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Soaring flight is a remarkable adaptation to reduce movement
costs by taking advantage of atmospheric uplifts. The
movement pattern of soaring birds is shaped by the spatial
and temporal availability and intensity of uplifts, which
result from an interaction of local weather conditions with
the underlying landscape structure. We used soaring flight
locations and vertical speeds of an obligate soaring species,
the white stork (Ciconia ciconia), as proxies for uplift
availability and intensity. We then tested if static landscape
features such as topography and land cover, instead of the
commonly used weather information, could predict and map
the occurrence and intensity of uplifts across Europe. We
found that storks encountering fewer uplifts along their
routes, as determined by static landscape features, suffered
higher energy expenditures, approximated by their overall
body dynamic acceleration. This result validates the use of
static features as uplift predictors and suggests the existence of
a direct link between energy expenditure and static landscape
structure, thus far largely unquantified for flying animals. Our
uplift availability map represents a computationally efficient
proxy of the distribution of movement costs for soaring birds
across the world’s landscapes. It thus provides a base to
explore the effects of changes in the landscape structure on the
energy expenditure of soaring birds, identify low-cost
movement corridors and ultimately inform the planning of
anthropogenic developments.

1. Introduction

All animals interact with the surrounding environment, but for
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some of them the role of this environment becomes particularly
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relevant in constraining or supporting their movement. This especially applies to aerial or aquatic animals, [ 2 |
whose movements actively modify and are, in turn, modified by the surrounding fluid [1-3]. Air does not
provide constant support against gravity and its properties vary at different temporal and spatial scales
depending on turbulence. To save energy, flying animals therefore adjust timing, routes and flight
modes to this turbulence [4], maximizing the advantage of horizontal and vertical air currents [5].
Soaring birds represent an extreme example of this adaptation. These large and heavy birds are
particularly constrained in the use of active flapping flight, as the energetic cost of flight proportionally
increases with size and weight [6]. They therefore use passive soaring-gliding flight, which is subsidized
by the vertical air currents (uplifts) and may require as little energy as resting [7,8]. Body mass, wing
loading and wing aspect ratio ultimately determine the cost of flapping flight, and with it a species” degree
of dependence on uplifts [6,9—-11]. This dependence becomes extreme in obligate soaring birds, which, due
to their large size, can only fly in good uplift conditions, minimizing the use of flapping flight [12,13].
Uplifts originate from thermal convection (thermals) and/or mechanical sources (orographic uplift)
[12,14]. Thermals originate from uneven heating of the earth’s surface, with rapidly heated areas
producing a gradient of temperature which promotes the formation of rising columns of warm air.
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Orographic uplifts, by contrast, result from the deflection of horizontal wind through topographic
features, such as hills or ridges [12]. Thus, the occurrence of both thermal and orographic uplifts
depends on a combination of local weather conditions (gradient of air temperature, wind speed and
direction) and landscape features (land cover, slope inclination and aspect, roughness of the surface).
The interaction of local weather conditions and landscape features thus characterizes a complex and
turbulent atmospheric layer, where the spatial and temporal availability of uplifts constrains and
shapes the movement patterns of soaring birds, from local scale to migratory routes [3,15-17].
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Over the past decade, different models have been developed to investigate the relationship between
soaring behaviour and aerial environment [8,18—-21]. In many of these studies, the availability of uplifts
was indirectly inferred using several weather parameters [22-25], but in recent years, these parameters
have been replaced by thermal and orographic uplift potentials, as more direct estimators to quantify the
probability of soaring [14,18-20,26—-29]. However, some studies highlighted the inaptitude of these
newly introduced variables as uplift estimators, because of the large amount of unexplained variance
remaining when predicting soaring behaviour [18,19]. In fact, thermal and orographic uplift potentials
are calculated based on different weather parameters [14,19], but because the uplift events are
characterized by turbulences at fine spatio-temporal scale [12,19] it is challenging to predict their
occurrences due to the limited spatio-temporal resolution of the available weather products.

