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We investigate the dynamics of a wild-type viral strain which

generates mutant strains differing in phenotypic properties for

infectivity, virulence and mutation rates. We study, by means of

a mathematical model and bifurcation analysis, conditions under

which the wild-type and mutant viruses, which compete for

the same host cells, can coexist. The coexistence conditions are

formulated in terms of the basic reproductive numbers of the

strains, a maximum value of the mutation rate and the virulence

of the pathogens. The analysis reveals that parameter space can

be divided into five regions, each with distinct dynamics, that

are organized around degenerate Bogdanov–Takens and zero-

Hopf bifurcations, the latter of which gives rise to a curve of

transcritical bifurcations of periodic orbits. These results provide

new insights into the conditions by which viral populations may

contain multiple coexisting strains in a stable manner.
1. Introduction
The combination of very large population sizes, very short

generation times, and lack of proof-reading mechanisms during

genome replication confer viral populations with an extremely

high evolutionary plasticity that allow them to quickly adapt to
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environmental changes such as new host species, the presence of antiviral drugs, new transmission

routes or to new vectors [1]. This tremendous evolvability, coupled with densely populated animal

and plant susceptible hosts (in many cases lacking genetic variability for resistance to infection), are

the reasons for the persistence and emergence of new viral diseases or the re-emergence of new

strains with novel properties of already known diseases. The continuous emergence of new mutants

leads to an overlap in existence of wild-type (hereafter referred to as wt) and mutant genotypes of the

same virus within individual infected hosts [2,3]. This cloud of mutants is usually known as a viral

quasi-species [1] and it constitutes the target of selection, instead of the individual viral genomes. This

reservoir of coexisting genetic variants may lead to the emergence of new genotypes with different

host ranges, pathologies and epidemiological properties that may result in outbreaks [4,5].

With the development of high-coverage, ultra-deep sequencing techniques, it is now possible to

characterize in great detail virus genetic diversity along the course of infection of individual hosts,

demonstrating the coexistence of multiple mutant genotypes within individual hosts, some even

during long periods of time [6–8]. Furthermore, some of these studies have also shown that dynamics

are highly complex and do not only depend on the differences in replicative fitness among individual

genotypes, but on other parameters such as the size and frequency of within-host bottlenecks,

complementation of strains, fixation of additional mutations on the same genotype, epistasis, the

availability of beneficial mutations (which indeed depends on the degree of adaptation to the host),

the load of deleterious mutations or clonal interference among coexisting beneficial mutations [9–12].

What evolutionary mechanisms determine the long-term coexistence of different genetic variants and

strains that, in principle, shall be competing for the same resources (e.g. target cells)? Understanding the

evolutionary forces of such intraspecific competition or strain coexistence are essential for understanding

the long-term fate and composition of viral populations and for a thoughtful design of more robust

control strategies for known and future outbreaks [13]. Consequently, the coexistence of evolving

pathogens has been the target of extensive research [14–17].

In the mathematical theory of population genetics, mutation, which is understood as any change in

the genome of an organism, is often modelled as a ‘flow’ between populations of initial wt individuals

and emerging mutant individuals [18–21]. In the present article, we introduce mutation into a

mathematical model in a similar way although avoiding forceful restrictions put upon mutant strains

and allowing the mutant virus to have similar characteristics to the wt virus. The difference between

mutant and wt strains occurs when focusing the study on specific phenotypic characteristics. A

number of studies employ fitness to investigate the survival of a population in dynamical systems that

present competition or coexistence [22–24]. As an accumulative property resulting from various

phenotypic traits, fitness is a convenient measure of the overall success of the population. In the case

of virus evolution, fitness can be considered proportional to the infection rate of the virus [25–27],

and measured by the infection rate when other parameters are fixed. It is known that infection rates

differ between strains, a fact which has significant implications for the evolution of virulence and

strain coexistence in nature [28]. Even the balance between genetic diversity and competition is

believed to be achieved due to the possibility of coexistence among strains with differences in infection

rates [29]. In other words, a direct competition for infecting available cells mediates the stable

coexistence only when competitive abilities in viral clones satisfy certain pairwise asymmetries [30].

A secondary phenotypic characteristic that can differ between viral strains is their strategy for

exploiting the host cell, i.e. their virulence [31]. The evolution of virulence has received great attention

from theoreticians, particularly on the coevolution between resistance and virulence traits and their

combined effect on host and virus dynamics [32,33]. However, understanding the evolution of

virulence for coexisting viral strains still requires attention due to the complexity of the underlying

evolutionary and dynamical processes, being inherently nonlinear. Many of the models brought

forward to explain the evolution of virulence take into consideration the processes of coinfection and

superinfection [34–37], where the host or the host cell is infected simultaneously by more than one

pathogen particle (coinfection) or sequentially by different pathogens (superinfection). Here, infection

of a cell will be modelled with virions of a single strain and superinfection will be neglected. The

benefit of this approach is that analytical insights into coexistence of viral strains can be obtained.

The purpose of this paper is to illustrate, by means of a dynamical mathematical model, the conditions

for coexistence of viral strains that considers both a wt viral strain and its mutants. We present analytical and

numerical results focusing on the parameters related to the differential phenotypic traits of the wt and

mutant strains. Conditions for coexistence and invasion have previously been studied using a

mathematical model of one host shared between two competing parasites [38]. However, this model did

not incorporate the mutation of parasites as a factor, and thus neglected the input of new strains into the
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Figure 1. Schematic diagram of the processes included in the mathematical model for the main system investigated, which does not
consider backward mutations. The system is composed of two pathogenic strains: wild-type (variable zw) and mutant (variable zm)
species, that compete for the infection of healthy cells (variable x, green cells). Infection of healthy cells gives rise to two different
populations of infected cells with wt (variable yw) and mutant (variable ym) strains, displayed by red and blue cells, respectively.
Viral strains are assumed to grow and mutate (dashed lines) within the cells, being released again to the system for further infection
after cell lysis.
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system. Nearly all mathematical models in epidemiology detecting various dynamical behaviours with

multi-strain infections illustrate the necessity of numerical approaches and the dependency of such

models on a large number of parameters [39–43]. A classical approach used in epidemiology [44] to

circumvent this difficulty is to introduce dimensionless parameter groups, such as the basic reproduction

number R0, as in [45]. However, the number of dimensionless groups can still become large as additional

complexity is introduced into the model, as is the case here. Thus, we perform a bifurcation analysis to

systematically track how the dynamics of the system change as multiple parameters are varied. In

general, the study of parameters in terms of their effect on the stability of certain states of a model is a

highly effective way to gain important insights into the investigated system [46–48].

The paper is organized as follows. We first introduce a detailed description of the model in §2. Then,

in §3, we provide the equilibrium points of the system, study their stability and investigate, in detail, the

effect of phenotypic differences in infection rate, virulence and mutation rate. The biological

interpretations of the results are present throughout the work, however, concrete statements are found

in §4. Some technical details of the bifurcation analyses are discussed in appendix A.
2. Mathematical model
Here we introduce the mathematical model describing the infection dynamics of wt and mutant strains.

