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Inhibition of the PI3K/AKT/mTOR Pathway in Solid Tumors
Patricia Mucci LoRusso

A B S T R A C T

The phosphoinositide 3-kinase (PI3K) pathway plays an integral role inmany cellular processes and is
frequently altered in cancer, contributing to tumor growth and survival. Small molecule inhibitors
have been developed that target the three major nodes of this pathway: PI3K, AKT, and mammalian
target of rapamycin. However, because oncogenic PI3K pathway activation is achieved in diverse,
potentially redundant ways, the clinical efficacy of these inhibitors as monotherapies has, so far,
been limited, despite demonstrating promising preclinical activity. Moreover, pathway activation is
associatedwith resistance to other therapies; thus, in combination, PI3K pathway inhibitors could restore
therapeutic sensitivity to these agents. To maximize therapeutic benefit, drug combinations and
schedulesmust be explored to identify thosewith the highest efficacy and lowest toxicity overlap. In
addition, defining appropriate patient subpopulations, for both monotherapy and drug combinations,
will be important. However, identifying predictive biomarkers remains a challenge.

J Clin Oncol 34:3803-3815. © 2016 by American Society of Clinical Oncology

INTRODUCTION

The phosphoinositide 3-kinase (PI3K)/AKT/
mammalian target of rapamycin (mTOR) path-
way is frequently altered in cancer,1 promoting
growth, proliferation, and survival.1,2 Targeting its
three major nodes (PI3K, AKT, and mTOR), there-
fore, represents a key therapeutic opportunity.1

Class IA PI3Ks are heterodimers composing
a regulatory (p85) and catalytic (p110) subunit,
and exist in four isoforms (a, b, g, and d) with
differential tissue expression.1 Growth factor
stimulation of receptor tyrosine kinases trig-
gers PI3K activation, downstream activation
of phosphoinositide-dependent kinase 1 (PDK1)
and AKT, and, subsequently, mTOR complex 1
(mTORC1), which promotes cell growth and
protein synthesis.2 The mTORC1 substrate ri-
bosomal S6 protein kinase (p70S6K) phosphor-
ylates ribosomal protein S6, stimulating protein
synthesis, and feeds back to insulin receptor
substrate 1 to downregulate insulin-mediated
PI3K pathway activation. The pathway can be
activated by G protein-coupled receptors or by
oncogenic proteins such as RAS.1

The tumor suppressor phosphatase and
tensin homolog (PTEN) is a key negative regu-
lator of the PI3K pathway.2 Others include inositol
polyphosphate 4-phosphatase type II (INPP4B)3

and the protein tyrosine phosphatase nonreceptor
12 (PTPN12/PTP-PEST).4 This review summarizes

PI3K pathway alterations found in solid tu-
mors and discusses pathway inhibitors, their
class-specific toxicities, and the possible chal-
lenges underpinning patient selection and
drug resistance.

THE PI3K PATHWAY IS FREQUENTLY ALTERED
IN SOLID TUMORS

PI3K pathway alterations include somatic am-
plification, mutation, loss of heterozygosity, or
changes in DNA methylation, often in multiple
genes (Fig 1).5

Breast Cancer
In breast cancer, most mutations occur in

PIK3CA. Three frequent “hotspot” mutations
within the helical (E545K and E542K in exon 9)
and kinase domains (H1047R in exon 20) result
in constitutive p110a activity.6 Approximately
20% to 50% of breast cancers exhibit PIK3CA
mutations, including approximately 35% of
hormone receptor (HR)–positive and approxi-
mately 23% of human epidermal growth factor
receptor 2 (HER2)–positive breast cancers.7 PIK3CA
mutations occur less frequently (,10%) in triple-
negative breast cancer (TNBC), although path-
way activation may be driven instead by PIK3CA
amplification or genomic loss of PTEN or INPP4B.7,8

In particular, INPP4B is lost in 30% to 56%
of TNBC.8,9
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PTEN mutations occur in , 3% of breast cancers; however,
loss of PTEN protein occurs in approximately 30% of cases.5,7

PTEN protein loss and PIK3CAmutations appear to have different
functional effects: PTEN protein loss is associated with elevated
AKT phosphorylation, whereas PIK3CA mutations have not been
associated with significant differences in the levels of PTEN protein
or of phosphorylated downstream substrates compared with wild-
type PIK3CA breast tumors.7

Activating mutations in the catalytic domain of AKT have not
been observed. However, approximately 3% of HR-positive breast
cancers exhibit an E17K substitution in the pleckstrin homology
domain, resulting in constitutive activation.7,10

In breast tumors, PTPN12 downregulates growth factor re-
ceptor signaling to suppress the transformation of human
mammary epithelial cells.4 PTPN12 protein expression is lost in
approximately 23% of breast tumors, especially TNBC,4 and is
associated with poor patient outcome.11

