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Abstract

Introduction—Cross-sectional studies suggest that postnatal blood lead (PbB) concentrations are 

negatively associated with child growth. Few studies prospectively examined this association in 

populations with lower PbB concentrations. We investigated longitudinal associations of childhood 

PbB concentrations and subsequent anthropometric measurements in a multi-ethnic cohort of girls.

Methods—Data were from The Breast Cancer and the Environment Research Program at three 

sites in the United States (U.S.): New York City, Cincinnati, and San Francisco Bay Area. Girls 

were enrolled at ages 6-8 years in 2004-2007. Girls with PbB concentrations collected at ≤10 years 

old (mean 7.8 years, standard deviation (SD) 0.82) and anthropometry collected at ≥3 follow-up 

visits were included (n=683). The median PbB concentration was 99 ug/d (10th percentile= 0.59 

ug/dL and 90th percentile= 2.00 ug/dL) and the geometric mean was 1.03 ug/dL (95% Confidence 

Interval (CI): 0.99, 1.06). For analyses, PbB concentrations were dichotomized as <1 ug/dL 

(n=342) and ≥1 ug/dL (n=341). Anthropometric measurements of height, body mass index (BMI), 

waist circumference (WC), and percent body fat (%BF) were collected at enrollment and follow-
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up visits through 2015. Linear mixed effects regression estimated how PbB concentrations related 

to changes in girls’ measurements from ages 7-14 years.

Results—At 7 years, mean difference in height was −2.0 cm (95% CI: −3.0, −1.0) for girls with 

≥1 ug/dL versus <1 ug/dL PbB concentrations; differences persisted, but were attenuated, with age 

to −1.5 cm (95% CI: −2.5, −0.4) at 14 years. Mean differences for BMI, WC, and BF% at 7 years 

between girls with ≥1 ug/dL versus <1 ug/dL PbB concentrations were −0.7 kg/m2(95% CI: −1.2, 

−0.2), −2.2 cm (95% CI: −3.8, −0.6), and −1.8% (95% CI: −3.2, −0.4), respectively. Overall, these 

differences generally persisted with advancing age and at 14 years, differences were −0.8 kg/m2 

(95% CI: −1.5, −0.02), −2.9 cm (95% CI: −4.8, −0.9), and −1.7% (95% CI: −3.1, −0.4) for BMI, 

WC, and BF%, respectively.

Conclusions—These findings suggest that higher concentrations of PbB during childhood, even 

though relatively low by screening standards, may be inversely associated with anthropometric 

measurements in girls.
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1. Introduction

Lead is an environmental toxin capable of interfering with neurodevelopment, endocrine 

function, and growth in children.1,2 The main sources of lead exposure tend to be lead paint, 

consumer products, air pollution, water, and food packaging.2-5 Despite implementation of 

numerous policies, which have drastically reduced childhood lead exposures in the United 

States (U.S.), detectable blood lead (PbB) concentrations persist, with approximately half of 

children ages 1-5 years having PbB ≥1 ug/dL.6 No level of PbB is considered safe and there 

is evidence to support lasting detrimental health effects with PbB concentrations <10 ug/dL.
1

Studies of prenatal lead exposure suggest that fetal exposure to increasing maternal PbB 

concentrations is associated with premature birth, low birth weight, and smaller gains in 

height and weight during infancy and childhood.7-10 Postnatal PbB concentrations are also 

negatively associated with anthropometry in children.9,11-15 Among children, ages 7 years 

and younger, participating in the second and third National Health and Nutrition 

Examination Surveys (NHANES II, 1976-1980 and III, 1988-1994, mean PbB 

concentrations were ~15 and 4 ug/dl, respectively), height was strongly negatively correlated 

with PbB concentration; with 1.2-1.6 centimeters (cm) shorter heights per 10 ug/dL increase 

in PbB concentrations.11,12 A decrease in weight of 1.1 kilograms (kg) per 10 ug/dL 

increase in PbB concentrations was also observed.11 However, no10,16,17 and positive18 

associations have also been reported.

