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Uncertainty affects estimates of the power potential of tidal

currents, resulting in large ranges in values reported for a

given site, such as the Pentland Firth, UK. We examine the

role of bottom friction, one of the most important sources of

uncertainty. We do so by using perturbation methods to

find the leading-order effect of bottom friction uncertainty

in theoretical models by Garrett & Cummins (2005 Proc. R.
Soc. A 461, 2563–2572. (doi:10.1098/rspa.2005.1494); 2013

J. Fluid Mech. 714, 634–643. (doi:10.1017/jfm.2012.515)) and

Vennell (2010 J. Fluid Mech. 671, 587–604. (doi:10.1017/

S0022112010006191)), which consider quasi-steady flow in a

channel completely spanned by tidal turbines, a similar channel

but retaining the inertial term, and a circular turbine farm in

laterally unconfined flow. We find that bottom friction

uncertainty acts to increase estimates of expected power in a

fully spanned channel, but generally has the reverse effect in

laterally unconfined farms. The optimal number of turbines,

accounting for bottom friction uncertainty, is lower for a fully

spanned channel and higher in laterally unconfined farms. We

estimate the typical magnitude of bottom friction uncertainty,

which suggests that the effect on estimates of expected power

lies in the range 25 to þ30%, but is probably small for deep

channels such as the Pentland Firth (5–10%). In such a channel,

the uncertainty in power estimates due to bottom friction

uncertainty remains considerable, and we estimate a relative

standard deviation of 30%, increasing to 50% for small channels.
1. Introduction
Over the past decade, rapid advances have occurred in methods

used to model tidal stream resource and to optimize its extraction

allowing for the feedback effect between energy removal and
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natural flow conditions [1]. At coastal scale, most tide hydrodynamic models are based on the nonlinear

shallow water equations. In these models, uncertainties arise from several sources, including the inexact

specification of the natural environment (due to lack of accurate field data on the tidal velocity field,

turbulence, large-scale eddying motions, etc.), the physical model parameters (bed roughness,

bathymetry, boundary and initial conditions, etc.), model assumptions (rigid-lid approximation,

requirement of low Froude number, etc.) and numerical parameters (grid resolution, time step, depth-

averaged instead of three-dimensional models, etc.). Combined, these uncertainties can give rise to

considerable discrepancy between different power estimates for a given site. For example, predictions of

the average power available from the Pentland Firth, UK, one of the most promising sites for tidal stream

energy extraction in the world, span more than an order of magnitude (from 0.62 GW [2] to 9 GW [3]),

with little consensus as to the true power potential [4].

Of the sources of uncertainty listed above, the bed friction coefficient C0 is particularly important. In

practice, this parameter is often used to tune numerical models based on the shallow water equations, so

that they predict water levels and velocity vectors in agreement with observations at relatively sparse

spatial locations. Various researchers have carried out sensitivity analyses for different values of drag

coefficient applied uniformly throughout the domain. For example, in a power resource assessment of

the Pentland Firth, Adcock et al. [5] examined the sensitivity of tidal stream power estimates to the

value of bed friction coefficient C0 in the range [0.0025, 0.001], applied uniformly through the flow

domain. Adcock et al. found that the available power reduced as C0 increased. However, the average

power determined from the numerical model over the range of values of C0 considered was greater

than the power calculated using the average value of C0. That is, the dependence of power on C0 is

nonlinear. In addition, Adcock et al. found that no single value of C0 applied throughout the

modelled domain produced results which matched the field measurements of both tidal phase

and current magnitude for the Pentland Firth, and settled on a value of C0 ¼ 0.005 in a compromise.

In a similar study, Gillibrand et al. [6] varied C0 from 0.002 to 0.010 and found a constant value

of C0 ¼ 0.004 (again applied uniformly throughout the domain) gave best agreement, while

acknowledging the significant spatial heterogeneity of the seabed.

An alternative view is that the bed friction coefficient should be hydraulically correct in terms of the

boundary layer dynamics and not treated simply as a tuning parameter [7]. Soulsby [8] lists a range of

values (C0 [ [0.0011, 0.0043] for silt-sand to rippled sand) that could be applied to different marine bed

surfaces, and which deal with skin friction, form drag and turbulence. In short, there is a lack of

agreement as to which bed friction values should be applied. Culley et al. [9] performed a sensitivity

analysis of estimated power from an optimized tidal farm in the Inner Sound of the Pentland Firth,

which highlighted the significant influence of the value of the bottom friction coefficient on the

numerical results. The estimated power reduced as the bed roughness increased near the farm, and, at

sufficiently high values of local bed friction, the flow began to bypass the farm along paths of lower

frictional resistance.

This paper aims to address how uncertainty in the parametrization of bed friction affects estimates of

extractable power in different analytic models for tidal energy extraction in which turbines are

represented as either local or global enhanced bed roughness. Insight into the effect of the underlying

physical assumptions on uncertainty propagation is developed by considering closed-form solutions

for power dissipated as predicted by three analytic models of tidal power assessment. The first model

is that of Garrett & Cummins [10] (henceforth GC05), who derive an analytic solution for quasi-steady

flow in a channel spanned completely by tidal turbines. Second, we explore the impact of retaining

inertia by examining the solution to the same governing equation by Vennell [11] (henceforth V10).

V10 is able to include inertia in a closed-form solution by making further approximations (see

appendix of V10). Third and finally, we examine the effect of flow diversion around the turbines by

considering Garrett & Cummins [12] (henceforth GC13), who consider a circular turbine farm in

laterally unconfined flow. Analytic solutions of these types have been shown to give predictions in

satisfactory agreement with results from numerical models [13,14]. We introduce uncertainty in the

value of background roughness coefficient in these models and use perturbation methods to identify

the leading-order effect of this uncertainty on the expected power dissipated by the turbines and the

optimal channel design. Using our best estimate for the magnitude of the uncertainty in background

roughness coefficient, we provide quantitative estimates of the effects of uncertainty on expected

power dissipated and optimal channel design.

This paper is laid out as follows. In §2, after a brief review of each model, we introduce uncertainty

into the three theoretical models (GC05, V10 and GC13) and obtain leading-order estimates of the effect

of uncertainty using perturbation methods. In §3, we obtain a best estimate for the relative standard
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Figure 1. (a) Definition sketches for the fully spanned channel models of GC05 and V10 (adapted from [10]) and (b) the laterally
unconfined model of GC13, where the shaded area is the region of increased bed friction (C0 þ CT, in which C0 is the background
friction) representing the turbine farm of radius R with a uniform upstream velocity of u0 in the x-direction. Streamlines are shown
as blue dashed lines.
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deviation of the bed roughness coefficient (the ratio of the standard deviation in the value of C0 to its

mean). Using this calibration and our leading-order solutions, we examine the effects of uncertainty in