The model is based on a nonlinear system of five ordinary differential equations. The state variables of

the model are: uninfected susceptible cells, x; two different virus strains, given by the wt (zw) and the

mutant (zm) species; and two types of infected cells, one infected by the wt strain, yw, and another

one infected by the mutant strains, ym (figure 1). The time evolution of the interacting populations is

described with the following model:

_x ¼ bxð1� x=KÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
bounded replication

of healthy cells

�amzmx� awzwx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
infection

of healthy cells

�dx;|ffl{zffl}
decay of

healthy cells

(2:1a)
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_ym ¼ amzmx|fflfflffl{zfflfflffl}
growth of mutant

infected cells

þ myw

zfflfflffl}|fflfflffl{
mutation from
wt to mutant

�gmym,|fflfflfflffl{zfflfflfflffl}
decay of mutant

infected cells

(2:1b)

_yw ¼ awzwx|fflfflffl{zfflfflffl}
growth of wt
infected cells

� myw

zfflfflffl}|fflfflffl{
mutation from
wt to mutant

�gwyw,|fflfflfflffl{zfflfflfflffl}
decay of wt

infected cells

(2:1c)

and

_zi ¼ kigiyi|fflffl{zfflffl}
lytic release of
type i virions

�niaizix
zfflfflfflfflffl}|fflfflfflfflffl{

internalization of
type i virions by infection

�zizi,|fflffl{zfflffl}
degradation of
type i virions

with i ¼ m, w: (2:1d)

The terms in model (2.1) are labelled with the biological processes. The meaning of these processes as

well as of the parameters is discussed in the following lines. The uninfected host cells, which are limited

by the carrying capacity of their environment, K, proliferate and die proportionally to parameters b and

d, respectively.

As previously mentioned, the mutant and the wt strains infect the host cells at rates am and aw,

respectively. Mathematical and statistical models of multiple infections, coinfection and superinfection

have been studied in detail [49–52] and are not considered here. Acknowledging the importance of

differences between lytic and lysogenic infection cycles in the production of virions, yet unlike [53–55],

we consider only lytic infections, i.e. the populations of infected cells do not grow as uninfected cells do

[56]. In fact, the model is based on the same assumptions of the classic Lotka–Volterra equations, which

were adapted to virus dynamics by Nowak & May [57] and many others [58–62]. In the study of

coexistence of viral populations, the main role of infected cells is viewed in the scope of the processes of

the lytic cycle, i.e. a direct impact in change and production of free virions. Viruses replicate and

produce their own type of virions via infected cells. Strains can change and mutations occur only during

the process of viral replication inside an infected cell (see dashed arrow in figure 1). Therefore, cells from

population yw infected by the wt strain can mutate at rate m into cells of population ym. That would

increase the size of the latter population at the same rate m. We note that our analyses are mainly

developed considering mutations from the wt to the mutant strains. This is a standard strategy to keep

the model as simple as possible, assuming that the probability of backward mutations is extremely small

due to the enormous size of the sequence space. However, some results considering backward mutations

will also be presented. While considering mutation in infected cells, we implicitly study the mutation of

the viral genomes. It is clear that infection affects the life-span of infected cells in a nontrivial way [63]. In

this study, the virulence of the strains is depicted by including new decay mechanisms for the uninfected

cells. However, for simplicity, we consider death rates of infected cells to be gm and gw, and as opposed

to d þ Dgm and d þ Dgw.

The absence of a mechanism for virus replication makes the multiplication of viral strains entirely

dependent on the machinery of the infected cells. Therefore, the overall number of virions produced

in one lytic cycle must be proportional to the virulence and the number of virions produced by a

single-infected cell, the latter of which we refer to as the burst size. We average the burst sizes of viral

strains and consider them as constants km and kw for mutant- and wt-infected cells, respectively. Au
contraire, the infection from the perspective of the virus is associated with an average number of

virions spent to ensure a successful infection process. Owing to the absence of co-infection by

different strains in our model, this number can be considered as the multiplicity of infection of the

viral strain. We take the multiplicity of infections to be constants nm and nw for mutant and wt

strains, respectively. In this model, we assume that populations are not being harvested, but do

consider a decay of all the populations in the system. In the case of the virus populations, this
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decrease is described as an outflow or ‘death’ of free virus particles from the system. The overall ‘death’

rates of the virions in the system are zw and zm for wt and mutant strains, respectively.

Initial conditions for system (2.1) are non-negative values:

x(0) ¼ X, ym(0) ¼ Ym, yw(0) ¼ Yw, zm(0) ¼ Zm, zw(0) ¼ Zw:

2.1. Non-dimensionalization
The model (2.1) can be simplified by introducing dimensionless variables that are based on characteristic

timescales and population sizes. The quantity b 2 d describes the effective growth rate of uninfected cells

and its inverse, (b 2 d)21, is used to define the characteristic time scale of the system. In a virus-free

environment, the maximum size of the uninfected cell population is ~xmax ¼ (1� d=b)K, which is used

to define the characteristic population size for both the uninfected and infected cells. The characteristic

population size of the viral strains is chosen to be the product of the mutant burst size km and the

characteristic size of the infected cell population, ~xmax. The former is required due to differences in

sizes and measurement units of the viral loads and the cell populations in the system. We therefore

non-dimensionalize the variables according to

t ¼ (b� d)�1�t, x ¼ ~xmax�x, yi ¼ ~xmax�yi, zi ¼ ~xmaxkm�zi, (2:2)

where bars are used to denote dimensionless quantities. We also introduce dimensionless parameters

defined by

�ai ¼
kmKai

b
, �ni ¼

ni

km
, �k ¼ kw

km
, �m ¼ m

b� d
, �pi ¼

pi

b� d
, (2:3)

where pi (recall that i ¼m, w) stands for other ‘rate’ parameters, namely: gm, gw, zm and zw. Notice that

all non-dimensional ‘rate’ parameters, including mutation �m, are relative rates, i.e. the rate relative to the

effective growth rate of uninfected cells. Meanwhile, non-dimensional parameters related to the virus

populations are inevitably linked to the burst size due to the choice of �zi. The non-dimensional burst

size �k is simply the ratio of the wt and mutant burst sizes. Both multiplicity of infections are scaled

with respect to the burst size of the mutant strain. The dependence of the dimensionless infection

rates �ai on the burst size of the mutant-type-infected cells, the carrying capacity, growth rate of

uninfected cells and dimensional infection rate shows how each of these quantities affects the overall

rate of infection.

Understandably, the non-dimensionalization places a restriction on the parameter values and

requires b . d. However, this restriction is biologically justified. Taking b . d, as shown later, forces

the trivial equilibrium to be unstable, thus avoiding scenarios where all populations become extinct.