In contrast to weather products, publicly available satellite data provide valuable static landscape
information (such as land cover and elevation) at higher spatial resolution, which could be used to predict
the occurrence of uplifts. Soaring birds need to locate uplifts in order to move across the landscape.
Consequently, landscape features that influence uplift generation, might serve as visual cues to these birds,
as they do for hang glider or paraglider pilots. By determining landscape features that birds use to locate
uplifts, we may be able to predict those uplifts that are detectable and exploited by the birds.

Static landscape features alone could therefore potentially suffice in modelling the occurrence of
uplifts, providing an answer to ‘where’, albeit not ‘when’, uplifts are likely to occur. Although the
literature on the topic is scarce, some studies hinted at the role of static features in affecting the flight
behaviour of different soaring species [25,28,30-33].

Here, we investigate to what extent static landscape features can represent the potential for generating
uplifts. We explore this in an obligate soaring bird species, the white stork Ciconia ciconia, across the entire
continent of Europe. We used first the locations of soaring and flapping behaviours of storks as an
indication of the presence or absence of uplifts, and second their vertical speed as a proxy of uplift
intensity. We then used only static features of the landscape to model and predict the spatial
distribution of uplifts and their intensity across Europe. We also evaluated the effectiveness of these two
static models by comparing their performances with the performances of two dynamic models, which
included atmospheric uplift estimators used in previous studies. Finally, we explored the cost of flight
(in terms of overall dynamic body acceleration) over the considered area, only based on the static
landscape features. Under the assumption that soaring/flapping behaviour and vertical speed of the
birds can be used as sensors of availability and intensity of uplifts, we predicted that (i) static features
of the landscape (such as topography and land cover) can be used to predict the spatial availability of
uplifts and to produce a static uplift suitability map at European scale; (ii) areas detected as suitable for
uplifts during the first step can be further characterized in terms of uplift intensity likely to be produced
in those areas; (iii) the resulting static uplift suitability map corresponds to the spatial distribution of the
energetic costs of storks flying above this landscape, and thus portrays their static energy landscape.
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Figure 1. Spatial coverage of the white storks’ migration routes, relative to the extent of the environmental layers included in the
model. Black lines correspond to individual stork GPS trajectories (a). Static uplift prediction maps produced using the uplift
suitability model (b) and the uplift intensity model (c), projected outside the geographical range of the training set. In (b),
the colour scale corresponds to uplift suitability, as predicted by the uplift suitability model; grey indicates suitable and black
unsuitable cells. White represents unclassified cells (containing missing values among the predictors). In (), cells predicted as
suitable are further characterized by the predicted uplift intensity values. Colour scale corresponds to vertical speed ranging
from red (high) to light yellow (low). As in (b), in (c) black represents cells that are unsuitable for uplift and white indicates
unclassified cells. Latitude values outside the range of the training set were excluded from the intensity model. The two
prediction maps are available at https://dx.doi.org/10.17617/3.1u.

2. Methods
2.1. Dataset

The GPS and tri-axial accelerometry (ACC) data used in the study were collected by the Max Planck
Institute for Ornithology (see [34,35]) and are deposited in the Movebank Data Repository (http://dx.
doi.org/10.5441/001/1.bj96m274 [36]).

The animals were equipped as fledglings with high-resolution, solar GSM-GPS-ACC loggers (e-obs
GmbH, Munich, Germany). The dataset includes 61 juvenile white storks (Ciconia ciconia) during their
first migration (figure 1a). Because storks are diurnal, loggers provided one GPS location every 5 min
between 2.00 and 20.00 GMT. If instantaneous ground speed was greater than 2 m s~ ! bursts of high-
resolution GPS locations (1 Hz) were recorded every 15 min for 120 or 300 s. In addition to the GPS
locations, ACC was recorded every 10 min for a duration of 3.8s at a sampling rate of 10.54 Hz
(40 data points per axis). High-resolution GPS recordings were collected from August to September 2014.