§4 and compare the three models. Finally, we draw conclusions in §5.
2. Introducing uncertainty in theoretical models
2.1. Fully spanned channel (GC05 and V10)
In the model of GC05 (figure 1a) power is extracted from a channel of length L and depth h connecting two

large bodies of water, by means of a fence of turbines that fully spans the cross-section of the channel. The

flow is driven in the simplest case by a sinusoidal tide producing a head difference between the ends of the

channel, of amplitude a and angular frequency v. Water is drawn in smoothly at speed u0 at the entrance of

the channel and exits as a jet at speed ue. Furthermore, the channel is assumed sufficiently short compared

with the tidal wavelength that the volume flux Q is independent of distance along the channel x. These

assumptions allow integration of the one-dimensional shallow water momentum equation along the

length of the channel to give (GC05)

g
dQ
dt
� ga cos (vt) ¼ �(d0 þ dT) Qj jQ: ð2:1Þ

Here g ¼
Ð L

0 A�1dx is a geometric factor taking into account the varying cross-sectional area A of the channel,

t is time, and the term ga cos(vt) is the driving pressure force due to the tide where g is gravity. On the right-

hand side, d0 ¼
Ð L

0 C0(hA2)�1dxþ (1=2)Ae
�2 accounts for the friction due to a given bed roughness coefficient

C0 and the velocity head loss at the channel exit where the cross-sectional area is Ae, and dT ¼
Ð L

0 CTA�2dx
represents the energy dissipated due to power extraction, with turbines represented by a distributed

roughness coefficient CT. By introducing the non-dimensional variables t0 ¼ vt, Q0 ¼ Qvg/(ga), l0 ¼ gad0/

(gv)2 and lT ¼ gadT/(gv)2, GC05 obtain the expression

dQ0

dt0
� cos (t0) ¼ �(l0 þ lT) Q0j jQ0: ð2:2Þ

The value of the parameter l0 determines the dynamic balance within the channel. It represents the ratio of

the combination of the natural drag losses and exit separation to acceleration in the channel, normalized by

the driving amplitude [10]. Large values of l0 describe channels dominated by background friction and exit

separation, i.e. shallow, short channels in which the flow may be considered to be quasi-steady. Small values

of l0 correspond to channels in the inertial limit as would be the case for deep, long channels. The power

dissipated by the turbines is given by multiplication of the turbine drag term by the mass flow rate, i.e.

P ¼ rdT Qj jQ2, where r is the fluid density. The average power extracted by the turbines over a tidal cycle

is then �P ¼ rdT Qj jQ2 ¼ r(ga)2(gv)�1lT Q0j jQ02, where the overline notation indicates time-averaging over

the tidal period. The non-dimensional flow rate Q0 is found by solving (2.2) and is, for a given head

difference, a function of time and the total drag in the channel, i.e. Q0(t0, l0 þ lT).
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2.1.1. The quasi-steady limit (GC05)

GC05 derive an analytical solution for the average power in the quasi-steady state limit, i.e. for large

values of l0. In this limit, the acceleration term in (2.2) may be neglected and the non-dimensional

volumetric flux may then be approximated by Q0j j ¼ (l0 þ lT)�1=2 cos t0j j1=2. The corresponding average

power produced by the turbines becomes

PGC05 ¼ P0
lT

(l0 þ lT)3=2
, ð2:3Þ

where P0 ¼ b2r(ga)2/(gv) is the dimensional multiplier for the power and b2 ¼ cos t0j j3=2 � 0:56 accounts

for time-varying head difference (and the subscript 2 denotes quadratic friction).

To introduce uncertainty in background friction, we express l0 as a random variable with an expected

value of ml0
and random, zero-mean fluctuation Dl0 about this value, such that l0 ¼ ml0 þ Dl0. Provided

the fluctuation is small compared with the mean, the power produced by the turbines may be expressed

in terms of l0 by expanding (2.3) as a Taylor series in Dl0 about the deterministic case (Dl0 ¼ 0) as

1

P0
PGC05 ¼

lT

(ml0
þ lT)3=2

� 3

2

lT

(ml0
þ lT)5=2

Dl0 þ
15

8

lT

(ml0
þ lT)7=2

Dl0
2 þO(Dl0

3): ð2:4Þ

Higher-order terms are neglected in the series, which converges for sufficiently small Dl0. Only leading-

order effects resulting from the mean and standard deviation in the bed roughness probability density

function are considered.
2.1.1.1. Expected power
Applying the expectation operator, the expected power extracted, correct to second order in Dl0, is given by

1

P0
E[PGC05] ¼ lT

(ml0
þ lT)3=2

þ 15

8

lT

(ml0
þ lT)7=2

s2
l0
þO(E[Dl0

3]), ð2:5Þ

where sl0

2 ¼ E[Dl0
2] is the variance in background friction parameter. The second term of the series (2.4)

vanishes as the random fluctuation Dl0 is symmetric about the mean. The first term in the expansion is

simply the deterministic power removed by the turbines in a channel (2.3) at the mean background

friction parameter ml0
. The second term is a stochastic correction to the power resulting from considering

a distribution of l0 values that are spread about the mean ml0
with a standard deviation of sl0

. We do

not consider higher-order terms that take account of corrections due to further moments of the

probability density function, such as skewness and kurtosis.

The expected power (2.5) is shown as a function of turbine drag parameter lT in figure 2 for two channels

with different values of the mean background friction parameter ml0
. The first channel, with ml0

¼ 1.0,

corresponds to a large and deep channel, and the second, with ml0
¼ 4.5, to a small channel with a high

flow velocity [15]. It is clear that, regardless of the mean channel drag parameter or the value of turbine

drag, uncertainty in l0 acts to increase expected power (dashed and dot-dashed lines) from that

calculated using the deterministic model (continuous lines) and more so for greater sl0
values. This effect

is greatest for lT ¼ 2ml0
/5, which maximizes the second term in (2.5), but remains positive for all values

of lT, reducing in strength as lT increases (and the effect of background roughness becomes less important).

This increase in expected power is a result of the inverse relationship between power (2.3) and bed friction

parameter l0. Neglecting the inertial term in (2.2) (by assumption of the quasi-steady limit) requires that the

head difference driving the flow is balanced solely by dissipation due to the total channel drag ltot ¼ l0 þ lT.

Hence the flow rate Q is inversely proportional to ltot and, for a given driving head, Q must grow

increasingly fast as total channel drag reduces, i.e. @2Q/@l2
tot . 0. Consequently, a small reduction in bed

roughness parameter away from the mean Dl2
0 , 0 results in dissipation of a greater amount of power by

the turbines, DP2
GC05 . 0. Similarly, a small increase in bed roughness parameter of the same magnitude

Dlþ0 . 0 yields reduction by an amount of power DPþGC05 , 0 smaller than before, i.e. jDPþGC05j , DP2
GC05.