Upon ignoring bars for clarity purposes, we obtain the non-dimensionalized system

_x ¼ x(1� x)� amzmx� awzwx, (2:4a)

_ym ¼ amzmxþ myw � gmym, (2:4b)

_yw ¼ awzwx� myw � gwyw, (2:4c)

_zm ¼ gmym � nmamzmx� zmzm (2:4d)

and _zw ¼ kgwyw � nwawzwx� zwzw: (2:4e)
3. Results and discussion
The dimensionless model (2.4) is now analysed to understand how the dynamics change under

parameter variation. We calculate the equilibria of (2.4), conduct a linear stability analysis, and

identify analytical conditions that lead to transcritical and Hopf bifurcations. We find that curves of

these bifurcations can intersect at specific points in parameter space, giving rise to degenerate

Bogdanov–Takens (DBT) and zero-Hopf (DZH) bifurcations. The role of DBT and DZH bifurcations is

to organize the stability (or phase) diagram into regions with distinct dynamics. The numerical

continuation package MATCONT [64] is used to track how the equilibria and bifurcations evolve as

the infection rate, virulence, and mutation rate are varied. The MATCONT source code and data are

available online [65].
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3.1. Equilibrium points
The non-dimensional model given by equations (2.4) has four equilibria. For mathematical convenience,

we define the population vector v(t) ¼ {x(t), ym(t), yw(t), zm(t), zw(t)}. The first equilibrium is the origin

v0 :¼ {x ¼ 0, ym ¼ 0, yw ¼ 0, zm ¼ 0, zw ¼ 0}: (3:1)

If stable, the trivial solution v0 corresponds to the extinction of all of the populations. The second

equilibrium

v1 :¼ {x ¼ 1, ym ¼ 0, yw ¼ 0, zm ¼ 0, zw ¼ 0}, (3:2)

describes, whenever stable, a virus-free state whereby only the uninfected cells persist. Owing to our

choice of non-dimensionalization, the maximum population of uninfected cells is equal to one. The

third equilibrium is given by

v2 :¼ x ¼ zm

amð1� nmÞ
, ym ¼

ðamð1� nmÞ � zmÞzm

a2
mð1� nmÞ2gm

, yw ¼ 0,

(

zm ¼
amð1� nmÞ � zm

a2
mð1� nmÞ

, zw ¼ 0

�
, (3:3)

and, if stable, corresponds to the persistence of uninfected cells and the mutant strain of the virus. There

is no wt strain of the virus and the viral population is only composed of mutant genotypes. In order for

the wt-free state v2 to be biologically meaningful, the condition nm , 1 must hold. This condition

corresponds to the burst size of the mutant virus being greater than its multiplicity of infection.

Throughout the remainder of the paper, it will be assumed that nm , 1. Finally, the fourth

equilibrium point is given by

v3 :¼ x ¼ zw(gw þ m)

Aaw
, ym ¼

Bmzw(Cþ amgwzw)

A2 Ca2
wgm

, yw ¼
Bzw(C� ammzw)

A2Ca2
w

,

�

zm ¼
Bmzw

ACaw
, zw ¼

B(C� ammzw)

ACa2
w

�
, (3:4)

where

A ¼ gwk� (mþ gw)nw,

B ¼ �((nw � k)aw þ zw)gw � m(awnw þ zw)

and C ¼ amzw(gw(1� nm)� mnm)� aw zm(gw(k� nw)� mnw):

9>=
>; (3:5)

This equilibrium point involves, whenever stable, a state of coexistence for the wt and mutant strains.

Similar to the wt-free state v2, the coexistence state v3 can only be biologically meaningful if the burst

size of wt strain satisfies k . nw(1 þ m/gw). This inequality is a generalization of that derived for the

mutant virus (nm , 1) which accounts for mutation. The singularity that occurs in the coexistence

state v3 when C ¼ 0 leads to difficulties when using numerical methods to track how this equilibrium

evolves under parameter variation. The assumption of uni-directional mutation prevents the existence

of an equilibrium point that is analogous to v2 whereby only the wt virus exists.

3.2. Linear stability analysis and bifurcations
A linear stability analysis is carried out to determine the behaviour of the system close to the equilibrium

points. The Jacobian matrix for equations (2.4) is given by

J ¼

�amzm � awzw � 2xþ 1 0 0 �awx �amx
awzw �gw � m 0 awx 0
amzm m �gm 0 amx
�awnwzw kgw 0 �awnwx� zw 0
�amnmzm 0 gm 0 �amnmx� zm

2
66664

3
77775:

Straightforward calculations for the trivial solution v0 yield eigenvalues of the Jacobian given by

L0 ¼ (1, �zw, �zm, �gm, �gw �m)T: (3:6)

Thus, for all parameter values, the trivial solution v0, as mentioned before, is always unstable, i.e. it is a

saddle point with a one-dimensional unstable manifold.
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Although it is possible to find analytical expressions for the eigenvalues of the Jacobian evaluated at

v1, they are sufficiently complicated that little insight is gained from analysing them directly. In order to

conduct a stability analysis for v1, it is more useful to consider the characteristic polynomial for the

eigenvalues l. The polynomial det (J(v1)� lI) ¼ 0 can be regrouped into the form of three factors

P1(l) � P2(l) � P3(l) ¼ 0, where

P1(l) ¼ lþ 1, (3:7a)

P2(l) ¼ l2 þ (awnw þ gw þ mþ zw)l� aw(gw(k� nw)� mnw)þ zw(gw þ m) (3:7b)

and P3(l) ¼ l2 þ (amnm þ gm þ zm)lþ amgm(nm � 1)þ gmzm: (3:7c)

The first factor, P1, provides a constant eigenvalue, l ¼ 21, which reserves the possibility for stability of

v1. Although the next two factors P2 and P3 do not provide obvious eigenvalues, they enable the

identification of critical parameter groups for which v1 undergoes a bifurcation.

Based on our knowledge of the bifurcations that can occur in models similar to (2.4), we may expect

to find transcritical and Hopf bifurcations. For a varying parameter (or set of parameters), the onset of a

Hopf bifurcation leads to the creation of periodic orbits (POs) after the change of stability of the

equilibrium point. Furthermore, Hopf bifurcations are characterized by the Jacobian matrix having a

single pair of complex conjugate eigenvalues with zero real part. An analysis of the factors P2 and P3

given by (3.7b,c) reveals that v1 cannot undergo a Hopf bifurcation. This is because the coefficients of

the linear terms are strictly positive, thus preventing the eigenvalues from ever being purely imaginary.

