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Many mathematical models of evolution assume that all

individuals experience the same environment. Here, we study the

Moran process in heterogeneous environments. The population is

of finite size with two competing types, which are exposed to a

fixed number of environmental conditions. Reproductive rate is

determined by both the type and the environment. We first

calculate the condition for selection to favour the mutant relative

to the resident wild-type. In large populations, the mutant is

favoured if and only if the mutant’s spatial average reproductive

rate exceeds that of the resident. But environmental heterogeneity

elucidates an interesting asymmetry between the mutant and the

resident. Specifically, mutant heterogeneity suppresses its fixation

probability; if this heterogeneity is strong enough, it can even

completely offset the effects of selection (including in large

populations). By contrast, resident heterogeneity has no effect on

a mutant’s fixation probability in large populations and can

amplify it in small populations.
1. Introduction
Evolutionary dynamics deals with the appearance and competition

of traits over time. The success of an initially rare mutant arising

in a population depends on a number of factors, including the

population’s spatial structure and the mutant’s reproductive

fitness relative to the resident. One quantitative measure of a

mutant’s success is its fixation probability, which describes the

chance that the mutant’s lineage will take over the population [1].

The effect of a particular property of the population (such as its

spatial structure) on natural selection is often measured directly in

terms of its effects on this probability of fixation. Among the many

noted demographic features that affect evolutionary outcomes,

comparatively little is known about the effects of environmental

heterogeneity in reproductive fitness on evolutionary dynamics.

One source of interaction and migration heterogeneity is

population structure. Lieberman et al. [2] use graphs as a model for

population structure and show that ‘isothermal’ structures do not
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alter fixation probabilities under birth–death updating, expanding upon a related observation for subdivided

populations [3]. Non-isothermal graphs can change this fixation probability and, in particular, act as amplifiers

or suppressors of selection—a topic of considerable current interest [2,4–13]. Recent work suggests that

randomness in dispersal patterns yields either amplifiers or suppressors of selection [11,14–17]. Although

spatial structure and frequency-dependent fitness have been incorporated into many evolutionary models,

their effects on evolutionary dynamics are not fully understood. Even less is known about the effects of

environmental heterogeneity, which can affect fitness through a non-uniform distribution of resources.

Despite the fact that there is still much left to be understood about the effects of environmental

heterogeneity, its importance in theoretical models has long been recognized, particularly in population

genetics [18–20]. More than 60 years ago, Levene [21] introduced a diploid model in which two alleles are

favoured in different ecological niches and showed that genetic equilibrium is possible even when there is

no niche in which the heterozygote is favoured over both homozygotes. Haldane & Jayakar [22]

subsequently treated a temporal analogue of this fitness asymmetry, which was then incorporated into a

study of polymorphism under both spatial and temporal fitness heterogeneity [23]. Arnold & Anderson

[24] described the spatial model of Levene [21] as ‘the beginning of theoretical ecological genetics’. Many

studies of environmental heterogeneity have focused largely on metapopulation or island models under

weak selective pressure, inspired by the evolution of habitat-specialist traits in heterogeneous environments

[25–29]. These metapopulation models assume connected islands (habitats) where migration is allowed

between islands, and environmental heterogeneity is parametrized by a variable fitness difference between

two competing types and assumed to be small (i.e. weak selection). Notably, in the limit of strong

connectivity between islands, variations in fitness advantage do not affect fixation probability [30]. Others

address the issue of fixation in two-island [31] and multi-habitat [32] models with variable fitness.

A more fine-grained heterogeneity requires an extension of the stepping-stone models to evolutionary

graphs [33–36]. So far, much of the work in this area has been done through numerical simulations of

specific structures and fitness distributions. For example, Manem et al. [37] demonstrated via death–birth

simulations on a structured mesh that heterogeneity in the fitness distribution can decrease the fixation

probability of a beneficial mutant. Hauser et al. [34], through exact calculations for small populations and

simulations for larger populations, showed that heterogeneity in background fitness suppresses

selection. Using an interesting analytical approach, Masuda et al. [33] estimated the scaling behaviour of

the average consensus time in a voter model for random environments with uniform or power-law

fitness distributions. More recently, Mahdipour-Shirayeh et al. [38] considered a death–birth model on a

cycle with random background fitness. Using numerical simulations, they observed that heterogeneity

leads to an increase in fixation probability. However, in the same model, heterogeneity has also been

shown to increase the time to fixation [39].

Taylor [40] distilled much of the research into heterogeneity with the remark that ‘[o]ne of the key

insights to emerge from population genetics theory is that the effectiveness of natural selection is

reduced by random variation in individual survival and reproduction’. However, beyond the fact that

the Wright–Fisher model is the standard paradigm for many of these works in population genetics,

results on environmental heterogeneity often rely on assumptions such as weak selection or

restrictions on population structure or migration rates.

In this study, we take a different approach and consider the environmental heterogeneity in the Moran

process with no restrictions on selection intensity. The Moran process models an idealized population of

constant, finite size, N, with two competing types, A and B [41]. At each time step, an individual is chosen

for birth with probability proportional to reproductive fitness (which can depend on both the individual’s

type and the environment in which they reside), and the resulting offspring replaces a random individual

in the population. One key difference between the Moran and Wright–Fisher models, which are both well

established in theoretical biology, is that generations overlap in the former but not in the latter. This aspect

of the Moran model, which has been noted to result in qualitative differences in the dynamics [42,43], also

has the added benefit of making some calculations (such as of a mutant’s fixation probability) exact for the

Moran process that are only approximations under Wright–Fisher updating [44].

We focus on the following questions for the Moran process:

— Can we predict the fate of a random mutant in a heterogeneous environment, given the measures of

heterogeneity such as the standard deviation of mutant (and resident) fitness values?

— Is the effect of environmental heterogeneity asymmetric with respect to the types? In other words,

does variability in environmental conditions affect mutants more than residents?

— What are the finite-population effects on fixation probability in a heterogeneous environment?

— What is the interplay between dispersal structure and the environmental fitness distribution?
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Figure 1. (a – c) Birth – death updating with environmental heterogeneity in reproductive fitness. At location i, an A-individual (mutant)
has fitness ai and a B-individual (resident) has fitness bi. At each time step, an individual is selected to reproduce with probability proportional
to fitness; the offspring then replaces a random individual chosen for death. Here, the individual at location 8 reproduces and its offspring
replaces the individual at location 2. Although the parent has fitness b8, the offspring has fitness b2 since it is in a different environment. While
dispersal is determined by a complete graph (light grey), the population cannot be considered ‘unstructured’ since one must keep track of
locations due to environmental variations in fitness (which could result from variations in resources).
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Through explicit formulae for fixation probabilities in large populations, we show that selection favours the

mutant type if and only if the expected fitness of a randomly placed mutant exceeds that of a randomly placed

resident. In other words, the mutant type is neutral relative to the resident if and only if the arithmetic mean of

all possible fitness values for the mutant is the same as that of the resident. We also consider this selection

condition in smaller populations, where we demonstrate how a combination of heterogeneity and drift

results in a much more complicated criterion for the mutant to be favoured over the resident.