Assuming a symmetric probability density function for l0, the expected power, given by E[PGC05] ¼

PGC05(l0 ¼ ml0
) þ (DP2

GC05 þ DPþGC05)/2, is then necessarily greater than the deterministic power. In other

words, due to the dynamic balance between driving head and channel drag, the power curve has a

positive second derivative with respect to the channel bed roughness l0. This convexity results in an

asymmetric power dissipation for symmetric perturbations in l0 and thus an increase in the expected

power (cf. Jensen’s inequality, which states that a convex transformation of the mean of a random variable

is less than the mean of the convex transformation of the variable).
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Figure 2. Expected power produced by turbines in two fully spanned tidal channels (GC05) with mean background friction
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¼ 0:50.
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2.1.1.2. Optimal turbine drag
In addition to a change in expected power, figure 2 also shows a shift in optimal turbine drag due to

uncertainty. In the absence of uncertainty, this optimum occurs at a value of turbine drag that is twice

the mean background friction parameter: l*Tdet ¼ 2ml0. However, with increasing sl0
the maximum

shifts to lower values of lT. An analytical expression for the optimal turbine drag l*Tstoch may be

found by maximizing (2.5) with respect to lT such that

lT
�
stoch ¼ 2ml0 1� 5

6
ŝl

2

� �
þO(E[Dl0

3]) with ŝl0
¼ sl0

ml0

: ð2:6Þ

The optimal turbine drag reduces linearly with the variance of the bed friction parameter. This may be

understood by perturbing around the deterministic optimum, so that l*T ¼ l*Tdet þ Dl*T. Along the

optimum, we have @E[PGC05]/@lT ¼ 0. Expanding this identity around l*Tdet gives, after some manipulation

Dl�T ¼ �
1

2

Pl0l0lT (ml0,lT
�
det)

PlTlT (ml0,lT
�
det)

s2
l, ð2:7Þ

where P corresponds to PGC05 and the subscripts denote differentiation. The change in optimal turbine drag

Dl*T depends on the sign of Pl0l0lT
(the change in the convexity of the power curve with turbine drag) and the

sign of PlTlT
(the convexity of the power with respect to turbine drag) calculated at the deterministic

optimum to leading order of approximation. We have PlTlT
, 0 because of the maximum. The effect of

reducing lT is to lower the total channel drag, making the flow rate and hence the power more sensitive

to the bed friction parameter. At lower values of ltot, the increase in power becomes relatively larger

than the decrease in power for a fluctuation Dl0, and the change in the expected power increases

(@3P/@l3
tot , 0). It is therefore optimal in the presence of background friction uncertainty to choose a

lower value of lT in order to harness better the uncertain power.

2.1.1.3. Uncertainty in power
The variance in power, sP

2 ¼ E[(P 2 E[P])2], may be evaluated using (2.3) to give to leading order

sP
2 ¼ 9

4
P2

0

lT
2

(ml0 þ lT)5
sl0

2 þO(E[Dl0
3]) ð2:8Þ

¼ (PGC05(l0 ¼ ml0
))2 9

4

ŝ2
l0

(1þ lT=ml0
)2
þO(E[Dl0

3]), ð2:9Þ
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where ŝl0 ¼ sl0=ml0
is the relative standard deviation. The greater the total mean drag in the channel

ml0
þ lT, the smaller the standard deviation in power. This may be understood by considering the

mapping of the probability density function of the background friction parameter fl0
to the probability

density function of power fP: fP(P) ¼ fl0
(l0(P))/jdP/dl0j. Figure 3 illustrates this mapping. Probability

density functions are shown for two different values of mean background friction, ml0
¼ 1.0 and ml0

¼ 5.0,

for the same standard deviation of sl0
¼ 0.45 and at a turbine drag of lT ¼ 3.0. The greater the value of

ml0
, the smaller the standard deviation in power, due to the smaller gradient in the transfer function.

We note from figure 3 that, despite symmetric input probability density functions for l0, the

corresponding probability density functions for the power values are asymmetric. Propagation

through the nonlinear transfer function has generated (positive) skewness in power. It is worth noting

that the probability distribution of total channel friction is technically not allowed to have zero

negative values. Because we only consider leading-order terms in uncertainty we automatically avoid

the singular or complex values of power implied by zero or negative values of total channel friction.

2.1.2. The effect of inertia (V10)
The quasi-steady limit in the previous section applies to channels in which friction dominates inertia in the

dynamic balance of the channel, i.e. in the limit of large l0 values, and the inertial term in (2.2) may be

neglected. Relaxation of the quasi-steady assumption leads to a different behaviour of the power

potential of the channel under bed roughness uncertainty. We explore the effect of retaining inertia in the

channel dynamics by considering the solution presented in the appendix of Vennell [11] (V10). Therein

an analytic solution is derived to an approximation of (2.2) which retains the inertial term. Furthermore,

the quadratic drag term is replaced with a linear drag term which ensures the same average power is

dissipated by the turbines over a tidal cycle, a process known as Lorentz linearization [16,17].

Following this approach, and assuming a sinusoidal driving tide of single frequency v as before, the

drag term (l0 þ lT) Q0j jQ0 in (2.2), where Q0 is the non-dimensional flow rate, may be replaced with KQ0

such that (l0 þ lT) Q0j jQ02 ¼ KQ02, where Q0 ¼ Q00sin(t0 2 fQ) and fQ is the phase lag of the flow rate

to the driving head difference between the ends of the channel. The coefficient K may be evaluated as

K ¼ 8(l0 þ lT)Q00/(3p). The resulting linearized governing equation gives (V10)

Q00 cos (t0 � fQ)� cos (t0) � 8

3p
(l0 þ lT)Q00

2
sin (t0 � fQ), ð2:10Þ

and may be solved to give the solutions (V10)

Q00 ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2

eq þ 1
q

� 1
�1=2

ffiffiffi
2
p

leq

and fQ ¼ tan�1 1

leqQ00

� �
, ð2:11Þ
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where the equivalent total friction parameter leq;8(l0 þ lT)/(3p). Finally, the power produced by the

turbines for this model is given by

PV10 ¼
P0

b2

lT
8

3p
Q00

3
sin (t0 þ fQ)2 ¼ P0

b2

4

3p
lT

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2

eq þ 1
q

� 1
�3=2

(
ffiffiffi
2
p

leq)3
: ð2:12Þ

As before, the magnitude of l0 defines the dynamic balance in the channel: small values indicate a channel

that is dominated by inertia, whereas large values of l0 imply that background friction dominates. In the

limit l0! 1 (the quasi-steady limit), we recover GC05 (2.3) and in the limit of l0! 0 (the inertial limit)

we obtain

PV10 !
P0

b2

ffiffiffiffiffiffi
3p
p

256
ffiffiffi
2
p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9p2 þ 256l2

T

q
� 3p

�3=2

l2
T

as l0 ! 0, ð2:13Þ

which is independent of l0.
2.1.2.1. Expected power

For general values of l0, we adopt the same approach as for the model of GC05 in the previous section.

We expand (2.11) in terms of the background friction parameter and apply the expectation operator to

derive an expression for the expected power E[PV10]. The resulting equations are cumbersome, do not

lend additional insight and are hence not shown here, but given in appendix A. Instead, figure 4a
shows the change in the expected power, correct to second order in sl0

, per unit relative variance s2
l0

(also known as the coefficient of variation) in l0 as a function of the turbine drag scaled by the mean

background friction parameter. For increasing ml0
, the effect of background friction uncertainty

approaches that of GC05, as illustrated by the different colour curves.

Furthermore, as the value of mean background friction ml0
is reduced, the change in expected power

drops to zero (see the line for ml0
¼ 0.1), reflecting the independence of power from background friction

in the limit of small l0. In short, figure 4a indicates that inertia reduces the effect of uncertainty on

expected power. The transition from the quasi-steady to the inertial limit can be non-monotonic. For

channels with background friction ml0
. ltransition with ltransition ¼ 0.495, the change in expected power

is positive for all values of lT and the flow dynamics are dominated by the effect of the total channel

drag ltot ¼ l0 þ lT. For values of ml0
below ltransition, the change in expected power becomes

negative for values of turbine friction given by lT , ltransition 2 ml0
, as may be seen from the curves

with ml0
¼ 0.1 and 0.3.