Lung Cancer
PI3K pathway activation, as demonstrated by AKT phos-

phorylation, occurs in 50% to 70% of non-small cell lung cancers

(NSCLCs).12 This pathway is altered in 47% of squamous cell
carcinomas.13 PI3K pathway activation can occur through acti-
vating mutations in EGFR, KRAS, PI3K, or AKT, as well as PIK3CA
amplification or loss of PTEN expression.12 Somatic mutations in
PIK3CA are relatively infrequent,14 whereas genomic amplification
is more common, occurring in 43% of lung cancers.15 Mutations in
AKT itself are rare; the AKT E17K mutation has been reported in
approximately 2% of NSCLCs, restricted to the squamous histo-
type16; however, the importance of oncogenic AKT activity is
underlined by the high incidence of loss of PTEN and INPP4B
protein expression (75% and 47% of NSCLCs, respectively).17,18

Head and Neck Cancer
PI3K pathway alterations occur in 30% to 66% of head and

neck squamous cell carcinomas (HNSCCs); this rate increases to
90% if changes in mRNA levels are also considered.19,20 Common
alterations include reduced PTEN expression (30% of patients)
and AKT amplification (5%).20 PIK3CA is the most frequently
altered gene (36%); mutation and amplification are mutually
exclusive and equally prevalent.20 Human papillomavirus-positive
tumors are associated with PIK3CA hotspot mutations.19,20
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Fig 1. Common PI3K pathway aberrations found in a variety of solid tumor types. Activation of the PI3K pathway contributes to tumor growth, survival, and resistance to
anticancer therapies. FGFR2, fibroblast growth factor receptor 2; GBM, glioblastomamultiforme; HER2, human epidermal growth factor receptor 2; HNSCC, head and neck
squamous cell carcinoma; INPP4B, inositol polyphosphate 4-phosphatase type II; MET, hepatocyte growth factor receptor; mTORC, mammalian target of rapamycin
complex; NSCLC, non–small-cell lung cancer; PI3K, phosphoinositide 3-kinase; PIP2, phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol 3,4,5-trisphosphate;
PTEN, phosphatase and tensin homolog; PTPN12, protein tyrosine phosphatase nonreceptor 12; RTK, receptor tyrosine kinase; SCLC, small-cell lung cancer; TNBC, triple-
negative breast cancer. Adapted from a figure provided by Ana Maria Gonzalez-Angulo.
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HNSCC tumors harboring multiple aberrations in the PI3K
pathway are linked to advanced disease, suggesting genomic in-
stability contributions to disease progression.19

Gynecologic Cancers
PI3K pathway activation occurs in up to 30% of ovarian

cancers, mainly due to PIK3CA or AKT mutation or
amplification.21,22 Although it is less common in ovarian cancers,
PTEN loss of heterozygosity occurs in up to 45% of the endo-
metrioid subgroup.22 INPP4B has been identified as a tumor
suppressor in ovarian cancers, and loss of INPP4B protein cor-
relates with reduced patient survival.3

In endometrial cancers, PIK3CA mutations and PTEN loss
(through mutations or reduction of protein expression) occur in
up to 30% and 55% of tumors, respectively.23 Endometrial cancers
are highly complex, often exhibiting coexistent alterations in
PTEN, PIK3CA, PIK3R1, and KRAS.24 Although this may con-
tribute to the difficulty of treatment, PI3K pathway reliance may
sensitize tumors to PI3K pathway inhibition.20

Colorectal Cancers
PI3K pathway alterations in colorectal cancers (CRCs) are

dominated by PIK3CA and PTEN. Approximately 14% exhibit
PIK3CA catalytic domain hotspot mutations and are associated
with invasive, progressive disease.25 Amplification and over-
expression of PIK3CB (p110b), and mutations in PIK3R1 (p85a)
have been observed.25 Loss of PTEN protein occurs in 20% to 40%
of cases.25 The AKT E17K mutation has only been observed in 6%
of CRCs, and the functional consequences of AKT kinase domain
mutations are poorly understood.25 Mutations in INPP4B have
been identified.26

Glioblastoma Multiforme
PI3K pathway alterations occur in 50% of glioblastoma

multiforme (GBM) tumors and are associated with poor survival.27

Mutations in PTEN occur in 5% to 40% of GBM tumors, whereas
loss of heterozygosity occurs in 60% to 80% of all cases.28 PIK3CA
and PIK3R1 are mutated in approximately 10% and approximately
8% of tumors, respectively,27 contributing to tumor invasion and
migration.29 AKTmutations have not been observed, and there is
limited evidence that other PI3K pathway nodes play significant
roles.30,31