More importantly, we show that mutant heterogeneity categorically suppresses selection; in particular,

any such heterogeneity decreases the fixation probability of a beneficial mutant. By contrast, heterogeneity

in resident fitness does not change a mutant’s fixation probability when the population size is large, and it

can even amplify selection in small populations. These observations uncover an asymmetry between the

mutant and resident types in heterogeneous environments. Furthermore, since we impose no restrictions

on selection intensity, our results highlight behaviour that is difficult to see under weak heterogeneity.
2. Model and fixation probabilities
Consider a population of size N in which each individual has one of two types, A (mutant) or B (resident).

There are m different environments in which an individual can reside, and we denote by Ni the size of

environment i (meaning the number of individuals, of any type, that can reside in environment i) for i ¼
1, . . ., m. In environment i, A has relative fitness ai and B has relative fitness bi. At each time step, an

individual is chosen for reproduction with probability proportional to relative fitness. An individual

subsequently dies (uniformly-at-random) and is replaced by the new offspring (figure 1).

The fraction of each fitness value present in the population defines mass functions, fN(a) and gN(b).

That is, if there are m environments with fitness values ai and bi in environment i [ f1, . . ., mg, then

fN(a) ¼
Ni

N
a ¼ ai for some i [ {1, . . . , m},

0 otherwise

8><
>: (2:1a)

and

gN(b) ¼
Ni

N
b ¼ bi for some i [ {1, . . . , m},

0 otherwise:

8><
>: (2:1b)

We let �a :¼ (1=N)
Pm

i¼1 Niai and �b :¼ (1=N)
Pm

i¼1 Nibi be the environmental fitness averages for A and B,

respectively; that is, �a (resp. �b) is the expected fitness of a randomly placed individual of type A (resp. B).

The classical Moran process [41] is recovered when ai ¼ �a and bi ¼ �b for every i (or, equivalently, when

m ¼ 1 and N1 ¼ N).

Without fitness heterogeneity, the state of the population is completely determined by the number

of individuals of type A. Let rN
A be the probability that a single mutant (A), initialized uniformly-at-

random in the population, fixates when the remaining N 2 1 individuals are of the resident type (B).
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Similarly, let rN
B be the probability that a single, randomly placed resident (B) fixates in a population of N 2

1 mutants (A). A standard way to measure the evolutionary success of A relative to B is to compare rN
A to rN

B .

Type A is favoured over B if rN
A . rN

B , disfavoured over B if rN
A , rN

B , and neutral relative to B if rN
A ¼ rN

B [45].

The equation rN
A ¼ rN

B is the ‘neutrality condition’ for fixation probability.

Suppose that �a and �b are the fitness values of A and B, respectively, in the classical Moran process. Since

there is no heterogeneity in the environment, one can think of rN
A ¼ rN

A (�a, �b) and rN
B ¼ rN

B (�a, �b) as functions of

�a and �b. Furthermore, rN
B (�a, �b) ¼ rN

A (�b, �a) since A and B are distinguished by only their fitness. Therefore, A is

neutral with respect to B if and only if rN
A (�a, �b) ¼ rN

A (�b, �a). Since we know

rN
A (�a, �b) ¼

1��b=�a
1�(�b=�a)N �a = �b;

1
N �a ¼ �b

8<
: (2:2)

(see [46]), one can see that rN
A (�a, �b) ¼ rN

A (�b, �a) if and only if �a ¼ �b, which makes intuitive sense because then A
is neutral relative to B if and only if the two types are indistinguishable from a fitness standpoint.

In the Moran process with fitness heterogeneity, the fixation probability of a single A-individual could

depend on its environment, so it is important to account for this initial environment when considering an

analogue of the neutrality condition. Let ei denote the state in which all individuals have type B except for

one individual of type A in environment i. Let A be the monomorphic state in which all individuals have

type A. We denote by rN
ei ,A

(fN , gN) the probability that, when starting from this rare-mutant state, the A
type eventually takes over the population. Let rN

A (fN , gN) be the fixation probability of an A-individual,

averaged over all N initial locations of the mutant, i.e.

rN
A (fN , gN) :¼ 1

N

Xm

i¼1

Nir
N
ei ,A

(fN , gN): (2:3)

A natural extension of the comparison of rN
A (a, b) to rN

A (b, a) is the comparison of rN
A (fN , gN) to rN

A (gN , fN). In

other words, the neutrality condition is then defined by the equation rN
A (fN , gN) ¼ rN

A (gN , fN). We now turn

to analysing this neutrality condition for two types of populations: (i) small populations, where drift plays a

significant role in the dynamics, and (ii) the large-population limit, where selection dominates.
2.1. Small populations
When N is small, we cannot ignore the effects of random drift and, consequently, we do not expect the

neutrality condition to be as simple as it is when N is large (where one can focus on the effects of selection

only). When N ¼ 2, there is environmental heterogeneity if there are m ¼ 2 environments (otherwise the

model is the classical Moran process). For such a small population, it is simple to directly solve the

standard recurrence equations for fixation probabilities (appendix A) to get

rN
A (fN , gN) ¼ 1

2

a1

a1 þ b2
þ a2

a2 þ b1

� �
(2:4a)

and

rN
A (gN , fN) ¼ 1

2

b1

b1 þ a2
þ b2

b2 þ a1

� �
: (2:4b)

The neutrality condition in this case is equivalent to a1a2 ¼ b1b2 (i.e.
ffiffiffiffiffiffiffiffiffi
a1a2
p ¼

ffiffiffiffiffiffiffiffiffi
b1b2

p
).

On the other hand, even N ¼ 3 demonstrates how the neutrality condition quickly gets complicated

for small values of N greater than 2. Again, for N ¼ 3, we can solve directly for fixation probabilities, r,

but their expressions are complicated and not especially easy to interpret. Under the simplifying

assumption b1 ¼ b2 ¼ b3 ¼ 1, the neutrality condition is equivalent to

0 ¼ 6a3
1a2

2a3 þ 4a3
1a2

2 þ 6a3
1a2a2

3 þ 14a3
1a2a3 þ 5a3

1a2 þ 4a3
1a2

3 þ 5a3
1a3

þ 6a2
1a3

2a3 þ 4a2
1a3

2 þ 12a2
1a2

2a2
3 þ 34a2

1a2
2a3 þ 14a2

1a2
2 þ 6a2

1a2a3
3

þ 34a2
1a2a2

3 þ 41a2
1a2a3 þ 4a2

1a3
3 þ 14a2

1a2
3 � 16a2

1 þ 6a1a3
2a2

3 þ 14a1a3
2a3

þ 5a1a3
2 þ 6a1a2

2a3
3 þ 34a1a2

2a2
3 þ 41a1a2

2a3 þ 14a1a2a3
3 þ 41a1a2a2

3

� 49a1a2 þ 5a1a3
3 � 49a1a3 � 56a1 þ 4a3

2a2
3 þ 5a3

2a3 þ 4a2
2a3

3

þ 14a2
2a2

3 � 16a2
2 þ 5a2a3

3 � 49a2a3 � 56a2 � 16a2
3 � 56a3 � 48: (2:5)
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For larger (but still finite N), the neutrality condition grows only more complicated. Therefore, in the

following section, we turn to analysing this neutrality condition in the large-population limit.