This behaviour may be understood by considering the flow rate Q0 as a function of bed friction

parameter for an undisturbed channel, shown in the inset in figure 4a. The singular limit as l0! 0 in
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GC05, is avoided by inertia in V10. Owing to the bounded nature of the flow rate at low values of channel

friction, a small decrease in bed roughness Dl2
0 will only slightly increase the flow rate because the

channel is inertia-dominated (DP . 0 but small). On the other hand, an increase Dlþ0 will be less

affected by inertia, as the move is towards the drag-dominated regime (DP , 0 and high). The

expected power is therefore lower than in the deterministic case for ml0
, ltransition ¼ 0.495, where

ltransition demarcates the transition between inertia-dominated and drag-dominated channels.

2.1.2.2. Optimal turbine drag

In the V10 model, as for the GC05 model, the optimal turbine tuning changes upon introduction

of uncertainty in l0. Figure 4b shows the relative change in the optimal turbine drag l*T per unit

variance in l0, as a function of the mean bed friction coefficient. In the limit of zero background

friction ml0
! 0, the optimal turbine drag is unaffected because the flow behaviour is dominated by

inertia. At very large values of the mean bed friction coefficient, the system becomes dominated by

friction and the V10 model asymptotically approaches the quasi-steady limit of GC05.

2.1.2.3. Uncertainty in power

Compared to the quasi-steady limit (GC05), in which the relative standard deviation in power as a

fraction of the standard deviation in background friction is a monotonically decreasing function of

turbine drag scaled with mean background friction (cf. equation (2.8)), inertia reduces the effect of

uncertainty, as illustrated in figure 5. As the dependence of power on background friction is reduced

in the inertia-dominated regime, the resulting variance in power is smaller.
2.2. Laterally unconfined turbine farm (GC13)
For turbine farms that do not span the channel completely, not all of the flow in the channel passes

through the turbines, instead part of it is diverted around the turbines as bypass flow. In such cases,

bed friction acts not only to reduce the flow speed in the channel, but also to funnel the flow through

the turbine farm by resisting the bypass flow. We explore these competing effects by considering the

model of Garrett & Cummins [12] (GC13). In this model, energy extraction by a tidal farm is

represented by a localized increase in bed roughness within a circular area of radius R in a steady

flow of far-field current of u0 in the x-direction and no lateral confinement by channel walls or similar

(figure 1b). The dynamic balance of the system is described by the shallow-water equations

@u

@t
þ f� uþ u � ruþ grz ¼ � C0

hþ z
uj ju, ð2:14Þ
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where f is Coriolis frequency f multiplied by the unit vertical vector, h is mean water depth, z is deviation

of free surface from mean depth, and C0 is bed-roughness coefficient associated with a quadratic drag

law. If the rigid-lid approximation is made, i.e. z� h, a very reasonable approximation given the local

spatial scale of the turbine compared to the tidal wavelength, the accompanying continuity equation

reduces to r . u ¼ 0 and the Coriolis vector vanishes from the vorticity equation (as follows). By

subsequently linearizing the bottom friction, (C0=(hþ z)) uj ju! CL,0u, and taking the curl of (2.13) the

resulting vorticity equation obtained in GC13 gives

@r2c

@t
þ J(c,r2c) ¼ �CLr2c�rCL � rc, ð2:15Þ

where c is the streamfunction defined as u ¼ (2@c/@y, @c/@x) and J is the Jacobian. At steady state,

neglecting the nonlinear material derivative and using polar coordinates (r, u), the solution for the

streamfunction is (GC13)

c ¼
� 1� CL

CL þ 2CL,0

R2

r2

� �
u0r sin u, for r . R ð2:16Þ

� 2CL,0

CL þ 2CL,0
u0r sin u, for r � R: ð2:17Þ

8>><
>>:

where CL,0 denotes the linear background friction (CL ¼ CL,0 for r . R) and CL,T is the additional friction

associated with the turbine farm (CL ¼ CL,0 þ CL,T for r � R), as illustrated in figure 1b with streamlines

shown as blue dashed lines. The streamfunction within the farm (2.17) is equivalent to uniform flow in

the x-direction at constant speed, uT ¼ 2u0CL,0/(CL,T þ 2CL,0). Higher background friction CL,0 invariably

has the effect of directing a larger proportion of the flow through the farm such that the flow velocity

increases within the farm (r � R) with CL,0. Power dissipated by the turbines is given by the integral

over the fluid of the linear friction coefficient of the turbines CL,T multiplied by the square of the flow

speed within the farm (CG13)

PGC13 ¼ P0lT
l0

lT þ 2l0

� �2

, ð2:18Þ

where P0 ¼ 4pC0,refrpR2u3
0 and we have introduced the non-dimensional background friction l0 ¼

CL,0h/C0,refu0 and the non-dimensional turbine friction lT ¼ CL,Th/C0,refu0, which are analogous, but

not equivalent to their counterparts for GC05 and V10. In order to facilitate comparison with the fully

spanned channel, we have scaled l0 and lT by a non-stochastic reference drag coefficient C0,ref, so that

typical values of l0 and lT are O(1). The deterministic power extracted is maximized at a turbine drag

of l*T ¼ 2l0.

As for the previous two models, we introduce uncertainty in background friction by expressing l0 as

a normally distributed random variable with an expected value of ml0
and variance s2

l0
. Provided the

variation is small compared with the mean, the power produced by the turbines may be expressed in

terms of l0 by expanding (2.15) as a Taylor series in Dl0 ¼ l0 2 ml0
about the deterministic case

(Dl0 ¼ 0).
2.2.1. Expected power
Performing the Taylor series expansion and evaluating the expectation operator for the leading-order

effect of uncertainty, gives

1

P0
E[PGC13] ¼

lTm
2
l0

(lT þ 2ml0
)2
þ
lT

2(lT � 4ml0
)

(lT þ 2ml0
)4

s2
l0
þO(E[Dl0

3]), ð2:19Þ

where the first term corresponds to the deterministic power (evaluated at mean background friction) and

the second term provides a correction resulting from the background friction uncertainty. Figure 6 shows

expected power as a function of turbine friction lT for different values of mean background friction

coefficient ml0
and standard deviation sl0

. Unlike the quasi-steady limit of the fully spanned channel

(GC05), where the change in expected power from deterministic power is positive regardless of

turbine drag, the sign of the correction term now depends on the relative magnitude of turbine drag

and bed friction: for lT ,4l0 the expected power is reduced, and vice versa for lT . 4l0.

This non-monotonicity can be explained as follows. For sufficiently small values of background

friction, power is approximately quadratic in l0 (because PGC13/ uT
2 and uT/ l0 for l0� lT) and a
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small increase lþ0 . 0 produces a greater increase in power than the reduction in power resulting from a

decrease l2
0 , 0 of the same magnitude (i.e. PGC13 is a convex function of l0). Hence a net increase in

expected power occurs as a result of uncertainty, as may be seen in figure 4a for large lT/ml0

(corresponding to small ml0
). On the other hand, at large values of l0 a small increase in background

friction has a relatively smaller effect on flow rate (cf. uT/u0! 1 for l0	 lT), and consequently

power, than a decrease in background friction of equal magnitude. As l0 increases, the flow speed

initially increases, but then tends towards a constant value. The decreasing rate of change of flow

speed with l0 results in a concave dependence of power on l0 (@2PGC13/@l2
0 , 0) for sufficiently large

l0. This results in a net decrease in expected power. The transition between the two regimes occurs at

lT ¼ 4l0, as is evident from (2.16).