Transcritical bifurcations occur when two equilibria collide non-destructively, exchanging their

stability and resulting in the Jacobian matrix having a single eigenvalue that is equal to zero. Since v1

exists for all parameter combinations, transcritical bifurcations can be straightforwardly detected by

forcing l to be zero in P2 and P3. By solving P2(l ¼ 0) ¼ 0, we find Rw
0 ¼ 1, where

Rw
0 :¼ aw

zw

k

1þ mg�1
w

� nw

� �
: (3:8)

Similarly, solving P3(l ¼ 0) ¼ 0 results in Rm
0 ¼ 1, where

Rm
0 :¼ am

zm

(1� nm): (3:9)

It will be shown below that Rw
0 and Rm

0 are the basic reproductive numbers for the wt and mutant strains,

respectively. When Rw
0 ¼ 1, the virus-free state v1 and the coexistence state v3 intersect. By expanding v3

around Rw
0 ¼ 1, we find that it has negative components when Rw

0 , 1 and thus lies outside of the

biologically meaningful phase space. However, all of the components of v3 become positive when

Rw
0 . 1. Likewise, expanding the equilibrium v2 around Rm

0 ¼ 1 shows that this condition corresponds

to points where the virus-free state v1 and wt-free state v2 intersect. For Rm
0 , 1, some components of

v2 are negative; for Rm
0 . 1, all components are positive. In the case when both Rw

0 ¼ Rm
0 ¼ 1 hold,

there is a triple intersection of v1, v2 and v3. Furthermore, the Jacobian has a double zero eigenvalue at

this point, indicating the onset of a non-degenerate or degenerate Bogdanov–Takens bifurcation. As

will be shown in §3.1, the Bogdanov–Takens bifurcations in this model are of degenerate type. More

generally, we find that v2 and v3 intersect when Rm
0 ¼ Rw

0 , that is, when

aw

zw

k

1þ mg�1
w

� nw

� �
¼ am

zm

(1� nm): (3:10)

Thus, there are three curves of transcritical bifurcations defined by Rw
0 ¼ 1, Rm

0 ¼ 1 and Rm
0 ¼ Rw

0 , all of

which simultaneously intersect at the DBT point.

The dynamics of the system near the DBT bifurcation can be determined by expanding the equilibria

and their eigenvalues around Rw
0 ¼ 1 and Rm

0 ¼ 1. The eigenvalues of all of the equilibria are real, ruling

out the possibility of a branch of Hopf bifurcations emanating from the DBT point, which is a generic

feature of non-degenerate Bogdanov–Takens bifurcations [66]. When Rw
0 , 1 and Rm

0 , 1, the virus-

free state v1 is locally asymptotically stable and the wt-free state v2 and the coexistence state v3 are

unstable, meaning that the virus-free state is achieved. For Rm
0 . 1 and Rw

0 , 1, the virus-free and wt-

free state exchange stability, with v1 becoming unstable and v2 locally asymptotically stable, with v3

remaining unstable. Similarly, for Rw
0 . 1 and Rm

0 , 1, the virus-free and coexistence state exchange

stability: v1 becomes unstable, v3 becomes locally asymptotically stable, and v2 remains unstable. The

stability in the region Rm
0 . 1 and Rw

0 . 1 is governed by the transcritical bifurcation occurring along
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Figure 2. Co-dimension two bifurcation diagram displaying the local stability near the degenerate Bogdanov – Takens (DBT)
bifurcation in terms of the basic reproduction numbers defined in (3.8) and (3.9). Three regions with different qualitative
behaviours are identified. Region I: virus-free state without infected cells (v1 stable); Region II: wt-free state (v2 stable); and
Region III: coexistence of all strains (v3 stable).
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the curve Rm
0 ¼ Rw

0 , which leads to an exchange of stability between wt-free and coexistence states, v2 and

v3. The transcritical bifurcations that occur for Rm
0 ¼ 1 with Rw

0 . 1, Rw
0 ¼ 1 with Rm

0 . 1 and Rm
0 ¼ Rw

0

with Rw
0 , 1 do not result in an exchange of stability. Thus, the local stability diagram near the DBT

bifurcation can be drawn as in figure 2. There are three distinct regions, denoted by I, II and III,

where v1, v2 and v3 are local attractors, respectively.

Based on these results, we can interpret the quantities Rm
0 and Rw

0 as basic reproduction numbers for

the mutant and wt viral strains, respectively. In general, for a strain to persist, its basic reproduction

number has to be strictly greater than one. Besides, the value of a basic reproduction number is

proportional to the number of new infections arising in a following generation of virions from an

infected cell. Identifying basic reproduction numbers enables different models of population dynamics

to be compared in a consistent manner. However, as it is not possible to write the dimensionless

model (2.4) solely in terms of the basic reproduction numbers Rm
0 and Rw

0 , we will consider how the

dynamics change under the variation of specific individual parameters that are of biological interest.

To examine the stability of the wt-free state v2, we obtain the eigenvalues from the characteristic

polynomial computed from det (J(v2)�lI) ¼ 0. This equation can be factorized and rewritten as

Q2(l) �Q3(l) ¼ 0, where Q2 and Q3 are quadratic and cubic polynomials in l, respectively. The exact

form of Q2 is not required here. We write Q3(l) ¼ al3 þ bl2 þ cl þ d ¼ 0, where

a ¼ am(1� nm)2,

b ¼ (1� nm)(amgm(1� nm)þ zm(am þ 1)),

c ¼ zm(n2
mam þ (zm � am � gm)nm þ zm þ gm)

and d ¼ (1� nm)zmgm(am(1� nm)� zm):

9>>>>>=
>>>>>;

(3:11)

Following the analysis scheme discussed earlier, to obtain conditions for Hopf bifurcations of v2, we

search for a purely imaginary pair of eigenvalues. Setting Q3(l ¼+iv)¼ 0, we obtain the critical

condition for a Hopf bifurcation, ad ¼ bc, with v ¼
ffiffiffiffiffiffiffi
d=b

p
being the angular frequency of the emerging

POs. Interestingly, for this Hopf bifurcation, there is no dependence on parameters associated with the

wt strain of virus. For all biologically meaningful solutions of ad ¼ bc, the mutant strain of virus has

the potential to gain periodic behaviour through the creation of a stable PO. The other factor, Q2(l),

provides no possibility for a Hopf bifurcation due to a strictly positive linear coefficient in the

quadratic polynomial.

Transcritical bifurcations of v2 may occur if Q2(l ¼ 0) ¼ 0 or Q3(l ¼ 0) ¼ 0. First, setting Q3(l ¼ 0) ¼ 0

yields d ¼ 0, which is equivalent to Rm
0 ¼ 1 and corresponds to an intersection of v1 and v2. Second, from

Q2(l ¼ 0) ¼ 0, we obtain an expression which matches with (3.10), that is, the parameter combination

yielding an intersection of v2 and v3.