2.2. Large-population limit
Suppose that m is fixed and that the size of environment i is a function of the overall population size, N,

and that there exists ( p1, . . ., pm) [ (0, 1)m such that environment i satisfies lim N!1(Ni(N )/N ) ¼ pi for

every i ¼ 1, . . ., m. (Note that Ni can be an arbitrary function of N as long as it is positive, integer-

valued, and satisfies lim N!1(Ni(N )/N ) ¼ pi [ (0, 1).) Under this assumption, the mass functions fN
and gN have well-defined limits, f :¼limN!1fN and g :¼limN!1gN, respectively. Let �a ¼

Pm
i¼1 piai and

�b ¼
Pm

i¼1 pibi be the mean fitness values of the mutant type and the resident type, respectively, with

respect to these distributions.

Let E f denote the expectation with respect to the mass function f. We show in appendix A that, when

we take N! 1, the limiting value of the fixation probability of a randomly placed mutant,

r1
A (f , g) :¼ limN!1 rN

A (fN , gN), satisfies the following equations:

r1
A (f , g) ¼ 0 if �a � �b (2:6a)

and

E f
a

�bþ ar1
A (f , g)

" #
¼ 1 if �a . �b: (2:6b)

Therefore, r1
A (f , g) ¼ r1

A (g, f) if and only if �a ¼ �b, which gives the neutrality condition for large

populations.

From the neutrality condition for large populations, we also obtain conditions for selection to favour

or disfavour the mutant type: A is favoured relative to B if and only if �a . �b, and A is disfavoured relative

to B if and only if �a , �b. Therefore, the performance of one type relative to another can be deduced from

the classical (homogeneous) model by replacing each location’s fitness values, ai and bi, by the spatial

averages, �a and �b. Although one can make a rough comparison of two types by looking at their mean

fitness values, we show in the next section that mutant heterogeneity acts further as a suppressor of

selection.
3. Heterogeneity in mutant fitness
In this section, we look at what happens to an invading mutant’s fixation probability if its heterogeneous

fitness values are replaced by their spatial average. Note that there is no heterogeneity in mutant (resp.

resident) fitness if f(�a) ¼ 1 (resp. g(�b) ¼ 1). If either of these conditions holds, then we replace f by �a (resp.

g by �b) in the notation r1
A (f , g). For example, r1

A (f , �b) denotes the limiting value of A’s fixation probability

when (i) the fitness of A is distributed according to f and (ii) every resident type has fitness exactly �b (i.e.

there is no resident heterogeneity). The first thing to note is that, from equation (2.6), we have

r1
A (f , g) ¼ r1

A (f , �b), so environmental heterogeneity of the resident does not affect the fixation

probability of the mutant in the large-population limit. We next turn to how r1
A (f , g) compares to r1

A (�a, g).

3.1. Effects on selection
For fixed f and g with �a . �b, consider the function

c : [0, 1) �! [0, 1)

: a 7!
a

�bþ ar1
A (f , g)

:
(3:1)

Since c is strictly concave whenever �a . �b, it follows from Jensen’s inequality that

1 ¼ E f [c] � c(�a) ¼
�a

�bþ �ar1
A (f , g)

, (3:2)

with equality if and only if there is no mutant heterogeneity (i.e. f(�a) ¼ 1). Therefore, if �a . �b, then

r1
A (�a, g) ¼ 1� �b=�a, and we see that r1

A (f , g) � 1� �b=�a ¼ r1
A (�a, g) with equality if and only if f(�a) ¼ 1.

Thus, heterogeneity in the fitness of an advantageous mutant decreases its fixation probability (figure 2).
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Figure 2. Fixation probability of the mutant type, A, as a function of (half ) the width of the mutant fitness distribution, Da. The
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heterogeneity, respectively. The population size is N ¼ 50 and the solid/dashed lines indicate the analytical predictions from
equation (3.8). As Da grows, a beneficial mutant’s fixation probability decreases. However, this fixation probability does not
change as Db varies (not shown in the figure).
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3.2. Moment expansion of fixation probability
Here, we discuss expansions for the fixation probability in the limit of weak heterogeneity. Let f 0 and g0

be mass functions on R, supported on the points a01, . . . , a0m [ R and b01, . . . , b0m [ R, respectively.

Suppose that E f 0 [a0] ¼ Eg0 [b0] ¼ 0 (where, again, E f 0 [a0] and Eg0 [b0] denote the mean values of the

random variables distributed according to f0 and g0, respectively). For 0 , 1� 1 and fixed �a, �b . 0

with �a . �b, consider the mass functions

f (1)(a) :¼ f 0
a� �a
1

� �
(3:3a)

and

g(1)(b) :¼ g0
b� �b
1

� �
: (3:3b)

These functions are supported on the points {�aþ 1a0i}
m
i¼1 and {�bþ 1b0i}

m
i¼1, respectively.

Consider the series expansion of r1
A (f (1), g(1)) in terms of 1,

r1
A (f (1), g(1)) ¼ c0 þ c11þ c21

2 þ c31
3 þ c41

4 þO(15): (3:4)

We can solve for c0, c1, . . ., c4 using a perturbative expansion of equation (2.6b),

1 ¼ E f 0
(�aþ 1a0)

�bþ (�aþ 1a0)r1
A (f (1), g(1))

" #
, (3:5)

and matching the coefficients for different powers of 1 up to 14. Since E f 0 [a0] ¼ 0, we see that

c0 ¼ 1�
�b
�a

, (3:6a)

c1 ¼ 0, (3:6b)

c2 ¼ � 1�
�b
�a

� � �b
�a3

� �
E f 0 [(a0)

2], (3:6c)

c3 ¼ 1�
�b
�a

� � �b(�a� �b)

�a5

� �
E f 0 [(a0)

3] (3:6d)
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and c4 ¼ � 1�
�b
�a

� � �b
2
(�a� 2�b)

�a7

 !
E f 0 [(a0)

2]2 �
�b(�a� �b)2

�a7

 !
E f 0 [(a0)

4]

( )
: (3:6e)

Therefore, using the fact that r1
A (�a, �b) ¼ 1� �b=�a, we have

r1
A (f (1), g(1)) � r1

A (�a, �b) 1�
�b
�a3

 !
E f 0 [(a0)2]12 þ

�b(�a� �b)

�a5

 !
E f 0 [(a0)3]13

(

�
�b

2
(�a� 2�b)

�a7

 !
E f 0 [(a0)

2]214 �
�b(�a� �b)2

�a7

 !
E f 0 [(a0)

4]14

)
: (3:7)

For symmetric distributions, the odd moments cancel, and this expansion can be simplified even further.

