRD17, the
ankyrin repeat domain-containing protein 17 (Fig. 7). The only
known function of ANKRD17 is its interactions with the capsid
proteins of enterovirus 71 [59]. ANKRD17 is expressed in the
fetal ovary and testis, with a weak Pearson correlation of 0.41
[26]. Linkages with MSH4 and MSH5 as predicted from our
study indicate that ANKRD17 might participate in meiotic
mismatch repair response.

TABLE 4. Top neighbors of meiosis-specific genes with joint LR . 100.a

Categories Meiosis-specific genes Top three neighborsb

Meiotic initiation STRA8 CDCA5 PDGFB PIM2
Homologous recombination SPO11 RAD51 RAD21 ZW10

DMC1 RAD51 RAD51L1 RAD51C
MSH4 MSH2 MSH5 MSH3
MSH5 MSH2 MSH4 MSH6

Chromatid cohesion STAG3 RAD51 MAD2L1 SYCP2
REC8 RAD51 SYCE2 ESPL1

Synaptonemal complex SYCP3 NASP MYC CCNA1
SYCP2 STAG3 RAD21 RAD51
SYCP1 SYCP3 RAD51 CUL7
SYCE2 SENP5 REC8 RAD51

a SMC1B and SYCE1 are not listed because they have no neighbors with joint LR . 100.
b Neighbors are ranked based on joint LR values with meiosis-specific genes; meiosis-specific neighbors are in boldface and nonspecific neighbors are
underlined.

FIG. 7. Cliques containing known meiotic
genes. Meiosis-specific genes are blue,
nonspecific genes are red. Cliques were
derived from the HFOnet with joint LR .
528.
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Another mismatch repair clique consists of MSH6, MSH2,
MLH1, and PMS2 (Fig. 7). They are components of the general
mismatch repair system [2] and could participate in meiotic
recombination. The last mismatch repair clique is MLH3-
SMCHD1. The connection between MLH3 and SMCHD1 has
not been previously documented, although it is known that
MLH3 functions to promote crossover recombination [54], and
SMCHD1 encodes for the structural maintenance of chromo-
some flexible hinge domain-containing protein 1 [60]. An
SMC protein clique contains SMC1A–SMC3, central compo-
nents of the cohesin complex, and SMC2–SMC4, the
condensing complex member [52] (Fig. 7). They all belong
to a family of chromosomal ATPases and exhibit a similar
structure.

DISCUSSION

Meiosis initiates in the human fetal ovary at ;11–12 wk [3].
Primary oocytes pass through the leptotene, zygotene, and
pachytene stages before being arrested at the dictyate stage of
meiotic prophase [1]. Although a few pivotal genes have been
identified and characterized for female meiosis [1, 2, 14–24],
little is known in regard to the genetic pathways and networks
that govern this critical developmental process. Clearly, this is
because the human fetal ovaries are not an experimentally
tractable system. The establishment of a functional network is
invaluable in extending our understanding of meiosis initiation
and progression in the human fetal ovary and in identifying
novel genes and interactions involved in these processes. With
the recent availability of global gene expression profiles of
human fetuses [26] and other genome-scale data, we were able
to construct a tissue-specific and stage-specific functional
network to probe meiotic pathways, which are difficult to
tackle by traditional in vivo mammalian genetics.

In this study, we applied a naı̈ve Bayesian approach to build
a functional network for the human fetal ovary called HFOnet.
Our results show that the probabilistic integration of hetero-
geneous data types can generate confident measures for gene
connections and can improve prediction accuracy. We also
characterized the network properties of HFOnet and identified
that most genes exhibit low degree, but a small number of
genes are highly connected as hubs. Our findings suggest that
known meiosis-specific genes make few connections and that
these connections are frequently with both meiosis-specific and
nonspecific meiotic genes. Known nonspecific meiotic genes,
on the other hand, tend to make numerous interactions and
exhibit low clustering, indicating that they are multi-taskers.
By using a clique-finding algorithm, we grouped genes into
functional modules, confirmed known connections among
genes, and, more importantly, predicted novel genes that might
participate in meiotic initiation and DNA repair. We used 20
representative, known meiotic genes as seed genes to identify
new candidate genes through computationally predicted
linkages. Certainly, the 20 genes are not a complete list of all
known meiotic genes. Indeed, we can use other known meiotic
genes to query the HFOnet for obtaining their neighbors as
candidate meiotic genes.

In summary, we have constructed a tissue- and develop-
mental-stage-specific functional network for the human fetal
ovary. This provides a unique opportunity for investigating
novel genes involved in the meiotic prophase and directing
targeted experiments. With the increase in the quality and
quantity of tissue-specific genomic data for mammals, we
anticipate that our predictive model will grow in size and
accuracy, and will become an invaluable resource for
reproductive biologists.
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