As will be shown in §3.3, it is possible to simultaneously satisfy Q3(l ¼+iv)¼ 0 and Q2(l ¼ 0) ¼ 0,

implying that the Jacobian matrix at v2 ¼ v3 has a pair of purely imaginary complex conjugate

eigenvalues and a zero eigenvalue. This corresponds to the onset of a degenerate zero-Hopf (DZH)

bifurcation. Like the DBT bifurcation, the DZH bifurcation will be shown to have an unusual structure

that does not coincide with any of the standard normal forms (this point is further discussed in
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Figure 3. One-dimensional bifurcation diagrams showing the dependence of the equilibrium population of healthy cells x on the
infection rate of mutant-type virus am. We set (a) aw ¼ 0.5 and Rw
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are above zero as am is increased after the Hopf bifurcation. All the other parameter values are given in (3.12).
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appendix A). In particular, our analysis reveals that a curve of global transcritical bifurcations of POs

(TPO bifurcation) emanates from the DZH point rather than a curve of torus bifurcations [66]. A TPO

bifurcation occurs when an unstable PO and a stable PO collide with each other in a non-destructive

way (differently from what would happen in a saddle-node bifurcation of POs, with destruction of

POs), and subsequently exchange stability.

The detailed stability and bifurcation analysis of v2, v3, as well as the DZH point, will be performed

numerically. In particular, we will construct one- and two-dimensional bifurcation diagrams using

specific pairs of parameters.
3.3. Phenotypic differences in infection rates
We first examine the influence of the infection rates am and aw on the dynamics. The values of the other

parameters are set to

m ¼ 0:1, k ¼ 1, gm ¼ gw ¼ 0:25, nm ¼ nw ¼ 0:5, zm ¼ zw ¼ 0:2222: (3:12)

We begin our investigation by constructing one-dimensional bifurcation diagrams using am as the

bifurcation parameter and fixing aw. We first consider two values of the wt strain infections rate given by

aw ¼ 0.5 and aw ¼ 2, corresponding to basic reproduction numbers Rw
0 ¼ 0:48 and Rw

0 ¼ 1:93,

respectively. These values of aw therefore lie on opposite sides of the curve of transcritical bifurcations

involving v1 and v3 defined by Rw
0 ¼ 1. The resulting bifurcation diagrams are shown in figure 3. Solid

and dashed lines represent stable and unstable equilibria, respectively. Solid circles represent maxima

and minima of stable POs. Blue and orange lines denote equilibria that exist in biologically meaningful

and non-meaningful phase space, respectively. The parametric dependence of the population of

uninfected cell population x is used as this is the only component that differs between all four equilibria.

Figure 3a shows, for the case aw ¼ 0.5, two critical values of the mutant-virus infection rate am that

lead to qualitative changes in the dynamics of the system. The point am ¼ 0.44 corresponds to Rm
0 ¼ 1,

and marks the position of the transcritical bifurcation involving the virus-free state v1 and the wt-free

state v2. As predicted by the linear stability analysis in §3.2, the wt-free state undergoes a supercritical

Hopf bifurcation at am ¼ 1.55. The two critical values of am divide the parameter space into three

distinct regions. For am , 0.44, the virus-free state v1 is locally asymptotically stable, corresponding to

Region I in figure 2. Similarly, for 0.44 , am , 1.55, the wt-free state v2 is stable, corresponding to

Region II of figure 2. Finally, for am . 1.55, there is a new region, termed Region IV, where stable

POs exist about the equilibrium v2, which is unstable. These POs describe oscillatory populations of

uninfected cells and mutant-type virus with extinct populations of the wt virus.
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When the infection rate of wt virus is increased to aw ¼ 2, the virus-free and coexistence states

undergo a transcritical bifurcation. Consequently, the bifurcation diagram in figure 3b shows that for

mutant-type infection rates given by am , 0.86, the coexistence state v3 is stable whereas the virus-free

state v1 is unstable. This implies that Region I (v1 stable) is replaced by Region III (v3 stable). Although

v1 and v2 undergo a transcritical bifurcation at am ¼ 0.44, there is no exchange of stability. Instead, it

is v2 and v3 which exchange stability through a transcritical bifurcation at am ¼ 0.86, corresponding to

the case of equal basic reproduction numbers, Rm
0 ¼ Rw

0 ¼ 1:93. Both Regions II and IV persist for

aw ¼ 2, with the supercritical Hopf bifurcation occurring at am ¼ 1.55, the same location as in figure 3a.

The one-dimensional bifurcation diagrams shown in figure 3 can be rebuilt using the infection rate of

the wt virus aw as the bifurcation parameter for fixed values of am that lie on opposite sides of Rm
0 ¼ 1.

However, the resulting diagrams are qualitatively similar to those in figure 3, with the exception that

the wt-free state v2 is switched with the coexistence state v3 and vice versa. The supercritical Hopf

bifurcation now occurs from v3 and thus gives rise to Region V, characterized by the periodic

coexistence of the viral populations.

The five regions identified from the bifurcation analysis can be conveniently visualized by

constructing a two-dimensional bifurcation diagram where both infection rates am and aw are

continuously varied. In this diagram, displayed in figure 4a, the locations of the bifurcations that

separate the five regions are traced out as the infection rates vary. Not all of the bifurcations shown in

figure 4a lead to a biologically meaningful change in the dynamics, i.e. they do not represent a

boundary between two distinct regions. Thus, in figure 4b we represent the two-dimensional diagram

with only the biologically meaningful bifurcations shown.

Figure 4a reveals a complicated bifurcation scenario that is largely centred about DBT and DZH

bifurcations occurring at aw ¼ 1.04, am ¼ 0.44 and aw ¼ 3.62, am ¼ 1.55, respectively. The DBT

bifurcation lies at the intersection of three curves of transcritical bifurcations satisfying Rw
0 ¼ 1, Rm

0 ¼ 1

and Rm
0 ¼ Rw, which may be written, respectively, in terms of the infection rates as

aw ¼
zw

k(1þ mg�1
w )�1 � nw

, am ¼
zm

1� nm
,

aw

am
¼ zw

zm

1� nm

k(1þ mg�1
w )�1 � nw

: (3:13)

The bifurcation structure around the DBT point is identical to that predicted from the local stability

analysis. Thus, we can eliminate from figure 4a the biologically irrelevant curves of transcritical

bifurcations emerging from the DBT point in order to obtain the boundaries between Regions I, II and

III shown in figure 4b. The DZH bifurcation occurs at the simultaneous intersection of two curves of

Hopf bifurcations associated with v2 and v3 and the curve of transcritical bifurcations involving v2 and

v3. As predicted from linear stability analysis, the Hopf bifurcation curve associated with the wt-free

state v2 does not depend on the infection rate of the wt virus aw and thus appears as a straight line
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given by am ¼ 1.55. Emanating from the DZH point is a curve of TPO bifurcations. To better understand

the dynamics that occur near the DZH point, one-dimensional bifurcation diagrams are obtained by

setting aw ¼ 8 and treating am as a bifurcation parameter and then setting am ¼ 2 and treating aw as

the bifurcation parameter. The resulting diagrams are shown in figure 5, with open circles denoting

unstable POs.