If r1
A (�a, �b) is the fixation probability in the uniform (homogeneous) system, then it follows that

one can approximate a mutant’s fixation probability in the heterogeneous model using the expansion

r1
A (f , g) � r1

A (�a, �b) 1�
�b
�a3

 !
E f [(a� �a)2]þ

�b(�a� �b)

�a5

 !
E f [(a� �a)3]

(

�
�b

2
(�a� 2�b)

�a7

 !
E f [(a� �a)2]2 �

�b(�a� �b)2

�a7

 !
E f [(a� �a)4]

)
:

(3:8)

Figure 3 demonstrates that this expansion is in excellent agreement with the simulation data.

In appendix B, we show that altering the dispersal patterns can enhance this suppression effect. In

other words, if an offspring can replace only certain individuals (instead of any other member of the

population), then heterogeneity in mutant fitness further suppresses a rare mutant’s fixation

probability. In the case of a cycle with a spatially periodic fitness distribution, the fixation probability

approaches zero when the heterogeneity in mutant fitness approaches its maximal values (see figure 8

in appendix B).
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4. Heterogeneity in resident fitness
Although environmental heterogeneity of the resident is irrelevant when the population size is sufficiently

large, it can have an effect on fixation probability for small population sizes. In most cases, this effect (which

is of order 1/N) can be ignored, but we observe that for small population sizes, and in particular near

neutrality (�a ¼ �b), heterogeneity in resident fitness values can amplify a mutant’s fixation probability.

One example of this amplification effect is presented in figure 4, where �a is close to 1 and b is distributed

uniformly on [�b� Db, �bþ Db], where �b ¼ 1. A second, bimodal distribution is also tested, with fitness

values randomly chosen from two values, �b� Db or �bþ Db. In both cases, we observe that fixation

probability is increased for near-neutral mutants. However, fixation probability is increased for both on-

average beneficial and on-average deleterious mutations, which indicates that the mechanism of

amplification is somewhat different from that of an amplifier of selection on evolutionary graphs (for

example, a star graph). We also varied both mutant and resident fitness; the heat map in figure 5

summarizes the effects on fixation probability.

Figure 6 illustrates how these amplification effects change with population size, N. Once again, we

show in appendix B that non-well-mixed dispersal patterns can further enhance the amplifying effects

of heterogeneity in resident fitness. In the case of a cycle with spatially periodic fitness values, an

increase in the standard deviation of resident fitness leads to an even more noticeable increase in

fixation probability (see figure 9 in appendix B).
5. Discussion
The Moran process has been studied extensively in structured populations, but spatial structure in this

context usually pertains to the dispersal patterns of offspring following reproduction [2,11,13,36,47–

50]. Other models use two graphs, with one ‘interaction’ graph pertaining to the payoffs that

determine fitness and one ‘dispersal’ graph determining the propagation of offspring [51–55]. The

model of heterogeneity considered here is similar to these two-graph models since it allows for an

environment-structured population yet has independent dispersal patterns. However, the structure of

the environments cannot be captured by the same kind of interaction graph typically used in

evolutionary game theory. Instead, the environments can be modelled by colouring the nodes of the
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dispersal graph, with one colour for each distinct environment. The fitness of an individual is then

determined by both the node’s colour and the individual’s type. We discuss briefly in appendix B the

dynamics on a cycle, which is a linear, periodic dispersal structure.

In heterogeneous environments, we find that there is a notable asymmetry between the mutant and

resident types. Any variation in mutant fitness acts as a suppressor of selection. In particular, mutant

heterogeneity decreases the fixation probability of beneficial mutants and increases the fixation
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probability of deleterious mutants. Resident heterogeneity, on the other hand, has no effect on a mutant’s

fixation probability in large populations and can even amplify it in small populations. Our finding differs

from what is seen in processes with dispersal heterogeneity, which can amplify or suppress selection but

need not do either [13,17,56].

While the neutrality condition admits a simple interpretation when the population is large (i.e. the

types have the same expected fitness; �a ¼ �b), we do not expect this condition to be quite as intuitive

for smaller population sizes. For smaller N, stochastic effects are stronger, and the neutrality condition

is complicated by the interplay between natural selection and random drift; in large populations,

selection becomes the primary effect. Even when N ¼ 3, we have seen that the neutrality condition is

already quite complex.

Other kinds of fitness averages also arise in studies of environmental heterogeneity. In a two-allele

model with ecological variation, the condition for the maintenance of a protected polymorphism is

stated in terms of the harmonic mean of the fitness values [21]. If heterogeneity is temporal rather

than environmental [57], then the mean in this condition is geometric [22]. The approach we take here

is somewhat different from these studies because we are focused instead on the contrast between two

types under environmental heterogeneity. Furthermore, we treat a haploid Moran model, which has

not been studied as extensively as diploid models with random mating—at least with regard to

environmental fitness heterogeneity.

Heterogeneity, in its many and varied forms, is commonplace in evolving populations. Our focus

here is on environmental fitness heterogeneity that can arise, for example, from spatial fluctuations in

the availability of resources. Although mutant heterogeneity always suppresses selection and resident

heterogeneity can amplify selection, it would be interesting to understand its interaction with other

asymmetries such as those induced by spatial structure. In particular, how a combination of fitness

and dispersal heterogeneity influences selection is poorly understood and represents an interesting

topic for future research.
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Appendix A. Fixation probabilities in heterogeneous environments
In this section, we establish an asymptotic formula for fixation probabilities in a heterogeneous

environment. The population consists of m different environments, whose only role is to determine

reproductive fitness of the two types, A and B. In environment i, which contains Ni individuals, the

A-type (resp. B-type) has fitness ai (resp. bi), where ai, bi . 0. Once the fitness of each individual is

determined, the process is updated as described in §2 via a Moran process in an unstructured

population of size N ¼ N1 þ . . . þ Nm.
A.1. State space and transition probabilities
When the environment influences fitness, there are two possible notions of ‘state space’. One could simply

track the trait of every individual in the population, which would result in the ‘full’ state space, fA, BgN.

However, since individuals within the same environment are indistinguishable, we instead use the

‘reduced’ state space, S :¼f0, 1, . . ., N1g � . . . � f0, 1, . . ., Nmg. An element n ¼ (n1, . . ., nm) [ S indicates

the state in which there are ni individuals of type A in environment i for i ¼ 1, . . ., m. For n [ S, we

denote the overall number of A-type individuals in n by jnjU n1 þ . . . þ nm.

Since we discuss what happens to fixation probabilities as the population size grows, we need a way to

parametrize the population by only its size, N. Therefore, we assume that there are m environments with A-

fitness given by a1, . . ., am and B-fitness given by b1, . . ., bm. The size of environment i, Ni, is a function of N
with N1(N) þ . . . þ Nm(N) ¼ N for every N�1. We assume that there exist p1, . . ., pm [ (0, 1) with

lim
N!1

Ni(N)

N
¼ pi (A 1)
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for i ¼ 1, . . ., m; one can think of environment i as constituting a fixed, non-zero fraction, pi, of the

population. Since the dispersal structure is the same as that of an unstructured population, N then

completely specifies the population structure and the nature of fitness heterogeneity. This approach

involves choosing a sequence of environment-structured populations, each with exactly m environments,

which is similar to how one uses sequences of populations to define a general notion of an amplifier of

selection [13].