Many of the previous studies were based on cross-sectional data and/or had sample 

populations with mean PbB concentrations above the Centers for Disease Control and 

Prevention reference level of 5 ug/dL (the level at which public health actions should be 

initiated).11,12,19 There remains limited epidemiological investigation of lower postnatal 
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PbB concentrations (<5 ug/dL) and children’s health, particularly anthropometry. The 

objective of the current study was to investigate associations of childhood PbB 

concentrations and subsequent anthropometric measurements among a multi-site, 

multiethnic cohort of girls with PbB concentrations reflective of the low environmental lead 

exposure levels observed in the general U.S. population.20

2. Materials and Methods

2.1. Study Population

The Breast Cancer and Environment Research Program included a prospective puberty 

cohort funded by the National Institute of Environmental Health Sciences and National 

Cancer Institute. The study and recruitment process have been described previously.21 Girls 

ages 6-8 years were enrolled in 2004-2007 at three sites (baseline, n=1,239): Icahn School of 

Medicine at Mount Sinai, which recruited in East Harlem, New York (New York City); 

Cincinnati Children’s Hospital/University of Cincinnati (Cincinnati), which recruited from 

schools in the Cincinnati metropolitan area and through the Breast Cancer Registry of 

Greater Cincinnati; and Kaiser Permanente health care system in Northern California, which 

recruited in the San Francisco Bay Area (San Francisco). In addition to age, inclusion 

criteria required that girls have no underlying endocrine medical conditions, be of black or 

Hispanic race/ethnicity (New York City site only), and have been born in the Kaiser 

Permanente system (San Francisco). The study was approved by the institutional review 

board at each site and the Centers for Disease Control and Prevention (CDC). There were 

881 girls with PbB concentrations collected at some time point in the study (baseline or at a 

follow-up visit); 795 had anthropometric measurements collected at ≥3 biannual or annual 

follow-up visits, of which 683 had PbB concentrations collected at age 10 years (120 

months) or younger.

2.2. Blood lead measurements

Blood lead analysis was conducted at the CDC or California Department of Public Health 

Laboratory using inductively coupled plasma mass spectrometry.22 Both laboratories are 

CLIA compliant. Detection limits were ≤0.07 μg/dL. and results for all samples were above 

that concentration. The median PbB concentration was 0.99 ug/dL (mean (SD) = 1.16 (0.67) 

ug/dL, range=0.18, 5.40, 10th percentile= 0.59 ug/dL and 90th percentile= 2.00 ug/dL) and 

the geometric mean (GM) was 1.03 ug/dL (95% Confidence Interval (CI): 0.99, 1.07). We 

initially categorized PbB concentrations as: <1 ug/dL (n=342, reference group), 1-<2 ug/dL 

(n=272), and ≥2 ug/dL (n=69), to examine the highest levels in our sample). In these 

analyses, associations were similar for PbB concentrations in the 1-<2 ug/dL and ≥2 ug/dL 

categories, compared to <1 ug/dL category. Therefore, PbB concentrations were 

dichotomized and included in final analyses as <1 ug/dL (n=342, mean (SD)= 0.73 (0.16) 

and GM=0.70; 95%CI, 0.69-0.72) and ≥1 ug/dL (n=341, mean (SD)= 1.61 (0.70) and 

GM=1.50; 95%CI, 1.45-1.56).

The final analytic sample was limited to those girls with PbB concentrations collected at age 

≤10 years (n=683). There were 112 girls (16%, n=106 girls were from the New York City 

site) who had PbB concentrations collected after age 10 years (mean age= 11.7 years) who 
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were excluded. We chose the cut-point of 10 years because it is an age when girls are 

experiencing increases in height and it precedes peak height velocity by approximately 1 

year.23,24 Inclusion of girls with PbB concentrations collected at older ages (>10 years, 

mean age=11.7 years) may skew the results since these girls are contributing anthropometric 

data within a shorter (older) age range and at ages when growth, particularly height, may 

begin to slow. Sensitivity analyses including all girls (n=795) were conducted for 

comparison. In these analyses, predicted mean differences in all measurements were 

attenuated but were not substantively different in magnitude or precision from the final 

analytic sample, so they are not presented.

2.3. Anthropometric measurements

Weight (kilograms, kg), standing height (cm), and umbilical waist circumference (cm) were 

collected at baseline and at biannual (Cincinnati) or annual (New York City and SFBA) 

follow-up visits by trained interviewers using a standard protocol.25 Children wore light 

clothing and no shoes. All anthropometric measurements were taken twice, recorded to the 

nearest 0.1 cm or 0.1 kg, and averaged for analyses. Measurements were taken a third time 

(and averaged) only if the absolute difference between the previous two measurements 

exceeded the tolerance level (1 cm or 0.3 kg). BMI was calculated as weight divided by 

squared height (kg/meters2). Percent body fat was estimated using bioelectrical impedance 

analysis (Tanita). Only anthropometric measurements taken at the time of PbB 

concentrations collection and the follow-up visits thereafter were included in analyses. The 

median number of times that anthropometric measurements were taken for each girl during 

the follow-up period was 9 (range, 3-15 collection times). BMI percentile, waist 

circumference, and percent body fat were correlated in this population (r=0.75 for BMI and 

waist circumference; r=0.79 for BMI and percent body fat; and r=0.88 for waist 

circumference and percent body fat).