2.2. Segmentation of the flight behaviour
2.2.1. Soaring flight (from GPS)

We selected high-resolution GPS bursts with a duration of at least 120 s. For each location in the burst, we
calculated vertical speed and turning angle. We applied our behavioural segmentation on track segments
of 15 s (average duration of one complete soaring circle [34]). We calculated the average vertical speed
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Figure 2. Example of behavioural segmentation based on the GPS data of one stork. The figure shows the classified three-
dimensional trajectory after smoothing; the red segment was identified as soaring flight, grey corresponds to gliding flight.
Data for plotting the surface are provided by the EU-DEM. The black line and the red point on the ground represent the two-
dimensional projection of the trajectory and the centroid of the soaring segment, respectively.

and the absolute cumulative turning angle in these segments, and we used the expectation maximization
binary clustering (EmbC) algorithm to discern the flight behaviours, introducing these two metrics as
delimiters. The algorithm, implemented in the R package EmbC [37], efficiently detected changes in
the flight behaviour, distinguishing a high turning angle (circular soaring) from two low turning
angle clusters (linear flight). Based on the average vertical speed, we further differentiated the linear
flight segments into gliding (linear descending flights) and linear soaring (linear ascending flights).
Each 15s segment along the animal trajectory was individually assigned to one of the behavioural
classes based on its specific parameters. We applied a smoother to avoid abrupt and unnatural
behavioural changes from one segment to the next along the same trajectory. Our smoother worked
as a moving window: each segment assigned to a different behaviour relative to its closest neighbours
was reclassified to match the modal value of two segments before and after the considered segment.

Given the high resolution of the GPS data, we could visually inspect and confirm the results of the
segmentation using three-dimensional plots (figure 2). We then investigated the different classified
behaviours in terms of their flight parameters, such as ground speed or vertical speed (electronic
supplementary material, S1, figure S1.1).

In the subsequent steps, we wanted to contrast the use of active versus passive flight, focusing on the
dichotomy soaring/flapping. We therefore did not differentiate between circular and linear soaring (both
classified as soaring), and we excluded gliding segments, as they are not considered as an alternative to
soaring (like flapping) but rather as its consequence [12]. In these analyses, we considered for each
individual only soaring segments with a duration longer than 30s, and treated consecutive soaring
segments as different units only when separated by at least 60 s. The location of each soaring segment
was defined by its centroid (mean longitude and latitude).

2.2.2. Flapping flight (from tri-axial accelerometry)

We interpolated the spatial location of each ACC burst based on the closest GPS locations using the R
package move [38]. We associated each ACC burst with the height above ground corresponding to the
GPS location closest in time (less than 30 s difference). The height above ground was calculated by
subtracting the ground elevation value from the height above the ellipsoid.

We used ACC values to identify bursts of active flight behaviour (flapping flight). Specifically, we
used overall dynamic body acceleration (ODBA), already shown to be a good proxy for energy
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expenditure in soaring birds [8,39]. We quantified ODBA and dynamic body acceleration (DBA) on the [ 5 |
z-axis following Wilson et al. [40] and calculated mean, sum and standard deviation, of these two
variables per burst. We then used k-means clustering to categorize the bursts into three main
behavioural classes based on the amount of activity recorded: least active, intermediate active and
most active (electronic supplementary material, S1, figure S1.2). Within the bursts of highest activity,
we wanted to isolate only the flapping behaviour marking the absence of uplifts (and to exclude, for
instance, the flapping associated with taking off); we thus applied a height threshold of 100 m above
ground to select our flapping locations, assuming that above this height the birds were using flapping
flight only in response to the absence of uplifts.