For i ¼ 1, . . ., m, let Pþi (n) (resp. P�i (n)) be the probability that the number of mutants in environment i
goes up (resp. down) in the next update step, given that the current state is n. In other words, Pþi (n) is the

probability that ni becomes ni þ 1, and P�i (n) is the probability that ni becomes ni 2 1. By the definition of

the Moran process,

P�i (n) ¼
Pm

j¼1 b j(N j � n j)Pm
j¼1 (a jn j þ b j(N j � n j))

 !
ni

N

� �
(A 2a)

and

Pþi (n) ¼
Pm

j¼1 a jn jPm
j¼1 (a jn j þ b j(N j � n j))

 !
Ni � ni

N

� �
: (A 2b)

We denote by fXtgt�0 the discrete-time Markov chain on S generated by these transition probabilities.

However, in analysing fixation probabilities, we may instead consider the chain fYtgt�0 on S in

which, for i ¼ 1, . . ., m and n [ S with 0 , jnj, N, the transition probabilities are defined by the

respective mutant-loss and mutant-gain probabilities,

Q�i (n) :¼ P�i (n)Pm
j¼1 (P�j (n)þ Pþj (n))

¼
jnj
Pm

j¼1 b j(N j � n j)

jnj
Pm

j¼1 b j(N j � n j)þ (N � jnj)
Pm

j¼1 a jn j

 !
ni

jnj

� � (A 3a)

and

Qþi (n) :¼ Pþi (n)Pm
j¼1 (P�j (n)þ Pþj (n))

¼
(N � jnj)

Pm
j¼1 a jn j

jnj
Pm

j¼1 b j(N j � n j)þ (N � jnj)
Pm

j¼1 a jn j

 !
Ni � ni

N � jnj

� �
:

(A 3b)

The two monomorphic states of this chain, n ¼ N and n ¼ 0 (which we denote by A and B, respectively),

are absorbing. Note that this chain can still be described in terms of births and replacements. Specifically,

a resident birth occurs with probability jnj
Pm

j¼1 b j(N j � n j)=(jnj
Pm

j¼1 b j(N j � n j)þ (N � jnj)
Pm

j¼1 a jn j),

and the offspring replaces a mutant in environment i with probability ni/jnj; a mutant birth occurs

with probability (N � jnj)
Pm

j¼1 a jn j=(jnj
Pm

j¼1 b j(N j � n j)þ (N � jnj)
Pm

j¼1 a jn j), and the offspring

replaces a resident in environment i with probability (Ni 2 ni)/(N 2 jnj).
That the fixation probabilities are the same in fXtgt� 0 and fYtgt� 0 can be seen from their recurrence

relations. Specifically, if n�i (resp. nþi ) denotes the state obtained from n by changing ni to ni þ 1 (resp.

ni 2 1), and if rn,A is the probability of reaching the all-A state, A, when the process starts in state n, then

rn,A ¼ 1�
Xm

i¼1

P�i (n)�
Xm

i¼1

Pþi (n)

 !
rn,A þ

Xm

i¼1

P�i (n)rn�i ,A þ
Xm

i¼1

Pþi (n)rnþi ,A

, rn,A ¼
Xm

i¼1

Q�i (n)rn�i ,A þ
Xm

i¼1

Qþi (n)rnþi ,A

(A 4)

(see [58]). Therefore, in what follows we analyse the chain fYtgt� 0 for simplicity.
A.2. Limiting process
From equation (A 1), for every fixed n ¼ (n1, . . ., nm) [ f0, 1, . . .gm, there exists N* sufficiently large such

that ni � Ni(N ) for each i ¼ 1, . . ., m whenever N � N*. The expected fitness of a randomly placed

individual of type A (resp. B) in the limit is then �a :¼ limN!1 (1=N)
Pm

i¼1 Niai ¼
Pm

i¼1 piai (resp.
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�b :¼ limN!1 (1=N)
Pm

i¼1 Nibi ¼
Pm

i¼1 pibi). Therefore, we have the following limits:

~Q
�
i (n) :¼ lim

N!1
Q�i (n) ¼ ni

�b
jnj�bþ

Pm
j¼1 n ja j

(A 5a)

and

~Q
þ
i (n) :¼ lim

N!1
Qþi (n) ¼

pi
Pm

j¼1 n ja j

jnj�bþ
Pm

j¼1 n ja j
: (A 5b)

Of course, when n ¼ 0, we have ~Q
+
i (0) ¼ 0 (i.e. 0 is the only absorbing state of the process).

In other words, this limit defines a Markov chain, {~Yt}t � 0 on f0, 1, . . .gm with transition probabilities

given by ~Q
+
i (n) for n [ f0, 1, . . .gm. The probability of staying in the same state, n, is 0 in this chain,

unless n ¼ 0 (which is an absorbing state). In fact, we can ignore B entirely and think of the Markov

chain defined by ~Q as giving transition probabilities in an m-type population of variable size, where,

in state n, the number of individuals of type i in the population is ni and the size of the population is

jnj. When an individual of type i gives birth, the offspring acquires type j with probability pj (which,

notably, is independent of i and thus is the same for all birth events).

Fix n and ‘ . 0 with jnj , ‘. Consider the problem of finding the probability, E‘n, of hitting 0

(extinction) before hitting a state with at least ‘ individuals. The extinction probabilities satisfy

the equation

E‘n ¼
Xm

i¼1

~Q
�
i (n)E‘n�i þ

Xm

i¼1

~Q
þ
i (n)E‘nþi , (A 6)

with boundary conditions E‘n ¼ 1 if jnj ¼ 0 and E‘n ¼ 0 if jnj ¼ ‘.
For any g1, . . . , gm [ R, let gn :¼ gn1

1 � � � gnm
m . Suppose that g*1, . . ., g*m . 0 satisfy

g	n ¼
Xm

i¼1

~Q
�
i (n)g	n�i

þ
Xm

i¼1

~Q
þ
i (n)g	nþi

: (A 7)

To find g*1, . . ., g*m . 0 satisfying equation (A 7), we first consider the case in which n ¼ ei for some i ¼ 1,

. . ., m, where ei denotes the state with ni ¼ 1 and nj ¼ 0 for j = i. With �g	 :¼
Pm

i¼1 pig
	
i , equation (A 7)

reads

g	i ¼
�b

�bþ ai
þ ai

�bþ ai
g	i �g	: (A 8)

Solving for g*i then gives

g	i ¼
�b

�bþ ai(1� �g	)
, (A 9)

where �g	 satisfies the equation

1� �g	 ¼ (1� �g	)
Xm

i¼1

pi
ai

�bþ ai(1� �g	)

� �
: (A 10)

Remark A.1. If f (a) is the mass function defined by f(ai) ¼ pi for i ¼ 1, . . ., m, with f (a) ¼ 0 whenever a
= a1, . . ., am, then the summation in equation (A 10) is simply the expectation E f [a=(�bþ a(1� �g	))].