Prostate Cancers
PI3K pathway activation is associated with metastasis, re-

sistance to therapy, and poor outcome in patients with prostate
cancer.32 In one study, 49% of patients with metastatic, castration-
resistant prostate cancer harbored somatic alterations in the PI3K
pathway, including biallelic loss of PTEN, hotspot mutations,
amplifications and activating fusions in PIK3CA, and E17K-
activating mutations in AKT1.33 PTEN alterations include
deletions and inactivating mutations in approximately 15% of
primary tumors and in 50% in hormone-refractory disease.34 Loss
of PTEN protein occurs in approximately 20% of localized tumors
and is correlated with advanced stage and high Gleason score.34 In
contrast, PIK3CA alterations occur in only 6% of primary tumors

and in 16% of metastases, although the regulatory subunit PIK3R1
is mutated in 22% of primary and 58% of secondary tumors,
providing an alternative route to pathway activation.35 PIK3CB
mutations have been observed in PTEN-deficient metastatic
cases.33 Tumor suppressor INPP4B has been shown to be altered or
downregulated in primary and metastatic disease.35,36 The net
result of these diverse alterations is activation of the PI3K/AKT/
mTOR pathway, leading to increased tumor growth, survival, and
resistance to targeted therapies.

THE ROLE OF PI3K PATHWAY ACTIVATION IN
TREATMENT RESISTANCE

PI3K pathway activation is implicated in de novo and acquired
treatment resistance in various tumor types treated with targeted
therapies (Fig 2).37 Genetic resistance mechanisms can arise
through genomic instability.38 Resistance of tumor-initiating cells
to apoptosis and epigenetic mechanisms may also contribute to
relapse after therapy.39,40 Genetic and epigenetic mechanisms are
associated with PI3K pathway activation.37 A large-scale RNA
interference screen in HER2-positive breast cancer found that
loss of the PTEN transcript conferred trastuzumab resistance.41

Oncogenic mutations in PIK3CA also conferred trastuzumab re-
sistance in vitro, and activation of the PI3K pathway predicted poor
trastuzumab response.41 In addition, patients with HER2-positive
breast cancer whose tumors harbor PIK3CA-activating mutations
derive less benefit from neoadjuvant HER2-targeted therapies than
patients without a PIK3CA-activating mutation.42 In KRAS-
mutant CRC cell lines, PIK3CA and PTENmutations were associated
with resistance to MEK inhibition.43 Moreover, PI3K pathway
activation promotes resistance to BRAF inhibitors in BRAF-mutant
melanoma, with 22% of progressive tumors harboring mutations
that upregulate PI3K pathway activity.44 Loss of PTEN expression
has been associated with reduced number and function of tumor-
infiltrating T cells and resistance to anti-PD-1 immunotherapy in
patients with melanoma.45 These findings have raised the possi-
bility that targeted PI3K pathway inhibitors could potentially re-
store sensitivity to existing treatments.

INHIBITORS OF THE PI3K PATHWAY

The PI3K pathway is dysregulated in many solid tumors, sup-
porting the use of PI3K pathway inhibitors in the clinic. Oncogenic
PI3K pathway activation is achieved in different (and potentially
redundant) ways, requiring rational, tailored strategies to inhibit
appropriate pathway nodes in each tumor type. Recently developed
small-molecule inhibitors are presented in Tables 1 and 2, and
Figure 3.

Pan-Class I PI3K Inhibitors
Pan-class I PI3K inhibitors target all four isoforms of p110.

Buparlisib (BKM120), the most advanced agent in this class, in-
hibits all class I PI3K isoforms, with little activity toward other
classes of PI3K or mTOR, and has demonstrated strong anti-
proliferative activity in more than 400 cancer cell lines (data on file;
Novartis, Basel, Switzerland).46 Given its ability to penetrate the
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blood-brain barrier, it may represent a therapeutic option for GBM
tumors or brain metastases, as shown in early-phase trials in re-
fractory GBM84,85 and breast cancer-derived brain metastases.86

Buparlisib and letrozole have demonstrated antitumor activity in
HR-positive breast cancer.87

Pictilisib (GDC-0941) is being investigated in HER2-positive
metastatic breast cancer and advanced NSCLC. It has equipotent
activity in vitro against p110a and -d isoforms, and also inhibits
p110b and -g.47 Phase I studies demonstrated signs of clinical
activity in advanced solid tumors.88,89

Copanlisib (BAY 80-6946) is an intravenously administered
pan-class I PI3K inhibitor.48 It inhibits p110a and -d, and,
therefore, may suit T-cell malignancies; although, interestingly,
concomitant p110d inhibition in solid tumors may contribute to
an immune environment that facilitates cytotoxic T-cell responses
in addition to the cell-intrinsic antiproliferative effects of p110a
inhibition.90

Isoform-Specific PI3K Inhibitors
The rationale for PI3K isoform-specific inhibition was vali-

dated in p110d-driven hematologic malignancies by combined
idelalisib and rituximab treatment.91 In solid tumors, isoform-

specific PI3K inhibitors might have fewer toxicities compared with
pan-PI3K inhibitors, allowing higher doses and resulting in more
complete inhibition.1 Alpelisib (BYL719) was the first potent,
p110a-selective inhibitor. A first-in-human phase I study in pa-
tients with advanced solid tumors demonstrated a manageable
safety profile and antitumor activity, notably in patients with
PIK3CA-mutant HR-positive breast cancer.92 Alpelisib has shown
preliminary efficacy in combination with cetuximab in patients
with recurrent or metastatic HNSCC.93