The two flight behaviours were classified based on data collected with different instruments running
on different sampling schedules (GPS for soaring and ACC for flapping). Therefore, the amount of
soaring to flapping locations is not directly related to the amount of time storks spent on each flight
behaviour. We thus compared the amount of time spent soaring relative to the total duration of the
classified GPS segments, and the amount of time spent flapping relative to the total duration of
the classified ACC bursts.

sos1/JeuInof/610Suiysignd/aposjelos
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2.3. Environmental variables and modelling frameworks
2.3.1. Static predictors

We characterized the static components of the landscape in terms of elevation (digital elevation model,
EU-DEM 2013), terrain unevenness (calculated as both topographic position index and roughness),
unevenness in the slope (steepness of a terrain feature), aspect (compass direction faced by a slope),
aspect unevenness, land cover (normalized difference vegetation index, NDVI, obtained for 2014),
land use (CORINE Land Cover; CLC 2012) and presence of anthropogenic infrastructures (Global
Urban Footprint, 2011). All raster layers are publicly available (electronic supplementary material, S2,
table S2.1). The lowest spatial resolution was 100 m (from the CLC 2012 layer), thus we averaged cell
values of higher resolution layers to match a 100 m grid. The spatial extent of the raster layers covered
the southwest European countries that enclose the distribution of the storks’ dataset. All the
environmental layers listed above were included as predictors in our statistical models after verifying
the absence of multicollinearity.

2.3.2. Dynamic predictors

We chose to include thermal and orographic uplift potentials in our analysis as atmospheric uplift
estimators [14,18,20,26,27]. The calculation of the thermal uplift potential is based on weather data
from the European Centre for Medium-range Weather Forecast Global Atmospheric Reanalysis
(ECMWEF) following Bohrer et al. [19]. The calculation of the orographic uplift potential uses ECMWF
weather data and elevation from the ASTER Global Digital Elevation Model. Both thermal and
orographic uplift potential are available in Movebank with a spatial resolution of 0.75° and a temporal
resolution of 6 h. We associated them to our tracking data by using the Env-DATA Track Annotation
service [41].

2.4. Modelling framework

We organized the environmental predictors in three groups, each defining a different modelling
framework:

1. Static model: including exclusively static environmental predictors;
2. Dynamic model: including exclusively thermal and the orographic uplift potentials;
3. Combined model: including both static and dynamic predictors.

We used these sets of predictors for both the uplift suitability and the uplift intensity models.

2.5. Uplift suitability model

We used a random forest algorithm to model the effect of the three sets of environmental predictors on
the occurrence of soaring (presence of uplifts) and flapping flight (absence of uplifts), using these
contrasting behaviours as binary response variable. The algorithm is implemented in the R package



randomForest [42]. We manipulated the ratio between presences and absences (prevalence) and tested its [ 6 |
effect on the model performance (see electronic supplementary material, S3). In our analysis, we included
all the available data with their original (unmanipulated) prevalence values. Using regression trees,
we trained each of the three models (static, dynamic and combined) with 90% of the dataset, and
tested them with the remaining randomly selected 10%. The data partitioning was repeated so that
each of the three models was run ten times. To evaluate and compare the predictive performance of
the three models, we considered the following accuracy measures: (i) area under the curve (AUC) of
the receiver operating characteristic (ROC); (ii) sensitivity, proportion of soaring locations correctly
classified; (iii) specificity, proportion of flapping locations correctly classified [43]; (iv) true skill statistics
(TSS: 1—max(sensitivity + specificity)) [44]. The contribution of each environmental variable to the final
prediction was evaluated using the decrease in accuracy (increase in mean standard error) and the
increase in node purity (decrease in residual sum of squares).

Next, we produced a large-scale uplift suitability map based on the static uplift suitability model.
Random forest, like other machine learning algorithms, is quite unreliable when extrapolating outside
the range of the predictors” values provided for training. We thus omitted (set to null) all raster cells
containing environmental values outside that range, and then used each of ten runs of the static uplift
suitability model to predict the uplift suitability over the area of these manipulated raster layers. The
final raster prediction was derived from the pixel average of the ten predicted layers and classified
into a binary map using the threshold that maximized the TSS value [43].