The following lemma characterizes the values of �g	 that satisfy equation (A 10):

Lemma A.2. If �a � �b, then the only solution to equation (A 10) in the interval [0, 1] is �g	 ¼ 1. If �a . �b, then
there are exactly two distinct solutions to equation (A 10): one at �g	 ¼ 1 and another with 0 , �g	 , 1.

Proof. We first note that �g	 ¼ 1 is always a solution to equation (A 10). Consider the change of

variables x :¼ 1� �g	. The function j(x) :¼
Pm

i¼1 pi(ai=(�bþ aix)) is monotonically decreasing in x with

j(0) ¼ �a=�b. As a result, when �a � �b, we have j(0) � 1 and j(x) , 1 when x . 0. Suppose now that

�a . �b. Since the function a 7! a=(�bþ ax) is concave in a whenever a, x . 0, it follows from Jensen’s

inequality that j(x) � �a=(�bþ �ax) for every x . 0. Therefore, j(1) � �a=(�bþ �a) , 1, and since j is

continuous in x on [0, 1) with j(0) . 1, there exists x [ (0, 1) for which j(x) ¼ 1 by virtue of the

intermediate value theorem, which completes the proof. B
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Although we chose g1
* , . . ., gm

* that satisfy equation (A 7) for n ¼ ei, these values actually satisfy this

equation for any n. To see why, note first that g	
nþi
¼ g	i g

	
n ¼ g	i g

	
jg
	
n�j

and �bþ aig
	
i

�g	 ¼ (�bþ ai)g
	
i for every

i, j ¼ 1, . . ., m. Therefore,

Xm

i¼1

ni
�bg	n�i þ

Xm

i¼1

pi

Xm

j¼1

n ja jg
	
nþi
¼
Xm

i¼1

ni
�bg	n�i þ

Xm

j¼1

n ja j

Xm

i¼1

pig
	
nþi

¼
Xm

i¼1

ni
�bg	n�i þ

Xm

i¼1

niaig
	
i

�g	g	n�i

¼
Xm

i¼1

ni(�bþ aig
	
i

�g	)g	n�i

¼
Xm

i¼1

ni(�bþ ai)g
	
i g
	
n�i

¼ jnj�bþ
Xm

j¼1

aini

0
@

1
Ag	n, (A 11)

which establishes equation (A 7).

From equation (A 7), we see that E[g	~Ytþ1
:~Yt ¼ n] ¼ g	n for every n, meaning {g	~Yt

}t� 0 is a Martingale with

respect to {~Yt}t� 0. Consider the stopping time t‘ :¼ min {t � 0 : j~Ytj ¼ ‘}, and let {~Y
t‘

t }t� 0 be the stopped

chain defined by ~Y
t‘

t :¼ ~Ymin {t,t‘}. For any n with jnj � ‘, it follows trivially from the Martingale property

that E[g	~Yt‘
tþ1

:~Y
t‘

t ¼ n] ¼ g	n. Taking the limit of this equation as t! 1 (see [10]), we have

g	n ¼ E‘n þ
X

n0[{0,1,...,}mjn0 j¼‘
P[~Yt‘ ¼ n0 : ~Y0 ¼ n, t‘ , 1]g	n0 : (A 12)

Since
P

n0[{0,1,...,}mjn0 j¼‘ P[~Yt‘ ¼ n0 : ~Y0 ¼ n, t‘ , 1] ¼ 1� E‘n, we obtain the inequalities

(1� ( min
1� i�m

g	i )‘)E‘n þ ( min
1� i�m

g	i )‘ � g	n � (1� ( max
1� i�m

g	i )‘)E‘n þ ( max
1� i�m

g	i )‘: (A 13)

When �g	 , 1, we know that gi
* , 1 for all i ¼ 1, . . ., m by equation (A 9), which gives the bound

E‘n �
g	n � (max1� i�m g	i )‘

1� (max1� i�m g	i )‘
: (A 14)

Taking a sequence of fitness values for which �a # �b, the arguments of lemma A.2 imply that �g	 " 1.

Moreover, taking the limit �g	 " 1 in equation (A 14) (using the expressions for gi
* from equation (A 9)),

then gives

E‘n � 1� 1

‘

Xm

i¼1

ni
ai

min1� j�m a j
: (A 15)

From the inequalities of equation (A 13) and equation (A 15), we thus have

lim
‘!1

E‘n ¼
g	n g	1, . . . , g	m , 1,

1 g	1, . . . , g	m � 1:

(
(A 16)

Therefore, it follows from lemma A.2 and equation (A 16) that

lim
‘!1

E‘n ¼
(g	1)n1 � � � (g	m)nm �a . �b,

1 �a � �b:

(
(A 17)

Although we know the extinction probabilities in the limiting process, we cannot immediately conclude that

these must coincide with the limit of the extinction probabilities in the Moran process. This situation is

analogous to the use of branching processes approximations: while branching processes can be used to

derive simple approximations of quantities in large populations [46,59,60], one must also know that the

use of such an approximation is valid for the process under consideration [61]. In the next section, we

provide a sketch of how to find limN!1 rN
ei ,A

using the extinction probabilities derived thus far.
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A.3. Large-population limit of fixation probability
When the overall population size is N, let rN

n,‘ denote the probability of hitting a state with ‘ mutants

when the process starts in state n. To find r1
ei ,A

:¼ limN!1 rN
ei ,A

, we first find lim‘!1 limN!1 rN
ei ,‘

and

then argue that limN!1 rN
ei ,A
¼ lim‘!1 limN!1 rN

ei ,‘
.

Lemma A.3 For any ‘ and n with jnj � ‘, limN!1 rN
n,‘ exists and equals 1� E‘n.

Proof. In the chain fYtgt� 0, consider the stopping time t‘ :¼ min {t � 0 : jYtj ¼ ‘} and let {Yt‘
t }t� 0 be

the stopped chain defined by Yt‘
t :¼ Ymin {t,t‘}. For every N, {Yt‘

t }t� 0 is defined on the finite state space

{n : jnj � ‘}, which, importantly, is independent of N. For n [ S with jnj � ‘, we have

rN
n,‘ ¼

0 jnj ¼ 0;

1 jnj ¼ ‘;
Xm

i¼1

Q�i (n)rN
n�i ,‘ þ

Xm

i¼1

Qþi (n)rN
nþi ,‘ 0 , jnj , ‘:

8>>>><
>>>>:

(A 18)

Since Q+
i (n) are continuous functions of N with limits for i ¼ 1, . . ., m, it follows from the fact that rN

n,‘ is a

rational function of {Q+
i (n)}m

i¼1 (see [62, appendix A]) that limN!1 rN
n,‘ exists for any n with 0 , jnj, ‘.