2.4. Covariates

Data regarding sociodemographic and other characteristics were completed by the girls’ 

mothers (or caregivers) via self-administered (Cincinnati) or interviewer-administered 

questionnaires, conducted in English or Spanish. Race/ethnicity was identified as Black, 

Hispanic, White, and Asian. Highest education level of either parent was used as a proxy of 

socioeconomic status and was categorized as high school graduate or less, some college/

college graduate, and graduate or professional degree.

2.5. Statistical analysis

Statistical analyses were performed using Stata 15 (College Station, Texas). Confounders 

were selected a priori based on a conceptual model and a review of the previous literature. 

Linear mixed effects models with an unstructured correlation matrix assessed the 

relationship between dichotomous PbB concentrations (measured at baseline) and girls’ 

height, BMI, waist circumference, and percent body fat, separately, from ages 7 through 14 

years.26-28 This age range was selected due to the smaller numbers of girls with 

measurements at younger and older ages. Final models included dichotomous PbB 

concentrations, age (at anthropometric measurement, centered and rounded to the nearest 

tenth of a year), age squared (accommodates non–linearity in growth), race, an interaction 
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term between age and PbB concentrations, an interaction term between age squared and PbB 

concentrations, and an interaction term between race and age (allows for differences by race 

in girls’ measurements over time). These models were used to generate predicted differences 

(and 95% confidence intervals, CI) in each of the anthropometric outcomes comparing ≥1 

ug/dl to <1 ug/dl PbB concentrations at each integer age using the pwcompare command. 

Additional adjustment of final models for caregiver education slightly strengthened but did 

not appreciably alter the observed associations. An interaction term between race and blood 

Pb concentrations was also tested in final models, but was not statistically significant 

(p>0.10 in all models).

3. Results

3.1. Study population characteristics

In the final analytic sample, average age at collection of blood PbB concentrations was 7.8 

years (SD=0.82) and approximately half of the sample had PbB concentrations ≥1 ug/dl 

(n=341). The mean (SD) BMI percentile, height percentile, waist circumference, and percent 

body fat at collection of PbB concentrations were 61.0 (29.6)%, 55.6 (28.7)%, 59.2 (7.8) cm, 

and 16.8 (8.8)%, respectively. Unadjusted geometric means of PbB concentrations by 

selected sociodemographic characteristics of the girls are presented in Table 1. PbB 

concentrations were similar across categories of characteristics with the exception that 

higher PbB concentrations were observed among Black girls compared to those of other 

race/ethnic groups, among girls at the New York City and Cincinnati sites compared to those 

in San Francisco, and among girls whose caregivers had achieved a high school education or 

less compared to those with more educated caregivers. However, by category of PbB 

concentration, only distributions of race/ethnicity statistically significantly varied (p<0.05, 

Table 1). We also examined the distributions of baseline characteristics of girls who were 

missing blood Pb concentrations or anthropometric measurements. Compared to girls with 

complete data, those with missing data were more likely to be older (age 9 years and older), 

from the New York City site, black or Hispanic, overweight or obese, and have a less 

educated caregiver (p<0.05 for all comparisons).

3.2. Association of PbB concentrations with height

PbB concentrations ≥1 ug/dL were consistently negatively associated with anthropometric 

measurements throughout the study period (Tables 2 and 3). Table 2 shows the predicted 

mean differences in height between girls with PbB concentrations <1 versus ≥1 ug/dL from 

ages 7 through 14 years. At 7 years, girls with PbB concentrations ≥1 ug/dL were −2.0 cm 

(95% CI: −3.0, −1.0) shorter than girls with PbB concentrations <1 ug/dL. The predicted 

mean differences in height between girls with high and low PbB slightly decreased with age 

and at 14 years, girls with PbB concentrations ≥1 ug/dL were −1.5 cm (95% CI: −2.5, −0.4) 

shorter than girls with PbB concentrations <1 ug/dL.

3.3. Association of PbB concentrations with BMI, waist circumference, and percent body 
fat

Table 3 shows the predicted mean differences in BMI, waist circumference, and percent 

body fat between girls with PbB concentrations <1 ug/dL versus ≥1 ug/dL from ages 7 
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through 14 years. PbB concentrations ≥1 ug/dL were consistently inversely associated with 

each of the anthropometric measurements across the follow-up period. Between 7 to 14 

years, differences in BMI, waist circumference, and percent body fat ranged from −0.7 to 

−0.9 kg/m2 −2.2 to −3.0 cm, and −1.7 to −2.2%, respectively.