Figure 5a shows that as am is increased from zero when aw ¼ 8, the wt-free state v2 first undergoes a

transcritical bifurcation with the virus-free state v1, then a subcritical Hopf bifurcation, and finally a

transcritical bifurcation with the coexistent state v3. None of these bifurcations change the stability of

the equilibria. Thus, the associated curves of transcritical and Hopf bifurcations in figure 4a do not

represent boundaries between the five characteristic regions and are not shown in figure 4b. For these

infection rates, all of the equilibria are unstable and the dynamics are therefore determined by the

stability of POs. For sufficiently small values of am, the system is in Region V, and there is a stable

PO around the coexistence state v3. This PO is created by the Hopf bifurcation that defines the

boundary between Regions III and V shown in figure 4b. As am is increased, the unstable POs around

the wt-free state v2 that emerge from the subcritical Hopf bifurcation grow in size. Eventually, this

unstable PO collides and exchanges stability with the stable PO around v3 through a TPO bifurcation

at am ¼ 2.3972. During the TPO bifurcation, the stable and biologically meaningful PO around v3

becomes unstable and some components enter negative phase space. Afterwards, the PO around the

wt-free state is stable and the system is in Region IV.

The one-dimensional bifurcation diagram created with am ¼ 2 and shown in figure 5b shares the same

qualitative features as figure 5a, with v2 and its POs exchanging roles with v3 and its POs. None of the

bifurcation of equilibria have biological significance. The main difference in this case is that the

subcritical Hopf bifurcation and the POs it creates exist outside the biologically meaningful phase space.

As these POs are involved in a biologically meaningful TPO bifurcation, this figure demonstrates how it

can still be useful to understand and resolve features that lie outside of the biologically meaningful space.

Upon removing the biologically redundant bifurcation curves from figure 4a, the stability diagram in

figure 4b is obtained. The transcritical bifurcations at the boundaries between Regions I and II, and I and

III, capture the transition from virus-free to virus-persistent states that tend to a stable equilibrium.

Supercritical Hopf bifurcations separate Regions II from IV and III from V, and mark the transition

between stationary and periodic population dynamics. The curve of TPO bifurcations separates

Regions IV and V, both of which are characterized by periodic viral populations, in the same way that

a curve of transcritical bifurcations separates Regions II and III, which describe stationary viral

populations. Thus, despite the system exhibiting a range of complex dynamics, they can be elegantly

classified and organized in terms of the regions shown in figure 4b.

Overall, in figure 4b, we notice quite a large area of coexistence, Regions III and V. In population

genetics, this corresponds to the most simple case of the emergence and persistence of a

polymorphism in a population and maintenance of biodiversity. An example of an experiment that
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illustrates a simplified competition was conducted for Escherichia coli in [67]. These experiments focused

on studying the behaviour of a newly emerging mutant in a population of a few strains of bacteria that

compete with each other in a spatially homogeneous environment for the same type of nutrients. The

results of the competition experiments demonstrate that in the vast majority of cases, the competitors

stably coexist in steady or periodic states, which align with the outcome of our theoretical model.

When even a slight change is possible in the genome, new mutations will appear. However, if all the

other characteristics of an initial and a mutant population are the same, then, for both populations to

persist, the initial population must have larger fitness than a mutant population. Otherwise, the initial

population will be out-competed because of the constant ‘leak’ into the mutant population. A more

detailed analysis of the impact of mutation rates in the dynamics can be found in §3.5.
rnal/rsos
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3.4. Phenotypic differences in virulence
We now study the effect of the strains’ virulence (parametrized by gw and gm) on the dynamics of the

system by building bifurcation diagrams. The infection rates are chosen to be from the different

regions of the stability diagram shown in figure 4b, which are based on the reference values gm ¼

gw ¼ 0.25. The other parameters are fixed to

m ¼ 0:1, k ¼ 1, nm ¼ nw ¼ 0:5, zm ¼ zw ¼ 0:2222: (3:14)

We focus on Regions I, III and IV of figure 4b as a starting point, covering all the other regions from there.

We begin with the case where the infection rates are chosen to coincide with Region I at the virulence

reference values. These infection rates therefore correspond to basic reproduction numbers that are less

than one. From the definition of Rm
0 given by (3.9), we see that the basic reproduction number of the

mutant is independent of the virulence. Thus, changes in gm or gw cannot increase Rm
0 beyond one.

Therefore, Regions II and IV, where the mutant-type virus persists at the expense of the wt virus

becoming extinct, cannot be entered. The basic reproduction number for the wt virus given by (3.8) is

an increasing function of the virulence of the wt virus. In the limit of very large virulence, gw!1,

we find that Rw
0 ! aw(k� nw)=zw. Thus, if the infection rate aw is so small that the limit of Rw

0 is less

than one, then it will not be possible to leave Region I and both strains of the virus will always

become extinct. However, if aw is sufficiently large and the basic reproduction number increases

beyond one, then a change in dynamics will be observed as gw is increased. By solving Rw
0 ¼ 1, a

critical value of the virulence of the wt virus is obtained

gcrit
w ¼ m

k(zwa
�1
w þ nw)�1 � 1

: (3:15)

The above equation is the condition for a transcritical bifurcation between the virus-free state v1 and the

coexistence state v3 and defines the boundary between Regions I and III. Thus, only for values of

gw . gcrit
w will the virus persist in the system for this choice of infection rates.

The stability diagram for aw ¼ 0.5 and am ¼ 0.1 has been numerically computed and is shown in

figure 6a. These values of the infection rate correspond to Region I at the reference values of the

virulence (figure 4b). As predicted, Regions II and IV are absent from the stability diagram. However,

Region V is also missing. Thus, for this choice of infection rates, only Regions I and III can be entered

by changing the values of the virulence. Regions I and III are separated by a straight dash line given

by the critical condition (3.15).

We now consider infection rates given by aw ¼ 3, am ¼ 1, which correspond to Region III at the

reference virulence (figure 4b). The resulting stability diagram in terms of the virulence is shown in

figure 6b. The choice of am ¼ 1 along with the values of the parameters in (3.14) leads to Rm
0 ¼ 2:25.