Letting N!1 in equation (A 18) and using equation (A 5) gives the following expression for

r1
n,‘ :¼ limN!1 rN

n,‘:

r1
n,‘ ¼

0 jnj ¼ 0,

1 jnj ¼ ‘,
Xm

i¼1

~Q
�
i (n)r1

n�i ,‘ þ
Xm

i¼1

~Q
þ
i (n)r1

nþi ,‘ 0 , jnj , ‘:

8>>>><
>>>>:

(A 19)

As a result, we see from our analysis of equation (A 6) that limN!1 rN
n,‘ ¼ 1� E‘n, which completes the

proof. B

We now sketch a proof of the following limit:

lim
N!1

rN
ei ,A
¼

0 �a � �b,

1� g	i �a . �b:

(
(A 20)

Consider the first-visit distribution, mei ,‘
, on {n [ S : jnj ¼ ‘}. Specifically, for n [ S with jnj ¼ ‘,

mei ,‘(n) :¼ P[Yt‘ ¼ n : Y0 ¼ ei, t‘ , 1]: (A 21)

Using this distribution, we can write a mutant’s fixation probability as

rN
ei ,A
¼ rN

ei ,‘

X
n[Sjnj¼‘

mei ,‘(n)rN
n,A: (A 22)

In particular, rN
ei ,A
� rN

ei ,‘
, so limN!1 rN

ei ,A
¼ 0 whenever �a � �b because lim‘!1 limN!1 rN

ei ,‘
¼ 0 (lemma A.3).

Suppose now that �a . �b. Let s :¼ �a=�b� 1, which is positive because �a . �b. Moreover, since

lim
N!1

Pm
j¼1 N j(N)a jPm
j¼1 N j(N)b j

¼
�a
�b

, (A 23)

there exists N* for which
Pm

j¼1 N j(N)a j=
Pm

j¼1 N j(N)bi . 1þ s=2 whenever N � N*. In what follows,

we let r :¼ 1 þ s/3 and r0 :¼ 1 þ s/2 so that 1 , r , r0 , �a=�b. We also assume that N is finite but at

least N*.

In the chain fYtgt� 0, the probability of losing a mutant in state n [ S is

L(n) :¼
Xm

j¼1

Q�j (n) ¼
jnj
Pm

j¼1 b j(N j � n j)

jnj
Pm

j¼1 b j(N j � n j)þ (N � jnj)
Pm

j¼1 a jn j
, (A 24)

and the probability of gaining a mutant in this state is simply 1 2 L(n).

For ‘ , N, consider again the stopping time t‘ :¼ min {t � 0 : jYtj ¼ ‘}, and let {Yt‘
t }t� 0 denote the

stopped chain (i.e. Yt‘
t ¼ Ymin {t,t‘}). In what follows, the notation Pm and Em refers to the probability

and expectation, respectively, when the chain {Yt‘
t }t� 0 has initial distribution Yt‘

0 � m. (If the subscript

is a state, n, instead of a distribution, then this notation indicates that the initial state of this chain is
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n.) The main ingredient we will need to prove the lemma is to establish the existence of ‘ such that,

for all ‘0 � ‘,

r�‘
0 � Emei ,‘0 [r

�jYt‘
t j]: (A 25)

To establish equation (A 25), we first note that for jnj , N,

Pm
j¼1 a j

n j

jnjPm
j¼1 b j

N j � n j

N � jnj

. r0 ,
Xm

j¼1

1� jnj
N

� �
a j þ

jnj
N

r0b j

� �
n j

jnj � r0
Xm

j¼1

b j
N j

N
. 0: (A 26)

If jnj/jnj 2 Nj/Nj , d for every j ¼ 1, . . ., m, then nj/jnj . Nj/N 2 d in particular, which gives

Xm

j¼1

1� jnj
N

� �
a j þ

jnj
N

r0b j

� �
n j

jnj � r0
Xm

j¼1

b j
N j

N

.
Xm

j¼1

1� jnj
N

� �
a j þ

jnj
N

r0b j

� �
N j

N
� d

� �
� r0

Xm

j¼1

b j
N j

N

¼ 1� jnj
N

� � Xm

j¼1

a j
N j

N
� r0

Xm

j¼1

b j
N j

N

0
@

1
A� d

Xm

j¼1

1� jnj
N

� �
a j þ

jnj
N

r0b j

� �
: (A 27)

It follows that if d is a fixed real number satisfying

0 , d ,

Pm
j¼1 a j(N j=N)� r0

Pm
j¼1 b j(N j=N)Pm

j¼1 [a j þ (N � 1)r0b j]
, (A 28)

then
Pm

j¼1 a j(n j=jnj)=
Pm

j¼1 b j((N j � n j)=(N � jnj)) . r0 whenever jnj/jnj2 Nj/Nj , d for every j ¼ 1, . . .,

m. Note that there exists such a d in the range required by equation (A 28) because of our assumption

that N � N*, i.e.
Pm

j¼1 a jN j(N)=
Pm

j¼1 b jN j(N) . r0.
In every non-absorbing state, the probability of a mutant-type birth is bounded from below by some

p* . 0 and above by some p* , 1, so it is possible for the chain to transition between any two non-

absorbing states in finitely many steps. For every mutant (resp. resident) birth, the number of mutants

in environment j is increased (resp. decreased) by one with probability (Nj 2 nj)/(N 2 jnj) (resp. nj/

jnj); see equation (A 3). Moreover, nj/jnj � (Nj 2 nj)/(N 2 jnj) if and only if nj/jnj � Nj/N, which

means that a mutant offspring is at least (resp. at most) as likely to replace a resident as a resident

offspring is to replace a mutant in environment j when nj/jnj � Nj/N (resp. nj/jnj � Nj/N). A balance

between the two is achieved when nj/jnj ¼ Nj/N. Furthermore, if k = j, then a new mutant in

environment k increases the fraction (Nj 2 nj)/(N 2 jnj), while a new resident in environment k
increases the fraction nj/jnj.

Let (Yt‘
t ) j denote the number of mutant-type individuals in environment j (i.e. nj when Yt‘

t ¼ n).

Fix d, e . 0. From the heuristic in the previous paragraph, one can show that if 0 , j , (1 2 r22)(1/

(1 þ r) 2 1/(1 þ r0)), then there exists ‘ � 1 such that whenever (i) ‘0 � ‘, (ii) ‘ � k , N, and (iii) n � 0,

we have

Pmei ,‘0 [r
�1 � L(Yt‘

t )� (1� L(Yt‘
t ))r�2 . j : jYt‘

t j ¼ k]

¼ Pmei ,‘0 L(Yt‘
t ) ,

1

1þ r
� j

1� r�2
: jYt‘

t j ¼ k
� �

� Pmei ,‘0

Pm
j¼1 a j((Y

t‘
t ) j=jYt‘

t j)Pm
j¼1 b j((N j � (Yt‘

t ) j)=(N � jYt‘
t j))

. r0 : jYt‘
t j ¼ k

" #

� Pmei ,‘0

Xm

j¼1

(Yt‘
t ) j

jYt‘
t j
�

N j

N

				
				 , d : jYt‘

t j ¼ k

2
4

3
5

. 1� 1: (A 29)
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(Again, the subscript in Pmei ,‘0 indicates that Yt‘
0 � mei ,‘0 .) Letting 0 , 1 , j/(j þ 1 2 r21), we find that

Emei ,‘0 [r
�1 � L(Yt‘

t )� (1� L(Yt‘
t ))r�2 : jYt‘

t j ¼ k]

� j(1� 1)þ (r�1 � 1)1

� 0:

(A 30)

Note that in the arguments preceding equation (A 30), we assumed that k , N. However, if jYt‘
t j ¼ N,

then L(Yt‘
t ) ¼ 0 and we have Emei ,‘0 [r

�1 � L(Yt‘
t )� (1� L(Yt‘

t ))r�2 : jYt‘
t j ¼ N] ¼ r�1 � r�2 . 0.