In a completely spanned channel (GC05), the flow rate decreases with increasing background friction

(cf. Q0 / 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0 þ lT
p

), and the decreasing rate at which it does so (for increasing l0), corresponding to the

flow being completely blocked, leads to convexity and a corresponding increase in expected power

(@2PGC05/@l2
0 . 0). For a laterally unconfined turbine (GC13), the flow rate through the farm initially

increases with increasing background friction (cf. uT/u0 ¼ 2l0/(lT þ 2l0), but must do so at a

decreasing rate (for increasing l0), because the flow through the farm cannot be stopped, leading to

concavity and a corresponding decrease in expected power (@2PGC05/@l2
0 , 0). Examining figure 4b

once more, as the number of turbines relative to the background friction (lT/l0) is increased, a

transition occurs from concavity (@2PGC13/@l2
0 , 0) associated with a reduction in expected power to

convexity (@2PGC13/@l2
0 . 0) associated with an increase in expected power. We will refer to lT , 4l0

as background friction dominated and lT . 4l0 as turbine friction dominated.

2.2.2. Optimal turbine drag
An analytical expression for the optimal turbine drag l*Tstoch can be found by maximizing (2.16) with

respect to lT such that

lT
�
stoch ¼ 2ml0 1þ 1

2
ŝ2

l0

� �
þO(E[Dl0

3]) with ŝl0
¼ sl0

ml0

: ð2:20Þ

Compared to the downward shift in optimal turbine drag in response to background friction uncertainty

for a fully spanned channel (2.6) (GC05), which was only diminished in magnitude by the effect of inertia

(V10), the optimal turbine drag in a laterally unconfined channel is shifted upwards (see figure 4b). This

can be explained by alluding to (2.7), noting that PlTlT
, 0 for optimum power. From figure 4a it is

evident that at the deterministic optimum lT/l0 ¼ 2 about which we perturb, increasing the number

of turbines (lT) acts to reduce the concavity of the power with respect to background friction



Table 1. Leading-order effects of uncertainty in background friction (ŝl0¼sl0=ml0
) on the relative change in expected

power, the relative standard deviation of power and the relative change in optimal turbine friction in drag-dominated (CG05) and
inertia-dominated (V10) fully spanned channels and in a laterally unconfined farm (GC13).

change in expected power
(E[P] 2 Pdet)/Pdet

standard deviation in
power sP/Pdet

optimal turbine
friction Dl*T/l*T,det

drag-dominated fully

spanned channel

(GC05)

15
8

�
1þ lT

ml0

��2
ŝ 2

l0

3
2

�
1þ lT

ml0

��1
ŝl0 � 5

6 ŝ
2
l0

fully spanned

channel (V10)

negative for ml0
, 0.495,

positive for ml0
. 0.495

(see appendix A)

smaller than GC05 negative, but smaller

in magnitude

than GC05

laterally unconfined

farm (GC13)

� (lT=ml0
)(4�lT=ml0

)

(lT=ml0
þ2)2 ŝ 2

l0
2 lT
ml0

(2þ lT
lc0

)�1ŝl0 þ 1
2 ŝ

2
l0
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(Pl0l0lT
. 0 at lT/l0 ¼ 2) and thus Dl*T . 0 from (2.7). It is optimal to move more into the turbine friction-

dominated regime.

2.2.3. Uncertainty in power
The variance in power to leading order is given by

s2
P ¼

4l4
Tm

2
l0

(lT þ 2ml0
)6
s2
l0
þO(E[Dl0

3]) ¼ (PGC13(l0 ¼ ml0
))2 4(lT=ml0

)2

(2þ (lT=ml0
))2

ŝ2
l0

, ð2:21Þ

which is illustrated in figure 5. It is evident from this figure and (2.18) that increasing turbine friction as a

share of mean background friction (lT/ml0
) increases the variability in power, tending towards a constant

multiple of ŝl0 as lT/ml0
! 1.
2.3. Comparison of models
Table 1 summarizes the effects of background friction uncertainty on expected power, optimal turbine drag,

and power uncertainty for a fully spanned channel in the quasi-steady limit (GC05) and with inertia (V10),

as well as for a laterally unconfined turbine farm (GC13). It is evident from this table that bottom friction

uncertainty acts to increase the expected power in a fully spanned channel, but generally has an opposite

effect in laterally unconfined farms. The optimal number of turbines with bottom friction uncertainty is

lower in a fully spanned channel and higher in laterally unconfined farms. Bypass flow fundamentally

changes how the system behaves under uncertainty. In fully spanned channels, inertia acts to reduce the

effect of uncertainty in background friction (V10 versus GC05).
3. Calibration of bottom friction uncertainty
In order to quantify its effect on power, we must estimate the magnitude of background friction uncertainty in

the form of the relative standard deviation ŝl0 ¼ sl0=ml0
. In each of the foregoing models, l0 is simply a linear

function of the respective bottom roughness coefficients, ignoring the effect of exit separation. Consequently,

we can set the relative standard deviations to be equal: sl0
/ml0

¼ sC0
/mC0

, where mC0
is the mean and sC0

the

standard deviation of the bottom roughness coefficient. With a priori knowledge of both the tidal elevation and

flow rate of a channel, the bed roughness coefficient could be relatively accurately determined from the phase

difference between the two. With the exception of measurement errors, the uncertainty associated with

background friction would be small, provided the flow conditions and thus the background friction

experienced are not substantially altered by the introduction of turbines. In the absence of knowledge of

both the tidal elevation and the flow rate, C0 is essentially unknown, as an observed elevation may be the

result of an enormous number of combinations of bed roughness coefficients and flow rates. Equally,

various values of tidal elevation and bed roughness may be combined to give an observed flow rate. Data



Table 2. Parametric uncertainty resulting from variation in bed roughness length z0 for different bed conditions. The number of
values reported for different bed conditions and the resulting mean and variation factor are taken from [18]. The standard
deviation of the natural logarithm of z0 is given by the logarithm of the variation factor v.f. (slnz0

¼ ln(v.f.)). From these values
and using the properties of the log-normal distribution, we compute the (relative) standard deviation of bed roughness length
ŝ z0 (sz0

/mz0
).

bed material
and type

no. of
values reported mz0

(mm)
variation
factor, v.f. sz0

(mm) sz0
/mz0

mud 1 0.2 — — —

mud/sand 3 0.7 4.1 1.8 2.5

silt/sand 1 0.05 — — —

unrippled sand 7 0.4 2.0 0.3 0.8

rippled sand 6 6.0 1.3 1.6 0.3

sand/shell 2 0.3 4.5 0.9 2.9

sand/gravel 7 0.3 6.7 1.8 6.0

mud/sand/gravel 2 0.3 3.0 0.5 1.5

gravel 4 3 1.6 1.5 0.5
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on tidal elevation are often available. However, volumetric flux is usually far more difficult to determine. Point

measurements of current velocities are sometimes available from acoustic doppler current profiler (ADCP)

deployments and help confine the possible values of bed roughness coefficient to a region.

We distinguish two sources of background friction uncertainty. First, the roughness length parameter Z0

captures the magnitude of the friction coefficient at a site, which is dependent on the bed material and type

and may be unknown, as well as vary across a given site. We will refer to the probability that the roughness

length Z0 is smaller than or equal to a value z0, namely Pr(Z0 � z0), as arising from parametric uncertainty.