4. Discussion

This study prospectively examined the influence of childhood PbB concentrations on 

anthropometry among a cohort of young, multi-ethnic U.S. girls. PbB concentrations in 

these girls were representative of the low exposure levels commonly observed in the US (e.g. 

NHANES 2003-2006 the geometric mean of PbB concentrations was 1.03 (SE=0.02) among 

children 3-19 years old.20 We found that PbB concentrations at ages 6-10 years were 

negatively associated with subsequent anthropometric measurements collected over ~7 

years. Girls with PbB concentrations ≥1 ug/dL were shorter and had lower BMI, waist 

circumference, and percent body fat than those with PbB concentrations <1 ug/dL at 

baseline and throughout the follow-up period.

There are several biological mechanisms through which lead may influence children’s 

physical growth and body composition. Lead may interfere with bone cell function, 

metabolism, and bone mineralization.29,30 For example, lead may alter circulating levels of 

1,25-dihydroxyvitamin D3 (a hormone required for bone development and maintenance), as 

well as the ability of bone cells to respond to hormonal regulation, leading to impaired bone 

formation. Lead may also have endocrine-disrupting capabilities by reducing responses to 

hormones that are necessary for growth, such as insulin-like growth factor and growth 

hormone, and inhibiting the hypothalamic-pituitary-growth axis.31,32

Many, mostly cross-sectional, epidemiological studies report that PbB concentrations 

measured during childhood are associated with shorter height.11,12,14,15,33-39These studies 

have included children within a wide range of ages, from infancy through adolescence, and 

mean PbB concentrations, from ~2 to >20 ug/dl. Reported heights in these studies were 

approximately 1-3 cm shorter per 10 ug/dl increase in lead concentrations;11,12,14,34,36 this 

range includes the predicted mean differences in height observed in the current study of 

~1.5-2 cm for girls with high versus low PbB concentrations. Collectively, these results 

suggest that the association of lead and height may be robust to a range of PbB 

concentrations.

Negative associations of lead and BMI are less consistently reported. Similar to the current 

study, several studies observed lower BMI or weight with higher PbB concentrations.
11,13,20,34,37,40,41 For example, Scinicariello et al. examined cross-sectional associations of 

PbB concentrations and BMI z-score among US children ages 3-19 years (NHANES 

1999-2006) with PbB concentrations comparable to those of girls in the current study (the 

geometric mean was 1.03 ug/dl in both studies).20 Compared to children in the first quartile 

of PbB concentrations (PbB concentrations<=0.70 ug/dl), those in the third (1.10-1.60 ug/dl) 

and fourth (>=1.16 ug/dl) quartiles had lower BMI z-scores (−0.15 (SE=0.06) and −0.33 

(SE=0.07), respectively), and lower odds of overweight and obesity.20 However, other 

studies reported null10,15-17,36 or positive18 associations. Among Korean children, ages 5-13 
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years, with relatively low mean PbB concentrations (2.4 ug/100ml, SD=0.7), Min and 

colleagues found an inverse association for height (B=−1.45 cm, SE 0.64), but no 

association with weight or BMI36 In another study, dentin (but not bone) lead levels were 

weakly, positively associated with BMI in cross-sectional analyses at ages 6-9 years 

(B=1.02, SE=1.02) and at follow-up at ages 19-22 years (B=2.65, SE=1.16); however, loss 

to follow-up in this study was nearly 75%.18 BMI is often used as an indicator of adiposity 

in population-based studies; however, since it is an index of weight relative to height, it is 

highly correlated with both fat mass and fat-free mass in young children.42 In the current 

study, measurements of waist circumference (estimates central adiposity or visceral fat) and 

percent body fat (differentiates fat-free mass from fat mass), in addition to BMI, were 

included to assess changes in girls’ body composition.43 We observed inverse associations of 

higher PbB concentrations with all three measurements (BMI, waist circumference, and 

percent body fat), which remained fairly consistent throughout the study period and did not 

substantially vary with increasing age. These findings suggest that PbB concentrations are 

associated with lower BMI, which may be attributed to shorter height, as well as reduced 

body fat. Given that our study is the first, to our knowledge, to consider alternative 

assessments of body composition and PbB concentrations, replication of these findings is 

warranted.