The only temporally related environmental variable in our model was NDVI from the year 2014; this
allowed us to produce an uplift suitability map for 2014.

*sosi/Jeunof/6106uiysgnd/aposjedos
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2.6. Uplift intensity model

We explored the relationship between the three sets of predictors (static, dynamic and combined) and
uplift intensity, additionally including latitude among the static predictors. We used the birds’ vertical
speed as a proxy of uplift intensity (vertical rate of air within a thermal), assuming a higher vertical
speed to indicate stronger uplift conditions.

As in the previous analysis, we considered only high-resolution GPS bursts. The vertical speed in this
dataset included both negative (gliding) and positive values (soaring). We examined only the positive
values (vertical speed greater than 0), because we wanted to predict uplift intensity in areas already
classified as suitable by the uplift suitability model. We associated the positive vertical speed values
of all individuals with their location and averaged them in a 100 x 100 m grid to match the spatial
resolution of the environmental raster layers. After averaging, each cell contained a value representing
the average vertical speed of all individuals during the complete temporal range in that cell. We then
removed average vertical speed values exceeding the 99.97 percentile, obtaining 76 383 observations.

We used a generalized additive model (GAM) to model uplift intensity (average vertical speed) as a
function of the three sets of environmental predictors to accommodate nonlinear relationships between
predictors and response variable. We square-root transformed vertical speed to meet the assumptions of
a Gaussian distribution of the residuals. Among the predictors, aspect was included as cyclic cubic
regression spline smooth term; NDVI, elevation (DEM), roughness and latitude were included as thin
plate regression spline smooth terms, given their nonlinear relationship with the response variable.
We rasterized the values of thermal and orographic uplift potentials included in the dynamic and
combined models to match the 100 x 100 m grid of the response variable, and included them in the
models as parametric coefficients.

We used the static uplift intensity model to produce a map of uplift intensity, and enrich the binary
information provided by the uplift suitability model in areas that were predicted as suitable. Raster cells
containing environmental values outside the range included in the dataset were omitted; because latitude
was included as predictor, the latitudinal range of the uplift intensity map was restricted to the
latitudinal range of the dataset.

The models were run in R using the package mgcv [45]. We compared the performances of the models
based on the variance explained and the AIC (Akaike Information Criterion). The relative importance of
the different predictors was evaluated comparing the AIC of models containing different combinations of
these predictors, computed separately for parametric coefficients and the smooth terms.

2.7. Static energy landscape

We quantified the relationship between the availability of uplifts along the storks” migratory routes and
the energy spent travelling along these routes. We could thus test if the static uplift suitability map



produced in the previous step could convey information regarding the energetic cost of travelling across
the landscape. We calculated the daily energy expenditure considering only ACC data collected when the
animals were flying (height above ground > 100 m), with GPS location and ACC burst matching in time.
We then calculated the mean ODBA per day along the path of each individual. The uplift suitability map
was used to extract the predicted probability of uplift at the locations of the ACC bursts. We then
averaged these probability values to obtain the mean daily uplift suitability, for each individual, along
its migratory path (only average values computed from at least five observations were included in the
model). We fitted a linear mixed effect regression model to the mean daily energy expenditure
(ODBA) as a function of predicted mean daily uplift suitability. The model tested the relationship
between daily uplift suitability predictions and daily ODBA based on 823 observations of 59
individuals, accounting for individual differences which were included as random effects in the
model. ODBA was square-root transformed.

*sosi/Jeunof/6106uiysgnd/aposjedos

The importance of the predictor in explaining the daily energy expenditure was assessed comparing
the AIC of the model with the respective null model. For the analysis, we used the R package lme4 [46].