Second, for a known value of the roughness length parameter z0, many different models predict different

friction coefficients C0. We will refer to the probability that the predicted friction coefficient C0 is smaller

than or equal to a value c0 for a known value of the roughness length parameter z0, namely Pr(C0 � c0 j
Z0 ¼ z0), as arising from model uncertainty, which is conditional on parametric uncertainty. The

unconditional probability Pr(C0 � c0) then describes the likelihood that a particular value of c0 correctly

captures the bed shear stress due to the flow and it results from the two underlying sources of

uncertainty, which we will estimate separately below. In the following, capital variables refer to random

variables, while lower-case variables to specific values that the random variables may take.

3.1. Parametric uncertainty: Pr(̂Z0 � ẑ0)
The bed friction coefficient at a site is usually expressed as a function of relative roughness Ẑ0 ¼ Z0=h,

where Z0 is the roughness length associated with a particular bed material and type and h is the

water depth. Several phenomena contribute to the roughness length. These are the skin friction, due

to the surface roughness of the sediment grains of the bed; the form drag, caused by the pressure

field due to the presence of larger bed features; and the sediment-transport contribution, produced by

momentum transfer of the flow to mobilized sediment particles [8]. An additional component relating

to vegetation contributes in cases where there is plant growth at the bed. These components are

commonly assumed to combine linearly to give the total roughness length. In absence of velocity

profile measurements at a site, the bed roughness length may be estimated from knowledge of the

bed conditions. The uncertainty in Z0, then, stems from the difficulty in defining a single value for the

roughness length due to spatial heterogeneity of the seafloor, variation in bed-grain sizes, change of

bed forms with time (e.g. sand dunes travelling with the flow), as well as dependence of Z0 on the

hydrodynamic regime (i.e. whether the flow is hydrodynamically rough, smooth, or transitional).

In order to obtain an estimate for uncertainty in relative roughness Ẑ0, we specifically consider the

skin friction component of the bed roughness length. Table 2 lists values for the roughness lengths,

obtained by fitting logarithmic velocity profiles for a range of different bed conditions, taken from

[18]. For seven of the nine bed conditions listed, Soulsby [18] reports the geometric mean and

variation factor obtained from a number of values reported in the literature. From these values, shown
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in table 2, we compute the standard deviation sz0
and the relative standard deviation sz0

/mz0
. It is evident

that the uncertainty here is very considerable. Furthermore, the relative standard deviation depends

strongly on bed type and ranges from 0.5 for gravel to 6.0 for a sand/gravel mixture. Because finer

grains fill gaps between coarser grains, beds made up of a mixture of grain sizes have relatively low

roughness lengths [18], while also exhibiting a higher standard deviation because the degree of filling

will probably vary greatly according to the proportions of the different grain sizes present. This may

be seen from the values in table 2, where the relative standard deviation is typically larger for bed

type mixtures than for beds made up of a single type.

When considering how to apply results such as those shown in table 2 to a site, several scenarios in

terms of available information and associated uncertainty are possible. Of these we consider two limiting

scenarios. The first scenario is where accurate knowledge of the bed conditions exists, such that the

relevant value of relative standard deviation sz0
/mz0

in the final column of table 2 may be used. This

we consider a lower limit on uncertainty, identical to that of conditional model uncertainty in §3.2. In

the second scenario, the bed conditions may be entirely unknown or might vary across a site.

Assuming this latter limit, which forms a more realistic estimate, we proceed in a somewhat ad hoc
fashion and assign equal probabilities to each of the bed conditions in table 2 except for mud (only a

single value reported), silt/sand (only a single value reported) and rippled sand (includes components

of form drag and hence omitted) to estimate the relative standard deviation as follows:

ŝz0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i wis

2
z0,i

q
P

i wimz0,i
, ð3:1Þ

where the subscript i corresponds to a row in table 2, and weights are assigned according to the number

of values reported (from [18]) so that
P

i wi ¼ 1. From this, we obtain the large value of ŝz0
¼ 1:6 and use

this as our base case. Ignoring uncertainty in the water depth, we set ŝ ẑ0
¼ ŝz0 ¼ 1:6
3.2. Model uncertainty: Pr(C0 � c0ĵZ0)
To estimate uncertainty resulting from the application of different friction coefficient models for a known

value of the roughness length ẑ0, we consider the eight different C0-models summarized in fig. 13 of [19]

(reproduced in figure 7a). The eight empirical models are derived from fitting experimental data to either

a power-law relationship of the form C0 ¼ aẑ0
b or a logarithmic law of the form C0 ¼ [k=(Bþ ln ẑ0)]2,

where k is von Kármán’s constant. Table 3 in appendix B lists these two commonly used, empirical

formulae for estimating C0 (left-hand column) and the values of the parameters a, b, B and k fitted from

experimental and numerical data by different authors. We take an agnostic approach and assign equal

weights to each of the eight models to determine the mean friction coefficient mC0
and the standard
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deviation sC0
across a range of values for ẑ known with certainty. It is evident from figure 7a that model

uncertainty is considerable.

In particular, we are interested in the behaviour of the relative standard deviation across ẑ0 values

that are appropriate for tidal stream energy assessments. A lower bound on the ẑ0 range in tidal

channels is found by dividing the smallest roughness length, that for silt/sand (z0 ¼ 5 � 1025 m), by a

value of water depth typical for deep channels of approximately 50 m, giving a value of

ẑlower � 1� 10�6. An upper bound is found by dividing the largest value for z0 (that for rippled sand,

z0 ¼ 6 � 1023 m) by a typical lower value for water depth of approximately 20 m, thus giving a

value of ẑupper � 3� 10�4. By considering the relative standard deviation throughout this (unshaded)

range in figure 7b, it can be shown that this property has a weak dependence on the value of ẑ0.

The relative standard deviation ŝC0 ; sC0=mC0
varies between a minimum value of 0.21 and a

maximum of 0.28, with an average value of 0.25 (indicated as a dashed line in figure 7b). At the

midpoint of the range considered, ẑ0 ¼ 1:51� 10�4, the value for the relative standard deviation is

0.22. A normal, non-skewed, distribution is appropriate for model uncertainty, which is evident from

figure 8a, which shows the empirical cumulative distribution function. This distribution is estimated

by creating a sample population from selecting four (arbitrary, yet equally spaced) relative roughness

values of ẑ ¼ [10�6, 10�5, 10�4, 10�3], scaled by their local means and standard deviations, as shown

in figure 8a.
3.3. Unconditional uncertainty: Pr(C0 � c0)
To address the scenario in which the bed conditions are not known or vary across a site, we combine

parametric uncertainty with conditional model uncertainty from the previous sections, in order to

obtain the unconditional uncertainty. Motivated by [18], we use a log-normal probability distribution

to capture parametric uncertainty and set its mean mẑ0
equal to the average of the lower and upper

bounds for ẑ0 relevant to tidal energy determined earlier, namely mẑ0
¼1:51� 10�4, for different values

of ŝz0
. We numerically convolve the log-normal parametric uncertainty distribution with the eight

equally weighted C0-models from the previous section and calculate statistical moments. Figure 8b
shows the unconditional relative standard deviation ŝC0

as a function of relative standard deviation of

relative roughness length ŝ ẑ0
(continuous black line), the latter as a measure of parametric

uncertainty. The conditional relative standard deviation ŝC0 is shown as a horizontal dashed black

line and corresponds to the value of 0.22 obtained in the previous section.