Thus, variations in the virulence cannot bring the system to Region I and at least one type of virus

will always persist. A transition between Regions II and III can occur via the transcritical bifurcation

between the wt-free and coexistence states v2 and v3. The critical condition for this transcritical

bifurcation is given by equation (3.10), and depends only on the virulence of the wt viral strain. Thus,

the transition between Regions II and III appears as the vertical dashed line in figure 6b. Interestingly,

this figure shows that as the virulence of the wt virus is increased, the system transitions from Region

III to Region V and then back to Region III. These transitions occur via supercritical Hopf bifurcations,

denoted by solid lines. This scenario corresponds to the so-called bubble bifurcation (found in other

epidemiological systems, e.g. [68]), in which the system is in a stationary state, then enters into an

oscillating one, and finally goes back to a stationary state as the control parameter is changed.
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To understand why Region IV does not appear in the stability diagrams on figure 6a,b, we first recall that

Region IV is separated from Region II by a Hopf bifurcation curve of the wt-free state v2. This Hopf curve has

been calculated analytically from the equality ad ¼ bc, where a, b, c and d are given in (3.11), and is a quadratic

expression for gm independent of gw and aw. Solving ad¼ bc to find gcrit
m (not shown due to complexity of the

expression), at the values of infection rates chosen for figure 6a,b, we notice they are outside of the positive

parameters space. In fact, only for values of the mutant-type infection rate that satisfy

am .
zm

1� nm
1þ 1

nm

� �
, (3:16)

equivalent to am . 1.3332 for the chosen parameters, does the Hopf curve of v2 appear on a gw versus gm

stability diagram (figure 6c). Greater values of am lead to increases in the area of Region IV under Region II.

The stability diagrams of figure 6 indicate the impact of virulence on the complexity of the dynamics.

Clearly, the virulence of the mutant strain does not affect the survival of the wt strain. That is, increases in

gm do not lead to an appearance or disappearance of the wt strain. However, the survival of the mutant

strain does not appear to depend on gm either. Importantly, the virulence of the wt strain, gw, strongly

controls the dynamics and the persistence of the wt strain. As can be seen for small values of gw, this

strain can become extinct as shown in figure 6b. In other words, even for a superior infection rate of

the wt viral strain, there is a threshold of gw that must be surpassed in order for this strain to exist.

For inferior values that are below this threshold, the survival of the wt strain is impossible because

the rate of wt virion production, i.e. the death of rate infected cells, is insufficient. The qualitative

behaviour of solutions, i.e. whether the populations of wt strains undergo oscillations or stabilize to a

certain value, depends on the virulence in a non-trivial way. As shown in figure 6b, there is an

interval of values for gw for which the system has a stable PO governing the coexistence of strains,

marked as Region V. Outside of this interval, the populations reach stable stationary states.

3.5. The effect of heterogeneity in mutation rates
In the previous analyses, the mutation rate has been fixed to m ¼ 0.1. We now consider the effect of m on

the dynamics. This is a key parameter that has been largely investigated within the framework of the

error threshold [69,70] and lethal mutagenesis [71] in quasi-species theory. In general, the coexistence

of two strains requires the basic reproduction number of the wt virus to be greater than one, Rw
0 . 1,

which can be interpreted as a condition on the mutation rate:

m , gw

k

zwaw
�1 þ nw

� 1

� �
: (3:17)

Thus, for two strains to coexist, the mutation rate must be sufficiently small. This result supports a

conjecture that excess mutation exhausts the population of the wt strain, thereby leading to a process

similar to the well-known error catastrophe [70]. We would expect that a gradual increase of the

mutation rate contributes to a better success of the mutant strain as the frequency of mutants

generated de novo increases. The right-hand side of (3.17) is an increasing function of aw, reflecting the

fact that a greater rate of infection by the wt virus will offset a greater mutation rate. A stability

diagram in terms of the mutation rate m and the wt infection rate aw is shown in figure 7a for the
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case of am ¼ 0.1 and using parameter values in (3.12). The dashed line marking the boundary between

Regions I and III, and also defining the region of coexisting populations, has been obtained by replacing

the inequality with equality in (3.17). As the infection rate aw increases, the boundary between Regions I

and III reaches a horizontal asymptote given by

mc ¼ gw

k

nw
� 1

� �
: (3:18)

For mutation rates that satisfy m , mc, Regions III and V can be entered from Region I by increases in the

infection rate, promoting coexistence. However, for m . mc, only the wt-free state can occur. Hence,

equation (3.18) defines a critical, finite mutation rate at which coexistence no longer becomes possible

due to extinction of the wt virus due to the outcompetition by the mutant strains. To explore this in

more detail, we have repeated the stability diagram shown in figure 4b using a value of m ¼ 0.5 . mc.

The stability diagram changes drastically, becoming that shown in figure 7b, and contains only three

regions: I, II and IV. The stability diagrams in figure 4b and 7b are linked through the fact that as

the mutation rate increases, the DBT bifurcation shifts to the right, eventually tending to infinity

as the critical value is approached.

Finally, figure 7c,d illustrates how the equilibrium populations of infected cells and viral strains

change with increasing mutation rate m. Specifically, we have used aw ¼ 3.0 and am ¼ 1.0, along with

the parameters in (3.12), in both panels. As m increases beyond the point where (3.17) is satisfied, the

population of mutants (virions and infected cells) outcompetes the wt populations (figure 7c,d ). This

phenomenon is similar to the error threshold defined in quasi-species theory. Here we show that

mutation is not only involved in this shift, but also depends (at the infection-cell level) on virulence,

burst size and multiplicity of infection.

Throughout the previous analyses, we have assumed that the wt strain of the virus mutates and the

new strain has no chance of mutating exactly into the original strain. Although it is highly unlikely, the
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full picture of the proposed model would require a consideration of a possibility for backwards mutation,

especially when modelling phenotypic traits. We therefore replace (2.4b,c) with

_ym ¼ amzmxþ mwyw � mmym � gmym (3:19a)

and

_yw ¼ awzwx� mwyw þ mmym � gwyw: (3:19b)

We begin our investigation of the role of backwards mutation by re-building the two-dimensional

bifurcation diagram and stability diagrams shown in figure 4 using the parameters in (3.12). The

mutation rate of the wt virus is set to mw ¼ 0.1 and we consider two values of the mutation rate of

the mutant virus. First, we take mm ¼ 1023� mw, so that the new form of mutation can be considered

as a small perturbation to the original system of equations (2.1). Then, we equate the mutation rates of

both strains and set mm ¼ 0.1.

The two-dimensional bifurcation diagrams in figure 8a,b reveal that backwards mutation results in

several important changes to the dynamics. Importantly, the behaviour of the system can be described

using three main states: the virus-free state (analogous to Region I and displayed in white in figure 8),

stationary coexistence all populations (polka dot pattern in figure 8, analogous to Region III), and

oscillatory coexistence of all the populations (checkerboard pattern in figure 8, analogous to Region

V). Furthermore, the DBT and the DZH bifurcations have vanished, the latter of which implies that

the curve of TPO bifurcations no longer exists either. The vertical and horizontal lines of transcritical

bifurcations defined by Rw
0 ¼ 1 and Rm

0 ¼ 1, which intersected at right angles in figure 4a, have now

merged into two separate branches that do not intersect. The curves of Hopf bifurcations, which also

intersected in the case of uni-directional mutation, have also merged into two distinct non-intersecting

branches. Finally, the transcritical bifurcation between the wt-free and coexistent states v2 and v3 has

vanished as well. The resulting stability diagram, shown in figure 8 by patterns, is now considerably

simpler and involves only analogues of Regions I, III and V. Thus, the only virus-persistent states are

those in which both virus strains coexist. The wt-free state can no longer occur due to the creation of

the wt virus through backwards mutation.
4. Conclusion
In this paper, we studied a mathematical model of population dynamics of two viral strains infecting a

population of the same cell type. Unlike previous models of parasite–host-like interaction, we consider

the emergence of a second strain by mutation from a single strain introduced into the environment. The

mechanism of virus replication forces the consideration of two types of infected cells, one for each viral