3. Results
3.1. Segmentation of the flight behaviour

We identified the location of soaring and flapping flights as proxies to detect the presence and absence of
uplifts. Based on the GPS data of all individuals, we classified over 748 h of flight, of which the storks
spent 297.6 h with circular and 83.5h with linear soaring. The proportion of time spent soaring
corresponded to 0.51 of their flight time (381.1 h) (electronic supplementary material S1, figure S1.3a);
this proportion was similar between the 59 individuals (0.52 + 0.07 (mean proportion + s.d. per
individual)). From the ACC data, we classified 24.3 h of flight, of which 1.3 h was spent flapping
(electronic supplementary material, S1, figure S1.3b). Among all individuals, the proportion of time
spent flapping corresponded to 0.05 (0.07 + 0.05 per individual). The final dataset consisted of a total
of 16840 observations of presences and absences of uplift (15608 soaring events marking presences
and 1232 flapping events marking absences).

Owwlsmuado)osy

3.2. Uplift suitability model

We used multiple environmental predictors to model and predict the spatial distribution of uplifts
(presence and absence data). We organized the predictors in three different modelling frameworks
(static, dynamic and combined, see Methods) that we then compared in terms of predictive accuracy.

We averaged the accuracy measures of the three uplift suitability models across 10 cross-validations.
The combined model (static and dynamic features) best predicted the independent test set (AUC
of 0.86 + 0.02 (mean + s.d.)), followed by the static (AUC of 0.85 + 0.02) and the dynamic (AUC of
0.70 £ 0.02) models (figure 3). The overall accuracy was high in all models, but both models including
static variables (the static and combined models) outperformed the model based only on dynamic
predictors.

We then compared the ability of the models to discriminate presences and absences. The three models
returned a similarly high proportion of correctly classified soaring locations (sensitivity). They differed,
however, in terms of number of correctly classified flapping locations (specificity). Again, the combined
and the static model outperformed the dynamic model. To define the value of sensitivity and specificity,
we used a threshold that maximized the TSS value, corresponding to 0.9 in all models. At this threshold,
the static model showed a sensitivity of 0.83 + 0.01 and a specificity of 0.69 + 0.05. The complete output
of the three models can be found in electronic supplementary material, S3, table S3.1.

In the static model, DEM, roughness (topographic heterogeneity) and NDVI contributed most to the
model prediction. In the dynamic model, including only the two atmospheric uplift estimators,
the thermal uplift potential contributed to the prediction more than the orographic potential; in the
combined model, elevation, roughness and thermal uplift potential contributed most to the model (for
more details see electronic supplementary material, S3).

Using the static uplift suitability model, we produced a map of uplift suitability covering the extent of
the environmental layers (figure 1b). We classified an area of about 193 million km?, of which over
81 million km* was predicted as suitable for uplifts (42% of the total area).
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Figure 3. ROC curves of the three uplift suitability models: static (a), dynamic (b) and combined (c). The area under the curve (AUC)
represents the accuracy of the model. The accuracy was measured on both the training set (grey solid line) and the test set (red
line). The dashed line represents a model whose accuracy is comparable to random (AUC = 0.5). Sensitivity and commission rate
values were averaged across the 10 runs of each models (solid dots), and the error bars show their standard deviations.

3.3. Uplift intensity model

We then used the uplift intensity to characterize those areas identified as suitable for uplifts by the static
suitability model. We used the vertical speed of the birds while soaring as a proxy for uplift intensity,
and we explored the relationship between uplift intensity and the three groups of environmental
predictors (static, dynamic and combined).