In the case of a log-normal distribution for ẑ0 and for the Manning–Strickler formula C0 ¼ aẑ0
b (see

appendix B), convolution may be achieved analytically. Assuming that a and ẑ0 are independent random

variables, the variance in C0 is given generally by

Var[C0] ¼ Var[a]Var[ẑ0
b]þ Var[a]E[ẑ0

b]2 þ E[a]2Var[ẑ0
b], ð3:2Þ
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which, by dividing by E[C0]2, may be expressed in terms of relative variances,

ŝ2
C0,uncond ¼ ŝ2

C0,cond[ŝ2
ẑb

0

þ 1]þ ŝ2
ẑb

0

, ð3:3Þ

where ŝ2
C0,uncond ; Var[C0]=E[C0]2 denotes the unconditional variance of C0, ŝ2

C0,cond ; Var[a]=E[a]2 the

variance in C0 conditional on ẑ0, and ŝ2
ẑb

0

; Var[ẑb0 ]=E[ẑb0 ]2 is the relative variance of a power-law function

of the uncertain bottom friction parameter. For a log-normally distributed ẑ0, we have exactly

ŝ2
ẑb

0

¼ (1þ ŝ2
ẑ0

)b
2

� 1, which is shown in figure 8b as the continuous red line. This line shows good

agreement with the unconditional variance from numerically exact convolution (continuous black

line); apparent disagreements are due to models of alternative form also being included in the curve

(cf. appendix B). For small values of uncertainty in ẑ0 (parametric uncertainty) and a (model

uncertainty), (3.3) may be approximated to give

ŝ2
C0,uncond ¼ ŝ2

C0,cond þ b2ŝ2
ẑ0

, ð3:4Þ

where only leading-order terms are considered in both relative variances and their products are ignored.

The dashed red line in figure 8b shows that (3.4) accurately represents (3.3), except for large values of ŝ ẑ0
.

At our base case value for parametric uncertainty of ŝ ẑ0
¼ 1:6 (derived from (3.1) and table 2), we

obtain an estimate for the unconditional relative standard deviation of ŝC0 ¼ 0:41 from figure 8b. We

use this value ŝl0 ¼ ŝC0 ¼ 0:41 in the next section to estimate the quantitative impact of bed

roughness uncertainty. We emphasize our estimates are indicative, not definite.
4. Quantitative estimates of the effect of uncertainty
4.1. Expected power
Figure 9a shows the change in expected power as a percentage of deterministic power for our base case value

of relative background friction uncertainty ŝl0 ¼ 0:41. For a fully spanned channel dominated by channel

drag (GC05), such as a shallow, long channel with ml0
	 1, the increase in expected power can be as large

as 30%. In fact, in the limit of very few turbines (lT), we have (E[P]� Pdet)=Pdet ¼ (15=8)ŝl0

2 � 32% (cf. table

1). However, in a deeper channel representative of the Pentland Firth (ml0
¼ 1.0, see Vennell et al. [15]) the

increase in expected power would only be of the order of a few per cent (6%) and would tend to reduce as

more turbines are added. For laterally unconfined channels, the effects are negative and generally small (less

than 5–10%).
4.2. Optimal turbine drag
Figure 9b shows the change in optimal turbine drag as a percentage of the deterministic optimum for

ŝl0
¼ 0:41. The change is between 214% for a drag-dominated fully spanned channel (GC05) and
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þ8% for a laterally unconfined channel (GC13). Inertia acts to reduce the decrease in optimal turbine drag

for fully spanned channels; in a channel representative of the Pentland Firth (ml0
¼ 1.0), we estimate a

reduction in the optimal turbine drag of 5%.
4.3. Uncertainty in power
Figure 10 shows the standard deviation of power as a percentage of the deterministic power for

ŝl0 ¼ 0:41. For drag-dominated fully spanned channel (GC05) with few turbines, the relative standard

deviation reaches 62%. Again, inertia reduces this. In a channel representative of the Pentland Firth

(ml0
¼ 1.0), we estimate a relative standard deviation of 30%.
5. Conclusion
Estimates of the tidal power that can be extracted at a given site are subject to significant uncertainty,

with different estimates sometimes more than an order of magnitude apart. Of the many sources of

uncertainty, uncertainty in bed friction can be considerable—both due to unknown and spatially

varying bed conditions and variation in the predictions of different bed friction models. To illustrate

this, we estimate the parametric uncertainty resulting from lack of knowledge of bed conditions at a

particular site, to be associated with a relative standard deviation of ŝ ẑ0
¼ 1:6, if we assign equal

probabilities to a range of commonly occurring bed types. Even with precise knowledge of the bed

conditions, we estimate a relative standard deviation of 0.22 associated with the range of predictions

for C0 from different models outlined in table 3. We combine these uncertainties to give an

unconditional uncertainty in bed roughness of ŝC0
¼ 0:41 (one relative standard deviation) related to

a typical site for tidal turbine deployment. This estimate constitutes a lower limit for uncertainty in

the bed roughness coefficient at a particular site for the data presented in table 2, because it is

assumed that the bed conditions (and their variability) are known. In reality, this knowledge

is unlikely, and so the uncertainty in C0 is likely to be greater. Furthermore, spatio-temporal

variability in bed conditions, which is not discussed here, will act to increase the value for ŝC0
. For a

given site, the uncertainty may be constrained by performing appropriate seabed surveys and a better

estimate for bed roughness coefficient may be found, though uncertainty will remain.

In order to make a quantitative assessment of the effect of background friction uncertainty on estimates

of tidal power potential, we have incorporated such uncertainty in three idealized models of tidal energy

extraction, of which each captures a different element of the key physics. In Garrett & Cummins [10]

(GC05), an analytic solution is derived for the power potential of a channel in the drag-dominated limit

and fully spanned by turbines. Vennell [11] (V10) relaxes this limit by retaining inertia in the governing

equation for a fully spanned channel and derives an analytic solution for power to an approximate form

of the governing equation. Finally, Garrett & Cummins [12] (GC13) allow for bypass flows by
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considering a laterally unconfined turbine farm. In particular, we have used perturbation methods to

derive leading-order estimates for the effect of uncertainty in the value of bed roughness coefficient on

three key quantities for each of the models: expected power, standard deviation in power and optimal

turbine drag. In the presence of background friction uncertainty and nonlinearity in the model,

evaluating power for the expected value of background friction does not give the same answer as

evaluating the expectation of power for the distribution of values of background friction (cf. Jensen’s

inequality). It is the difference between the two that we consider when we compare expected power

with deterministic power (evaluated at the mean value of background friction). A similar issue is

encountered in wind energy assessment, where the median is used as a measure of power under

uncertainty because it is invariant under monotonic nonlinear transformations. Evidently, power is now

a random variable and we also consider the standard deviation of its distribution as a relevant measure

to understand the confidence we have in tidal resource estimates. Finally, the turbine drag chosen to

optimize expected power is different from that chosen to optimize deterministic power.