Taselisib (GDC-0032) inhibits p110a, -g, and -d equally, and
p110b with 30-fold lower potency.51 Greater isoform selectivity is
predicted to translate into improved efficacy in PIK3CA-mutant-
driven tumors compared with pan-PI3K inhibitors. Preliminary
results have shown activity in a PIK3CA-mutant xenograft
model,94 as well as in PIK3CA-mutant HER2-positive and HR-
positive breast tumors.95-97 Taselisib combined with letrozole has
shown activity in PIK3CA-mutant breast cancers.98

The rationale for p110b inhibition is less straightforward
than p110a. Although p110b might be a valid target in some
tumors exhibiting PTEN loss, preclinical studies suggest that
p110a and p110b have overlapping roles. The success of
p110b inhibition may depend on the absence of concomitant
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Fig 2. Common nodes of resistance to targeted therapies within the PI3K pathway. PI3K pathway alterations that confer resistance to targeted therapies across
various tumor types are shown. CRC, colorectal cancer; EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor receptor 2; HR, hormone
receptor; INPP4B, inositol polyphosphate 4-phosphatase type II; MET, hepatocyte growth factor receptor; mTORC, mammalian target of rapamycin complex;
PDK1, phosphoinositide-dependent kinase 1; PI3K, phosphoinositide 3-kinase; PIK3CA, phosphatidylinositol 3-kinase catalytic subunit alpha; PIK3CG, phos-
phatidylinositol 3-kinase catalytic subunit gamma; PIK3R2, phosphatidylinositol 3-kinase regulatory subunit beta; PIP2, phosphatidylinositol 4,5- bisphosphate;
PIP3, phosphatidylinositol 3,4,5-trisphosphate; PTEN, phosphatase and tensin homolog; RTK, receptor tyrosine kinase.
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p110a-activating mutations.90,99 Selective inhibitors of p110b that
have undergone phase I investigation include GSK2636771 and
SAR260301.59,100

DUAL-SPECIFICITY PI3K/mTOR INHIBITORS

Dual-specificity inhibitors were designed to inhibit the structurally
similar PI3K and mTOR kinase domains simultaneously and have
the benefit of interrupting the feedback loop that activates AKT
when mTORC1 is inhibited in isolation (Fig 3).101 Compounds in
this class include BEZ235, GDC-0980, and SAR245409 (XL765).

Although phase I studies initially reported clinical activity,102,103

subsequent studies revealed that controlling bioavailability and limiting
toxicities are challenging. For example, issues with dosing and bio-
availability of BEZ235 led to the development of different oral
formulations,102 and the phase II FERGI trial (GDC-0980 with ful-
vestrant in breast cancer) was stopped because of toxicity concerns.

mTOR Inhibitors: Rapalogs
mTOR inhibitors were the first agents developed to target the

PI3K pathway. The earliest compound in this class, rapamycin

Table 1. PI3K Pathway Inhibitor Potencies

Drug

IC50 (nM)

Target p110a p110b p110d p110g mTOR

Pan-class I PI3K inhibitors
Buparlisib (BKM120)46 Pan-PI3K 52 166 116 262 2,866
Pictilisib (GDC-0941)47 Pan-PI3K 3 33 3 75 580
Copanlisib (BAY 80-6946)48 Pan-PI3K 0.5 3.7 0.7 6.4 45
SAR245408 (XL147)49 Pan-PI3K 39 383 36 23 . 15,000
PX-86650 Pan-PI3K 5.5 . 300 2.7 9.0 —

Isoform-specific PI3K inhibitors
Taselisib (GDC-0032)51 p110a 0.29 9.1 0.12 0.97 1,200
Alpelisib (BYL719)52 p110a 4.6 1,156 290 250 . 9,100
MLN111753,54 p110a 15 4,500 13,900 1,900 1,670
BAY 108243955 p110a/b 4.9 15.0 — — . 5,000
CH513279956 PI3Ka/g 14 120 500 36 —

GSK263677157 p110b — 5.2 58 — —

AZD818658 p110b . 1,000 5 15 — —

SAR26030159 p110b — 52 — — —

Idelalisib (CAL-101)60 p110d* 820 565 2.5 89 . 1,000
IPI-14561 p110d* 1,602 85 2.5 27 –

AMG31962 p110d* — — , 10 — —

Dual-specificity PI3K/mTOR inhibitors
BEZ23563 PI3K/mTOR 4 75 7 5 20.7
GDC-098064 PI3K/mTOR 5 27 7 14 17
PF-0521238465 PI3K/mTOR 0.4 6 8 6 1
PF-0469150266† PI3K/mTOR 1.8 2.1 1.6 1.9 16
GSK-212645867† PI3K/mTOR 0.019 0.13 0.024 0.06 0.18/0.3‡
SAR245409 (XL765)68 PI3K/mTOR 39 113 43 9 190/908‡

mTOR inhibitors, rapalogs
Sirolimus (rapamycin)69 mTOR — — — — 0.1
Nab-rapamycin70 mTOR — — — — —