All three models explained very little of the total variance in vertical speed. However, here too, the
combination of static and dynamic variables provided the best predictive performance (Adj.R* = 0.03
and AIC =46575.00 for the static model; Aclj.R2 =0.03 and AIC = 49 636.88 for the dynamic model;
Adj.R* = 0.08 and AIC = 42003.95 for the combined model). Although in GAMs Ad;j.R* values cannot
be directly compared due to the changing degrees of freedoms caused by the use of smooth terms
[47], the difference in the AIC value among the three models supports the best performances of the
combined model. Among the parametric predictors, the categories ‘water bodies’, ‘dumps’, ‘urban
areas’ and ‘wetlands’ negatively affected uplift intensity (‘bare soil’ served as a reference), whereas
thermal and orographic uplift potentials (included in the dynamic and combined models) positively
affected uplift intensity (electronic supplementary material, S4, table S4.1). Aspect, NDVI, DEM,
roughness and latitude were included in the models as smooth terms, given their nonlinear
relationship with the response variable. Based on AIC, all these predictors contributed to explain
uplift intensity. Specifically, uplift intensity was positively affected by lower latitude values, higher
elevations (DEM > 2000 m), NDVI corresponding to bare soils or sparsely vegetated areas (between
0 and 0.4) and slope orientation towards SW-W (aspect between 200° and 300°) (electronic
supplementary material, S4, table S4.1 and figure S4.1). Using the static intensity model, we could
further characterize our uplift suitability map by predicting uplift intensity in cells already predicted
to be suitable for uplifts (based on the static suitability model) (figure 1c).
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Figure 4. Mean daily ODBA along the storks’ routes as a function of the mean daily uplift suitability along those routes, as predicted

by the static uplift suitability model. Coloured lines represent the different individuals accounted for in the linear mixed model. Grey
points represent all observations included in the model.

3.4. Static energy landscape

Finally, we quantified the relationship between the availability of uplifts along the storks’ migratory
routes and the energy spent travelling along these routes, to test if the static maps produced in the
previous steps could convey information regarding the energetic cost of travelling across the
landscape. As all uplift intensity models performed poorly in predicting the intensity of uplifts, only
the uplift suitability model was included in this step. We used a linear mixed effect regression model
to evaluate the role of the static uplift suitability model in conveying information about the energy
expenditure of the birds (measured as daily ODBA). A negative correlation between the daily uplift
suitability and the daily ODBA indicated that the birds spent more energy when flying over areas less
suitable for uplifts (ODBA = —0.67 + 0.07 (estimate + s.e.)) (figure 4). The AIC of the models was
lower compared to that of the respective null model (AAIC uplift suitability model = —54.67)
(electronic supplementary material, S5, table S5.1).

4. Discussion

Static features of the landscape proved to be highly effective in identifying areas suitable for uplifts.
However, neither static nor dynamic variables could predict the intensity of uplifts occurring in those
areas. The uplift suitability predicted along the birds’ migratory route using only static features,
showed a clear negative relationship with the ODBA of individuals flying over those areas, indicating
that birds encountering fewer uplifts along their routes experienced higher energy expenditures.
This overall result validates the reliability of our static uplift suitability model, and suggests the
existence of a mechanistic relationship between static landscape and energy expenditure of flying
animals. We therefore propose that the static uplift availability map produced with our model
corresponds to the birds’ cost of transport across the landscape and can thus be considered a
representation of the static energy landscape of these birds.

The possibility to describe the cost of transport in a dynamic aerial environment, only based on static
features of the landscape, supports the idea that the structure of the landscape at different spatial scales
could be considered as the ultimate cause for the uplifts to occur. For instance, a specific topography
could represent a necessary (but not sufficient) condition of uplift occurrence, or, in other words, the
potential of the landscape to produce uplifts. By contrast, local weather conditions that interact with a
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specific landscape, could be considered as the proximate cause for the occurrence of the uplift, which can [ 10 |
define, given a suitable landscape, the temporal scale at which the uplift will, in fact, exist.