Our conclusions are as follows. First, for fully spanned channels (GC05 and V10), we have identified

two regimes. In the drag-dominated regime, the expected power is larger than the deterministic power,

whereas in the inertia-dominated regime the opposite is true. Inertia has the effect of bounding the flow

rate at low values of bed roughness, such that the increase in expected power is smaller and even

reversed at sufficiently low total channel drag (backgroundþturbine). For channels in which the flow

may be diverted around the turbines (GC13), the expected power always decreases, except for

extremely large turbine drag (i.e. very many turbines installed). Quantitatively, we estimate expected

power can increase by as much as 32% for drag-dominated, quasi-steady channels, which are typically

shallow and long, while reducing expected power by only 6% in laterally unconfined flow. In a

channel representative of the Pentland Firth (ml0
¼ 1.0), the increase in expected power may only be of

the order of a few per cent.

Second, uncertainty in power is only enhanced compared to background uncertainty for very drag-

dominated fully spanned channels (and for laterally unconfined channels with very large turbine drag).

Inertia has the effect of reducing power uncertainty, because power becomes less sensitive to bottom drag

in the presence of inertia, and variation in bed roughness produces a relatively smaller variation in

power. Laterally unconfined channels behave in the opposite way: for low values of turbine drag, less

of the flow is diverted around the farm and the flow rate tends towards a constant, independent of

bed roughness. For a channel representative of the Pentland Firth, the uncertainty in extractable power

may be as large as 30% (one relative standard deviation) for small-scale turbine deployments. This

value increases to over 50% for a small, high flow-rate channel (ml0
¼ 4.5), indicating that while the

shift in expected power resulting from considering uncertainty may be negligible, variation in this

power can be considerable. For example, the 95% confidence interval for the power from the Pentland

Firth due to uncertainty in bed roughness will be at +2ŝP ¼+60% of the mean power value

determined. For a mean power of 5 GW (the mean of the range 0.62–9 GW given in the Introduction)

then, the range of likely values for power estimates from the Pentland Firth is 2–8 GW, spanning a

significant portion of the range of reported values. However, it must be emphasized that the reported

estimates are taken from different models, with different physical assumptions, containing sources of

uncertainty other than bed friction (the focus of the present paper) and which may contribute to a

greater extent to the range of mean power estimates reported above.

Third, the turbine drag that maximizes expected power in the presence of background uncertainty is

greater compared to its deterministic value for laterally unconfined channels (GC13) and smaller for fully

spanned channels (GC05), with uncertainty reducing the size of this effect (V10). Generally, however, this

effect is small (between 28 and þ14%).

There are a number of limitations to these findings. First, the models considered herein are idealized

and do not take into account the complex bathymetry of actual tidal sites and associated flow curvature,

the complexity of the tidal forcing components or deformation of the free surface. This limits the extent to

which the findings from the models may be applied to real sites that exhibit such features. Furthermore,

the models used are depth-averaged and so provide suitable power estimates only for regional-scale

energy extraction by large turbine deployments [1]. Future work, using a numerical model applied to

a real site such as the Pentland Firth (e.g. that of Adcock et al. [5]), would take these into account and

could thus be used to validate the predictions made in this paper. Second, we consider here only the

effect on extractable power, which does not take into account mixing in the wake of the turbines,

instead of available power. Future work, would apply the methodology of the present paper to linear

momentum actuator disc theory [20] to include the effect of wake mixing. Third, we have only

considered uncertainty in background friction and not turbine drag itself. Future work would
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consider uncertainty regarding the correct value for enhanced bed roughness to use in a depth-averaged

model to capture accurately the thrust exerted by rows of turbines [21,22].

Data accessibility. This work does not have primary data. Code used to numerically determine the optimal turbine drag

for V10 is available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.cp7v85c [23].
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Appendix A. Statistical moments for V10

A.1. Expected power
The expected power for V10 is determined in the same way as that for GC05. Power in V10 (2.11) is

expanded in terms of a Taylor series in Dl0 about the deterministic case l0 ¼ ml0
, truncated to second

order. We use the shorthand leq ; 8(l0 þ lT)/(3p) and ~m ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

leq
þ 1

q
to reduce clutter. The Taylor

expansion is done in terms of leq, i.e. leq ¼ mleq
þ Dleq where mleq

¼ 8(ml0
þ lT)/(3p) and Dleq ¼

8Dl0/(3p). Noting that the variance of the equivalent channel drag is s2
leq
¼ (8sl0

/(3p))2 due to the

linear transformation, the expected power is given by

1

P0
E[PV10] ¼ 4

3p
lT

(~m� 1)3=2

(
ffiffiffi
2
p

mleq
)3

þ 4

3p
lT

3(10m4
leq

(~m� 4)þ m2
leq

(19~m� 27)þ 4(~m� 1))

2
ffiffiffi
2
p

m5
leq

(4m2
leq
þ 1)3=2 ffiffiffiffiffiffiffiffiffiffiffiffi

~m� 1
p s2

leq
þO(E[Dleq

3]): ðA 1Þ

The first term is simply the power calculated from the V10 model (2.11) at a drag of leq ¼ mleq
. The

second term indicates the leading-order response of the model to uncertainty. The change in expected

power as a fraction of deterministic power (E[PV10] 2 Pdet)/Pdet changes sign from negative to positive

at a value of mleq
¼ 0.420, i.e. ml0

þ lT ¼ 0.495.

A.2. Variance
In a similar manner, the variance for V10, i.e. s2

PV10
¼ E[P2

V10] 2 E[PV10]2, is given by

s2
PV10
¼ l2

T

8(1� ~mþ (7� 5~m)m2
leq
þ (13� 5~m)m4

leq
þ 4m6

leq
)

p2 ~m3m8
leq

þO(E[Dleq
3]): ðA 2Þ

A.3. Optimum turbine drag
The turbine drag which maximizes the expected power (A 1) was found numerically by using a Newton–

Raphson algorithm to find the value of lT (in the limit of a small standard deviation in l0, to be consistent

with the expansions in the other sections) which satisfies @(A 1)/@lT ¼ 0 and gave a negative second

derivative.
Appendix B. Bed roughness coefficient models
Table 3 lists several commonly encountered formulae for bed roughness coefficients, derived from

empirical and numerical experiments, as a function of roughness length z0. The formulae are shown

in figure 11 to illustrate the spread in values of C0 for a given value of roughness length. The mean

bed roughness coefficient mC0
and one standard deviation + sC0

either side are superimposed onto the

models.
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Table 3. Eight different formulae for calculating bed roughness coefficient C0, used to estimate model uncertainty for given
relative roughness ẑ0 ¼ z0=h, taken from [19]. Here k is von Kármán’s constant and its values and those of the parameters a,
b and B have been obtained from experimental and numerical data by different authors.

formula label in figure 11 and name parameters

C0 ¼
	

k
Bþln (̂z0 )


2
(1) Deep water [19] k ¼ 0.40

boundary-layer thickness d B ¼ (d/2h) 2 log(d/2h)

(2) Colebrook – White [24] k ¼ 0.405

z0 ¼ (ks/30) þ (n/9u*) B ¼ 0.71

(3) full-depth logarithmic [19] k ¼ 0.40

velocity profile B ¼ 1

C0 ¼ aẑb0 (4) Manning – Strickler [19] a ¼ 0.0474

b ¼ 1
3

(5) Dawson – Johns [25] a ¼ 0.0190

b ¼ 0.208

(6) Soulsby [18] a ¼ 0.0415

b ¼ 2
7
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