Temsirolimus71 mTOR — — — — 1,760
Everolimus72 mTOR — — — — 1.6-2.4
Ridaforolimus73 mTOR — — — — 0.2-5.6

mTOR inhibitors, catalytic
OSI-02774 mTOR 1,300 . 30,000 — 420 22/65‡
AZD201475 mTOR 3,800 . 30,000 . 29,000 . 30,000 2.8
MLN012876 mTOR 219 5,293 230 221 1
PP24277 mTOR 2,000 2,200 100 1,300 8
ML-22378 mTOR — — — — —

NOTE. Dashes indicate data not available.
Abbreviations: IC50, concentration for 50% of maximal inhibition of cell proliferation; mTOR, mammalian target of rapamycin; mTORC, mTOR complex; PI3K,
phosphoinositide 3-kinase.
*p110d-selective inhibitors are under investigation for hematologic malignancies.
†Ki binding affinity.
‡IC50 for mTORC1/mTORC2.

Table 2. AKT Inhibitor Potencies

Drug

IC50 (nM)

Target AKT1 AKT2 AKT3

Ipatasertib (GDC-0068)79 AKT1/2/3 5 18 8
MK-220680 AKT1/2/3 8 12 65
AZD536381 AKT1/2/3 3 7 7
Perifosine (KRX-0401)82 AKT1/2/3 — — —

GSK2141795 AKT1/2/3 — — —

ALM301 AKT1/2 — — —

Archexin (RX-0201)83 AKT1 — — —

NOTE. Dashes indicate data not available.
Abbreviations: IC50, concentration for 50% of maximal inhibition of cell
proliferation.
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(sirolimus), inhibits the activity of mTORC1 but not mTORC2.104

Limitations in the pharmacokinetic (PK) properties of sirolimus
led to the development of analogs (called “rapalogs”) with im-
proved characteristics, including temsirolimus, everolimus, and
ridaforolimus.104 Both temsirolimus and everolimus were ap-
proved for use in renal cell carcinoma, highlighting PI3K pathway
activation importance in this setting.104 Improvements in siroli-
mus PK continue to be investigated, with a nanoparticle albumin-
bound formulation in development.70

mTOR Inhibitors: Catalytic
Catalytic mTOR inhibitors improve on rapalogs by inhibiting

both mTORC1 and mTORC2, thus suppressing the feedback-
mediated activation of AKT by mTORC2.105 In a phase I trial,
AZD2014 shows signs of clinical activity in advanced solid tu-
mors,106 and CC-223 shows indications of activity in patients with
neuroendocrine tumors, NSCLC, GBM, and hepatocellular
carcinoma.107,108 Trials of MLN0128 in advanced prostate cancer and
GBM are ongoing.109,110

AKT Inhibitors
As one of the key effector nodes in the PI3K pathway, AKT

could be a promising target in PI3K pathway-activated tumors.

Pan-AKT inhibitors under development are either allosteric (MK-
2206) or adenosine triphosphate (ATP)-competitive (AZD5363,
ipatasertib [GDC-0068]). MK-2206, AZD5363, and ipatasertib
have shown preliminary activity in phase I trials, and are being
tested in a range of solid tumors.111-114 Twomore ATP-competitive
AKT inhibitors, afuresertib (GSK2110183) and GSK2141795, have
undergone clinical investigation.115,116

p70S6 Kinase Inhibitors
p70S6K is activated downstream of AKT and regulates

translation by phosphorylating ribosomal protein S6. p70S6K
amplification confers a proliferative advantage on tumor cells, is
correlated with poor prognosis and reduced survival,117 and is,
therefore, under investigation as a drug target in several phase I
clinical trials.118,119

CHALLENGES FOR PI3K INHIBITOR DEVELOPMENT

Recognition of the PI3K pathway’s contributions to tumorigenesis
has stimulated the development of numerous targeted agents
(Table 1); however, the efficacy of monotherapy inhibition has
been disappointing.90 Insufficient target inhibition, due to tox-
icity or suboptimal dosing schedules, represents one potential
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Fig 3. Targeting the PI3K pathway in cancer with small-molecule inhibitors. Inhibitors discussed in the text are included in the figure. IGF-1R, insulin-like growth factor 1
receptor; InsR, insulin receptor; IRS1, insulin receptor substrate 1; mTORC, mammalian target of rapamycin complex; PDK1, phosphoinositide-dependent kinase 1; PI3K,
phosphoinositide 3-kinase; RTK, receptor tyrosine kinase.
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explanation.1 Evaluating alternative dosing schedules may help
overcome toxicities and enable maximal target inhibition.90 In-
corporation of pharmacodynamic assessments of validated, robust
biomarkers into clinical trials is needed to identify patients who
may derive therapeutic benefit.90,120,121