From equation (A 30), it follows that

Emei ,‘0 [r
�jYt‘

t j � E[r�jY
t‘
tþ1
j : Yt‘

t ]]

¼
XN

k¼‘
Emei ,‘0 [r

�jYt‘
t j � E[r�jY

t‘
tþ1
j : Yt‘

t ] : jYt‘
t j ¼ k]Pmei ,‘0 [jY

t‘
t j ¼ k]

¼
XN

k¼‘
r�(k�1)Emei ,‘0 [r

�1 � L(Yt‘
t )� (1� L(Yt‘

t ))r�2 : jYt‘
t j ¼ k]Pmei ,‘0 [jY

t‘
t j ¼ k]

� 0: (A 31)

By induction, we then obtain the desired inequality, r�‘
0 � Emei ,‘0 [r

�jYt‘
t j] (equation (A 25)). Furthermore,

since the Markov chain {Yt‘
t }t� 0 is finite, we can take the limit of equation (A 25) as t!1 to get

r�‘
0 �

X
n[Sjnj¼‘0

mei ,‘0
(n)(Pn[jYt‘ j ¼ N]r�N þ (1� Pn[jYt‘ j ¼ N])r�‘): (A 32)

Equation (A 32) holds for all ‘0 � ‘, which means, in particular, we can let ‘0 ¼ 2‘ to see that

1�
X

n[Sjnj¼2‘

mei ,2‘(n)Pn[jYt‘ j ¼ N] � r�‘ � r�(N�‘)
X

n[Sjnj¼2‘

mei ,2‘(n)Pn[jYt‘ j ¼ N] (A 33)

whenever ‘ is sufficiently large. Thus, lim‘!1 limN!1

P
n[Sjnj¼2‘ mei ,2‘(n)Pn[jYt‘ j ¼ N] ¼ 1. Since

Pn[jYt‘ j ¼ N] � rN
n,A, (A 34)

we also have lim‘!1 limN!1

P
n[Sjnj¼2‘ mei ,2‘

(n)rN
n,A ¼ 1. Therefore, by equation (A 22) and lemma A.3,

lim
N!1

rN
ei ,A
¼ lim

‘!1
lim

N!1
rN

ei ,2‘

X
n[Sjnj¼2‘

mei ,2‘(n)rN
n,A

¼ lim
‘!1

r1
ei ,2‘

¼ 1� g	i : (A 35)
Appendix B. Linear dispersal structures
In the main text, we assumed that the dispersal structure was represented by a complete graph. By

ignoring dispersal heterogeneity, we could focus on the effects of environmental fitness heterogeneity

on a mutant’s fixation probability. On a complete graph, moments of the fitness distributions for the

mutant and resident types, including the arithmetic mean and standard deviation, determine the fate

of a rare mutant.

When environmental heterogeneity is generalized to arbitrary dispersal graphs, where individuals

see potentially only a small number of neighbours, the evolutionary dynamics become more complex.

In this case, the distribution of fitness values is still important, but it also matters where different

environments are located relative to each other. Thus, the general question of how environmental

fitness heterogeneity affects the fate of a mutant is determined by both the moments of the individual

fitness distributions and the spatial correlations between these values. A thorough analysis of these

models is outside the scope of this paper.

However, to illustrate the difference in the dynamics and to compare with the results on the

complete graph, we consider a bimodal distribution of fitness values of a cycle. A cycle is a one-

dimensional, periodic spatial structure in which every individual has exactly two neighbours [4]. As

before, ai [ fa1, a2g and bi [ fb1, b2g for some a1, a2, b1, b2 . 0. We assume a uniform, spatially

periodic distribution of fitness values, such that for every node in environment 1, the two
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Figure 7. Environmental heterogeneity on the cycle. The dispersal graph, a cycle, is a one dimensional, periodic structure, meaning
an individual’s offspring can be propagated only to one of its two neighbours. In the case we consider, the environments are
alternating, so that every environment of type 1 has two neighbours of type 2, and vice versa.
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Figure 8. Fixation probability of the mutant type, A, as a function of (half ) the width of the mutant’s fitness distribution, Da. The
fitness values for the mutant are either �a� Da or �aþ Da. The fitness values of the resident are set to unity and do not change
across population. Every location in environment 1 (resp. 2) is a neighbour to two individuals in environment 2 (resp. 1). The
population size is N ¼ 100, and �a [ {1:0, 1:2, 1:5, 2:0, 3:0}. The results are obtained from exact solutions of the
Kolmogorov equation for fixation probability. As Da grows, a mutant’s fixation probability decreases, consistent with
suppression. However, the effect is more significant than it is when the dispersal structure is a complete graph.
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neighbouring nodes are in environment 2, and vice versa (figure 7). (This distribution is in fact a good

estimate for the evolution on a cycle with random fitness values derived from the same bimodal

distribution.)

We have solved the Kolmogorov backward equation numerically for this model. If mutant fitness

varies while resident fitness is constant over all spatial locations (i.e. a1,2 ¼ �a + Da and b1,2 ¼ 1), then

we observe that a mutant’s fixation probability is decreased as the mean fitness of the mutants is kept

constant and the standard deviation of the fitness values is increased ( just like when the dispersal

structure is a complete graph). The effect on fixation probability, however, is more significant than it

is in the case of a complete dispersal graph. In fact, as Da ! Dmax ¼ �a, the fixation probability, rA(a,

b), approaches zero (figure 8). The fitness parameters are chosen similar to the complete graph, and

the population size is N ¼ 100.

We also considered the effects of heterogeneity in resident fitness. We let a1,2 ¼ �a and b1,2 ¼ 1+Db.

Just as we observed for the complete graph, resident heterogeneity now increases the fixation

probability of a randomly placed mutant. However, now this effect is not restricted to small

population sizes. In figure 9, the results are shown for N ¼ 100 and various values of mutant fitness

(�a ¼ 0:8, 0:9, 1:0, 1:1). Curiously, resident heterogeneity increases the fixation probability of deleterious
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Figure 9. Fixation probability of the mutant type, A, as a function of (half ) the width of the resident’s fitness distribution, Db. The
fitness values for the resident are either �b� Db or �bþ Db, where �b ¼ 1. Again, every location in environment 1 (resp. 2) is a
neighbour to two individuals in environment 2 (resp. 1). The population size is N ¼ 100, and �a [ {0:8, 0:9, 1:0, 1:1}. The results
are obtained from exact solutions of the Kolmogorov equation for fixation probability. As Db grows, a near-neutral mutant’s fixation
probability increases, consistent with amplification.
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mutants (�a ¼ 0:8, 0:9, for example). For large enough values of Db, deleterious mutants (in a uniform

environment) become strongly advantageous, which can be seen in figure 9.
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