In the case of the uplift intensity, even though models including static features performed slightly
better than those including only dynamic variables, the large amount of unexplained variance in all
models suggested that neither static nor dynamic environmental variables were good predictors for
uplift intensity. In our models, we used the birds’ vertical speed as a proxy for uplift intensity. But
birds” vertical speed is not only affected by uplift intensity. Their relationship is modulated by the
aerodynamic performance of the bird (including wing morphology), and also by its social interactions
and motivation. The ability to adjust the vertical speed within a thermal requires experience [48,49].
The storks included in our study were all juveniles during their first migration, but even among
individuals of the same age, individual differences in flight performances exist, also in relation to the
role of the individual within the group (leader or follower) [35]. The vertical speed of the birds might
also be affected by their internal motivation to move (foraging versus migrating). During migration,
birds are expected to maximize their vertical speed and travelled distance, whereas while foraging
they might adopt different strategies, for instance attempting to maintain lower altitudes [12], which
could explain the negative effect of land use categories such as dumps or pastures in the uplift
intensity models. All these aspects could have affected the observed vertical speed of the birds and
thus caused the inconsistent relationship between uplift intensity and environmental variables in our

*sosi/Jeunof/6106uiysgnd/aposjedos

models. The spatial and temporal scales at which the uplift phenomenon occurs might have also
contributed to this inconsistency. Uplifts are a turbulent and unpredictable phenomenon and they can
occur at very small scale [5] as in the extreme cases of lifts produced by lines of buildings or flared
methane vents [20,50,51]. The intensity of an uplift, more than the presence of an uplift, is strongly
influenced by wind speed, wind direction and temperature, and thus more subject to the temporal
and spatial variation of these dynamic variables.

The inadequacy of the spatio-temporal resolution of dynamic uplift estimators is not new [18], and
the coarse resolution of the atmospheric data could also explain why all models including only
dynamic variables performed worse than those including static variables alone, in predicting both
uplift availability and uplift intensity. Nevertheless, the effect of some of the static variables included
in our uplift intensity models hinted at a dependence of the uplift intensity (as in the case of the
uplift availability) on the static landscape structure. This is the case, for instance, of the negative effect
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of water bodies, and the positive contribution of higher elevations and NDVI values corresponding to
barren soils, on the uplift intensity. Also, lower latitude values positively affected uplift intensity; this
result suggests a stronger thermal activity at lower latitudes, but could also indicate that young storks
improved their flight performance along the route.

The static landscape features used to produce our static uplift maps are definitely not exhaustive to
describe the complex fluid medium in which flying animals move, but they could represent a sufficient
and efficient proxy (in terms of computational simplification) in areas and seasons where weather
conditions are rather stable. The prediction maps produced by our static models are based on data from
one species collected during one migratory season, but the same models could be extended to multiple
soaring species and different seasons in order to generalize predictions. Such prediction maps could be
used as base layers for further movement ecology analyses, and combining them with dynamic variables
could provide a more accurate description of the energy available at a specific moment.

Static energy landscapes can also direct our attention to the vulnerability of flying animals to changes
happening at the ground level. Anthropogenic changes in the landscape, such as deforestation,
construction of wind farms and powerlines, but also roads, lines of buildings and tree rows,
irrigation, or mining, could all be affecting the atmospheric environment, at a finer scale than the
available weather products could possibly detect. The tight dependence of soaring birds on uplift
conditions makes them particularly sensitive to changes in the landscape [19,52], in particular to
anthropogenic infrastructures [10,53,54]. Our study suggests that these small changes in the landscape
could affect the energy expenditure of these animals, and potentially their cost of transport over time.
The static structure of the landscape and the energetic implications of changes happening on the
ground should therefore be taken into account when investigating movement at larger scale, such as
migratory flyways and population connectivity, and when evaluating the impact of anthropogenic
infrastructure. Future studies should also focus on the interplay between vertical speed, uplift
intensity and environment. By disentangling the various factors affecting this relationship, we could
not only predict, based on the animal behaviour and the landscape, the quantity (availability) but also
the quality (intensity) of the uplifts, and we could provide a more accurate estimation of the energetic
cost of movement across the landscape.
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