The limited clinical efficacy with these agents may also result
from a feedback response whereby PI3K pathway inhibition stim-
ulates compensatory activation of a complementary pathway such as
growth factor receptor signaling, bypassing the effects of targeted
blockade.90 Data suggest that PTEN loss represents a convergent
evolutionary mechanism of treatment resistance.122 Schwartz et al
showed that p110a activity was suppressed in PTEN-mutant tu-
mors, and that PI3K signaling was instead driven by p110b.123

However, p110b inhibition only transiently inhibited AKT/mTOR
signaling due to feedback inhibition of insulin-like growth factor 1
receptor and other receptors, resulting in p110a activation and
rebound downstream signaling.123 Combined p110a and p110b
inhibition suppressed this rebound effect.123 In PTEN knockdown
models, PTEN loss contributed to alpelisib resistance, an effect that
was reversed by concurrent p110a and p110b inhibition.122 Sim-
ilarly, prolonged treatment with pictilisib resulted in PTEN loss,
leading to the development of pictilisib resistance in CRC cell lines,
which was overcome by concurrent PI3K and MAPK inhibition.124

Another explanation for the lack of pan-PI3K inhibitor single-
agent activity stems from the relative lack of p110b inhibition
in vitro.1 Residual p110b activity during pan-PI3K inhibitor
treatment may provide sufficient downstream PI3K signaling for
continued growth, particularly in PTEN-deficient tumors where
p110b is the major isoform mediating tumorigenesis.1

Similarly, isoform-selective inhibitors may not achieve sus-
tained benefit due to rebound activation of the uninhibited iso-
forms, which has been observed in luminal breast cancer cell lines
harboring PIK3CA or HER2 amplifications treated with alpeli-
sib,125 and in PTEN-mutated breast and prostate tumors treated
with AZD8186. In these models, concomitant p110a and p110b
inhibition had a synergistic antitumor effect, similar to that re-
ported by Schwartz et al.123,125 Interestingly, p110b-mediated PI3K
pathway reactivation in PIK3CA-mutated breast cancer cells oc-
curred independently of AKT activation, indicating that other
signals downstream of PI3K might contribute to lack of efficacy in
these cells.125 Indeed, many PIK3CA-mutant cancer cell lines and
human breast tumors appear to rely on activation of PDK1 and its
substrate, serum/glucocorticoid regulated kinase 3 (SGK3), rather
than AKT, for growth and tumorigenicity.126 These findings
demonstrate that a variety of feedback mechanisms can reactivate
the PI3K pathway in response to PI3K inhibitor treatment.

Additional mechanisms of resistance have been investigated.
Cell lines sensitive to alpelisib treatment were associated with
complete inhibition of TORC1 pathway signaling, while resistant cell
lines had persistently active mTORC1; combining alpelisib with
everolimus overcame resistance in vitro and in vivo.127 In the clinic,
pS6 (a biomarker of mTORC1 signaling) was expressed in tumors
that initially responded and subsequently progressed.127 A combi-
natorial screen demonstrated the efficacy of the cyclin-dependent
kinase (CDK) 4/6 inhibitor ribociclib (LEE011) combined with
alpelisib, particularly in tumors with phosphorylated retino-
blastoma protein (pRB).128 Notably, CDK4/6 inhibition emerged
as the strongest sensitizer for PI3K inhibition, exerting its activity

by binding and activating cyclin D1, whose expression is often
regulated by TORC1.128-130 Other resistance mechanisms include
MYC overexpression or amplification, matrix-associated resistance,
and activity of ribosomal S6 kinase 3/4.48,128,131-133 CDK4/6 and
mTOR inhibitors should be tested in the clinic to understand
feedback alteration of various pathways and provide novel strategies
in response to treatment resistance. Improved clinical responses
might be achieved by combining PI3K inhibitors with other agents
targeting known resistance pathways that interact with PI3K, such as
the estrogen receptor pathway.134

MANAGEMENT OF CLASS-SPECIFIC TOXICITIES

Toxicity profiles of PI3K pathway inhibitors are related to their
mechanism of action and have becomemore favorable with the advent
of second-generation agents (Table 3).157 Managing and minimizing
toxicity risks, particularly in susceptible patients (eg, hyperglycemia in
diabetic patients), are important considerations when designing
treatment strategies. Several management guidelines for commonly
encountered toxicities have been published and may be helpful to
clinicians using this class of agent, namely those for hyperlipidemia,
hyperglycemia, rash, stomatitis, and noninfectious pneumonitis.158-161

BIOMARKERS FOR THERAPY SELECTION

The promise of personalized therapy depends on the availability of
predictive biomarkers for treatment response. Despite preclinical
evidence that PIK3CA-mutant cell lines and tumors are sensitive to

Table 3. Common Toxicities Associated With PI3K Pathway Inhibitors*

PI3K Pathway Inhibitors Toxicities

Pan-PI3K
class I inhibitors88,89,135–138

Hyperglycemia, fatigue, nausea/vomiting,
diarrhea, decreased appetite, rash, liver
dysfunction, mood alterations†