16
royalsocietypublishing.org/journal/rsos

R.Soc.open
sci.6:181179
strain, in the model. We analysed the system of differential equations and its solutions. By studying

parameters space, we identified five different regions, each characterized by distinct dynamics:

(Region I) the virus-free state which maximizes the population of host cells, (Region II) the stationary

existence of mutant virus with nonzero cell populations supporting it, (Region III) the stationary

persistence of both viral strains with nonzero cell populations, (Region IV) the oscillating existence of

the mutant virus and corresponding cell populations but extinct wt virus population, and finally,

(Region V) the oscillating coexistence of all populations.

The population of the mutant-type virus exists as long as the mutation rate of the wt strain is positive.

The broken symmetry between the wt and mutant strains is clear from the stability diagrams based on

infection rates. From our results, we observe that survival of the wt virus is essential for coexistence.

However, the growth of the wt virus population jeopardizes its persistence in the system by creating

its own competitor: the mutant-type virus. Moreover, the larger the mutation rate, the greater the

infection rate of the original wt strain should be in order to remain in the system. Interestingly, we

have found a maximum—critical value—of the mutation rate in the context of the model which

allows for the persistence of the wt strain and hence coexistence. Values of the mutation rate that are

higher than the critical value make coexistence impossible even for the most infectious wt strain.

Furthermore, our model shows that the concept of the error threshold may not be considered as a

one-parameter-driven effect, i.e. based solely on the mutation rate [69,70]. The critical value of

mutation is shown here to be proportional to the virulence and burst size of the wt virus and

proportionally inverse to its multiplicity of infection. Hence, our results extend the phenomenon of

the error threshold at the infected cell population level.
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Appendix A. Further study of degenerate Bogdanov – Takens and zero-
Hopf bifurcations
Normal form theory provides a means of predicting the local dynamics that occur near a given

bifurcation. This is possible because the local structure of a bifurcation is model independent and thus

can be immediately determined from pre-existing analyses of simpler systems of equations. The

simplest system of equations that completely captures the dynamics of a particular bifurcation is

called the normal form. The conducted numerical studies on the system (2.4) revealed that the

Bogdanov–Takens and zero-Hopf bifurcations are non-standard in the sense that the local dynamics

do not agree with those predicted by their normal forms. Such a mismatch can occur when one of the

terms in the normal form equations vanishes due to its coefficient being equal to zero, implying that

an extended system of equations needs to be considered. We now examine the normal forms of the

Bogdanov–Takens (BT) and zero-Hopf (ZH) bifurcations in order to rationalize the discrepancies

between the two-dimensional bifurcation diagram shown in figure 4 and those predicted from normal

form theory.

The local bifurcation diagram near a BT point can be determined from the normal form equations

given by (e.g. Kuznetsov [66, §8.4])

_j0 ¼ j1 (A 1a)

https://doi.org/10.5061/dryad.56g7v08
https://doi.org/10.5061/dryad.56g7v08
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and

_j1 ¼ b1 þ b2j0 þ a2j
2
0 þ b2j0j1, (A 1b)

provided that the coefficients a2 and b2 are not equal to zero, a2b2 = 0. The quantities b0 and b1 in

equations (A 1) play the role of bifurcation parameters, with b0 ¼ b1 ¼ 0 corresponding to the BT

point. The bifurcation diagram of system (A 1) consists of curves of saddle-node and Hopf

bifurcations, neither of which were detected in the local analysis of the model analysed in this article

(2.4) near the BT point, as well as curves of global bifurcations involving homoclinic orbits. The

procedure outlined by Kuzetnsov [72] enables the normal form coefficients to be related to the model

studied here. Remarkably, the coefficient a2 can be calculated analytically and is found to be equal to

zero for all parameter combinations. Thus, the BT bifurcation occurring in our model is always

degenerate and the local dynamics will be different from those of equation (A 1).

The vanishing of a2 can be rationalized in terms of the number of equilibria at the degenerate

Bogdanov-Takens (DBT) point. An equilibrium analysis shows that (A 1) will only have two equilibria

at the DBT point b0 ¼ b1 ¼ 0 if a2 = 0; however, the model under study has three. Thus, a2 ¼ 0 is

needed to capture the triple equilibrium at the DBT point in our model. This also suggests that

higher-order terms must be included in (A 1) in order for it to capture the DBT bifurcation in the

model investigated here. While an extended system of normal form equations for degenerate BT

bifurcations is proposed in Kuznetsov [72], it cannot capture the transcritical bifurcations found in the

original model, suggesting that an alternative form is required. However, due to the simple nature of

the local dynamics near the degenerate BT point shown in figure 2, which can be obtained

analytically from the full model (2.4), we do not pursue this point further.

The Poincaré normal form of a ZH bifurcation can be written as [66, §8.5]

_v ¼ g(b)þ 1

2
G200(b)v2 þ G011(b)jwj2 þ 1

6
G300(b)v3 þ G111(b)vjwj2 (A 2a)

and

_w ¼ L(b)wþH110(b)vwþ 1

2
H210(b)v2w

1

2
H021(b)wjwj2, (A 2b)

where b ¼ (b1, b2) is a vector of bifurcation parameters. Analyses of the normal form equations for the

ZH bifurcation show that local dynamics depend on the values of the normal form coefficients Hijk and

Gijk. A common feature between the various cases is that the ZH bifurcation occurs at the tangential

intersection of curves of saddle-node and Hopf bifurcations. However, figure 4a shows that the zero-

Hopf bifurcation in our model lies at a transversal intersection of curves of transcritical and Hopf

bifurcations. Furthermore, none of the normal forms predict that a curve of TPO bifurcations should

emanate from a ZH point. The calculation of the three normal form coefficients for the DZH

bifurcation is rather involved and must be performed numerically. We find that the normal form

coefficient G011(0) ¼ 0 across a range of parameter values, indicating the ZH bifurcation is degenerate.

The normal form equations for degenerate ZH bifurcations are not well known and previous studies

have focused on different cases [73,74]. Tigan et al. [75] showed that a degenerate ZH bifurcation with

G011(0) ¼ 0 occurs in a Rössler-type system and used averaging theory to detect periodic orbits,

leaving the structure of global bifurcations unresolved. We believe, as far as we know, that this is the

first time a curve of TPO bifurcations has been observed to emanate from a degenerate ZH bifurcation

of this type. We leave determining the corresponding normal form as an interesting area of future work.
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