Isoform-specific
inhibitors92,95,139–143

a:Hyperglycemia, fatigue, nausea/vomiting,
diarrhea, decreased appetite

b:Fatigue, nausea/vomiting, diarrhea,
decreased appetite, anemia

d: Fatigue, nausea/vomiting, diarrhea, rash,
liver dysfunction, pneumonia, pyrexia,
hematologic toxicities

Dual-specificity PI3K/mTOR
inhibitors103,144–149

Hyperglycemia, fatigue, nausea/vomiting,
diarrhea, decreased appetite, rash,
mucositis

mTOR inhibitors,
rapalogs70,150–152

Hyperglycemia, fatigue, nausea/vomiting,
anemia, stomatitis, mucositis, pulmonary
and metabolic toxicities, mood alterations‡

mTOR inhibitors,
catalytic106,153,154

Hyperglycemia, fatigue, nausea/vomiting,
diarrhea, decreased appetite, liver
dysfunction, pneumonia, stomatitis,
mucositis

AKT
inhibitors111,113,115,116,155,156

Hyperglycemia, fatigue, nausea/vomiting,
diarrhea, decreased appetite, rash

p70S6 kinase inhibitors118,119 Fatigue, nausea/vomiting, pancreatitis,
increased lipase, hyperphosphatemia

Abbreviations: mTOR, mammalian target of rapamycin; PI3K, phosphoinositide
3-kinase.
*Toxicities were derived from phase I, single-agent safety/efficacy studies of
drugs listed in Table 1.
†Buparlisib only.
‡Nab-rapamycin only.
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PI3K inhibition,121 correlations between molecular status and
clinical efficacy are less clear. Retrospective analyses of patients
suggest that PIK3CA H1047R correlates with response,162,163 al-
though in the phase I trial of alpelisib with letrozole in HR-positive
breast cancer, clinical responses were also seen in PIK3CAwild-type
patients.121,164 Although this pathway is important, other factors are
probably involved in determining sensitivity to PI3K pathway
inhibition.

Work must continue to validate biomarkers to inform clinical
treatment decisions, including factors predictive of treatment response
or resistance. As an example, a phase II trial of alpelisib or buparlisib
with letrozole is ongoing in patients with confirmed PIK3CA mu-
tation status.165 Strategies to monitor the status of other biomarkers,
such as pRB, will be important for combination regimens.128

COMBINATION THERAPY STRATEGIES

Single-agent activity of pan-PI3K inhibitors has been limited. Isoform-
specific p110d (idelalisib) and p110a inhibitors (alpelisib, taselisib)
have had greater success, and will be important as combination
partners tomaximize therapeutic benefit. A key challenge is developing
effective drug combinations with complementary modes of action,
targeting the most relevant pathways in each tumor type (Table 4).

Combinations With Growth Factor Receptor Inhibitors
Growth factor receptors are common nodes of oncogenic

alteration; for example, HER2 amplification is frequently observed

in breast cancer.183 Inhibition of the growth factor receptor has
several advantages: By blocking initiation of signaling and cross-
talk with complementary pathways, tumor cells are sensitized to
treatment with chemotherapy and radiotherapy.183 As examples,
combinations of buparlisib with paclitaxel and trastuzumab in
HER2-positive breast cancer184 and alpelisib with cetuximab in
HNSCC93 have shown early indications of antitumor activity,
supporting the rationale for this combination approach.

Combinations With Mitogen-Activated Protein Kinase
Inhibitors

The PI3K and mitogen-activated protein kinase (MAPK)
pathways interact at multiple levels, providing a potential escape
mechanism for tumors treated with single-agent PI3K or MAPK
pathway inhibitors, suggesting that simultaneous inhibitionmay be
required to achieve adequate tumor control.185 In support of this,
a retrospective analysis of patients receiving PI3K and MAPK
pathway inhibitors in phase I trials showed combination treatment
can improve efficacy relative to single-pathway inhibition, albeit
with increased toxicity that can limit treatment exposure.186 Ex-
amples include combinations of copanlisib and refametinib, bupar-
lisib and vemurafenib, or pictilisib and GDC-0973.187-189

In phase I trials, promising efficacy signals have been observed
in KRAS- or BRAF-mutant tumors treated with combinations of
pictilisib and GDC-0973,187 SAR245409 and pimasertib,190 and
buparlisib and trametinib.191 Likely indications for PI3K and MAPK
inhibitor combinations will include solid tumors reliant on MAPK
pathway activation, such as BRAF- and KRAS-mutant melanoma,
CRC, and ovarian cancer. Continued investigation of combinations
of agents from both of these pathways will be necessary, because
toxicity has delayed the development of these regimens.

Combinations With Endocrine Therapy
Aberrant hormone receptor signaling plays an important role in

HR-positive breast and prostate cancers. Patients who initially re-
spond to endocrine therapy often develop resistance and progress.
The PI3K pathway is activated in approximately 35% of HR-positive
breast cancers,7 and PI3K pathway blockade can restore sensitivity to
endocrine therapy in breast cancer cell lines.192 Findings that es-
trogen deprivation triggers apoptosis in PI3K pathway-inhibited
cells provide further rationale for combination therapy, perhaps
even as a first-line option.193 Final results of the BOLERO-2 (Breast
Cancer Trials of Oral Everolimus-2) phase III trial of everolimus in
HR-positive breast cancer showed the everolimus combination was
more effective than exemestane alone.194

Likewise, PI3K pathway alterations are prevalent in prostate
cancer, contributing to the development of castration-resistant prostate
cancer.32 Cross-talk between PI3K and androgen receptor pathways
suggests combined inhibition may provide improved benefit over
hormone therapy alone,195 and preclinical studies show p110b in-
hibition and hormone therapy have synergistic antitumor activity.196

COMBINATIONS WITH CHEMOTHERAPY

Preclinical studies suggest that PI3K pathway inhibitors might
sensitize tumors to chemotherapy by altering surrounding

Table 4. PI3K Inhibitor Combination Partners Under Investigation in
Clinical Trials

Therapy PI3K Inhibitor Combinations

Growth factor receptor RTK
inhibitors

Buparlisib with capecitabine and trastuzumab
or lapatinib166

Alpelisib with trastuzumab emtansine167

MAPK pathway inhibitors Buparlisib with trametinib168

Alpelisib with MEK162169

GSK2141795 with trametinib170

MK-2206 with AZD6244171

Endocrine therapy Alpelisib with letrozole165

Buparlisib with fulvestrant172

Taselisib with fulvestrant and/or letrozole173

Buparlisib with abiraterone acetate174

Everolimus with radiation therapy175

Ipatasertib or GDC-0980 with abiraterone
acetate and prednisone176

MK-2206 with bicalutamide177

Chemotherapy Buparlisib with cisplatin/radiotherapy in
HNSCC178

Alpelisib with paclitaxel in breast cancer and
HNSCC179

Pictilisib with cisplatin in breast cancer180

Copanlisib with gemcitabine/cisplatin in
advanced solid tumors135

Copanlisib with paclitaxel in breast cancer181

PARP inhibitors Buparlisib with olaparib in TNBC or high-grade
serous ovarian cancer182

Abbreviations: HNSCC, head and neck squamous cell carcinoma; MAPK,
mitogen-activated protein kinase; PARP, poly(ADP-ribose) polymerase; PI3K,
phosphoinositide 3-kinase; RTK, receptor tyrosine kinase; TNBC, triple-negative
breast cancer.
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vasculature and tumor perfusion,197 thereby increasing exposure to
systemic therapies and synergistically inducing apoptosis.198-200

Early clinical studies showed PI3K pathway inhibitors were well
tolerated with chemotherapy: Antitumor activity was observed in
patients with NSCLC treated with pictilisib, carboplatin, and
paclitaxel, with or without bevacizumab.201 Preliminary positive
results of ipatasertib with chemotherapy have supported the ini-
tiation of a phase II trial in gastric cancers.202

Combination With Poly(ADP-Ribose) Polymerase
Inhibitors

Targeting the connection between the PI3K pathway and DNA
repair is emerging as a therapeutic strategy in BRCA1-deficient tumors,
based on findings that PI3K pathway inhibitors increase DNA damage
and sensitize cell lines to poly(ADP-ribose) polymerase inhibitors.203,204

A phase I study of buparlisib with olaparib is ongoing in patients with
TNBC or high-grade serous ovarian cancer.182,205 Results from these
trials will lead to a better understanding of this combination, po-
tentially lending insight into strategies to overcome resistance.

CHALLENGES FOR COMBINATION THERAPY

Overlapping toxicity profiles with many PI3K inhibitor-containing
combinations is challenging, often preventing sufficient dose ad-
ministration to achieve the necessary exposure of each drug.187 A
notable exception is the reduction in hyperproliferative cutaneous
events for combined MEK and BRAF inhibition, which is

a mechanistic effect of suppressing paradoxical MAPK pathway
activation.206 However, PI3K inhibitor combinations generally
result in cumulative, nonspecific toxicities, and the most tolerable
dose ratios and drug sequences will have to be found empirically.

Toxicities need to be closely monitored, adjusting drug doses
appropriately to prolong treatment of as long as possible. Com-
pared with monotherapy, toxicity management for combination
regimens could be increasingly complex.

In conclusion, the importance of the PI3K pathway in solid
tumors is well established; however, treatments with single-agent
PI3K inhibitors have been disappointing. Several questions must
be investigated to guide the design of effective treatment regimens.
First, which PI3K pathway components contribute the most to
particular tumor types? Second, how do different pathways interact
to support tumor growth, and how should they be targeted (in-
dividually or in tandem, and at what potencies)?

Finally, can treatment strategies be designed to respond to the
emergence of drug resistance? These questions will be addressed by
continued investigation through intelligently designed, biomarker-
driven clinical trials, using treatment combinations tailored toward
defined molecular alterations.
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