Strengths of this study include its longitudinal design with repeated anthropometric 

measurements in a large, multi-ethnic sample of girls from childhood through early 

adolescence, which represents a period of physiological and physical changes related to 

growth and development. In addition to height, we considered three distinct, indirect 

estimations of adiposity: BMI, waist circumference, and percent body fat. These 

measurements are correlated but alsocomplementary but also allowed for a varied 

assessment of how lead exposure may influence girls’ body composition. This study was 

limited to a one-time measurement of PbB concentrations. PbB concentrations have low 

within-child variability and reflect lead exposure over the previous several months44-46; 

therefore, they may be indicative of relatively recent or possibly more constant exposures. 

Given that sources of lead are likely to be consistent in the environment, e.g. air and water 

pollution, PbB concentrations in this study may be representative of lead exposures 

occurring even earlier in childhood. This may explain the observed inverse associations of 

PbB concentrations and anthropometric measurements at baseline. For the most part, these 

associations persisted through early adolescence, which could be a consequence of 

continued lead exposure but cannot be determined due to the one-time blood measurement. 

Still, reverse causality cannot be ruled out. It is plausible that PbB concentrations may be 

diluted by body size, such that taller girls have lower PbB concentrations relative to shorter 

girls (which may also be age-related). We attempted to reduce this possibility by limiting 

analyses to younger girls at sample collection (<=10 years) when rates of growth are likely 

slower compared to older ages, for most girls.23,24 PbB concentrations were also categorized 

(<1 and ≥1 ug/dl) and there were no differences at baseline in the distributions of age, height 

percentiles, or BMI percentiles between PbB categories (Table 1), suggesting that dilution 

by body size did not solely influence our results. Lastly, we cannot exclude the possibility of 

unmeasured confounding by genetic, dietary, or other factors that may be associated with 

both lead exposure (or metabolism) and childhood growth.
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5. Conclusions

This is the first prospective, longitudinal epidemiological study to examine the relationship 

between PbB concentrations during childhood and anthropometric measurements in girls 

over approximately 7 years of follow-up. The findings suggest that PbB concentrations ≥1 

ug/dl are inversely associated with height and body composition in girls throughout early 

adolescence. These associations were observed at relatively low PbB concentrations that are 

below screening standards and relevant to exposure levels occurring in the U.S. and other 

countries.
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Highlights

• Few studies prospectively examined association of childhood lead and 

anthropometry

• This study included a multi-ethnic US population of girls with low lead 

concentrations

• Anthropometric measurements were taken ≥3 times during follow-up

• Lead concentrations ≥1 ug/dl were negatively associated with anthropometry 

at ages 7-14 years

• Future research should include investigation of low blood lead concentrations
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Table 1.

Blood lead (PbB) concentrations by selected sociodemographic characteristics of girls participating in the 

Breast Cancer Environment and Reproduction Program (final analytic sample, n=683).*

PbB (ug/dL)

PbB<1
ug/dL

(n=342)

PbB≥1
ug/dL

(n=341)

N (%) GM 95% CI Mean
(SD)

Range N (%) N (%)

Site 683

New York 30 (4) 1.17 0.98, 1.39 1.29 (0.63) 0.44, 3.20 12 (4) 18 (5)

Cincinnati 326 (48) 1.12 1.06, 1.18 1.28 (0.79) 0.34, 5.40 153 (45) 173 (51)

San Francisco Bay Area 327 (48) 0.93 0.89, 0.98 1.04 (0.51) 0.18, 3.73 177 (52) 150 (44)

Race/Ethnicity 683

Black 192 (28) 1.29 1.20, 1.37 1.45 (0.80) 0.42, 5.40 60 (18) 130 (39)

Hispanic 103 (15) 1.01 0.92, 1.11 1.13 (0.57) 0.39, 3.65 48 (14) 55 (16)

Asian 42 (6) 0.84 0.74, 0.95 0.91 (0.37) 0.36, 2.19 26 (8) 16 (5)

White 346 (51) 0.93 0.89, 0.98 1.05 (0.59) 0.18, 5.30 208 (61) 138 (40)**

Age at PbB Collection (years) 683

6-< 7 121 (18) 1.04 0.95, 1.14 1.19 (0.70) 0.19, 4.40 62 (18) 59 (17)

7-< 8 283 (41) 1.06 1.00, 1.12 1.19 (0.66) 0.38, 5.40 132 (39) 151 (44)

8-< 9 207 (30) 1.00 0.94, 1.07 1.15 (0.70) 0.18, 5.30 110 (32) 97 (28)

9 - 10 72 (11) 0.96 0.86, 1.06 1.06 (0.54) 0.34, 3.20 38 (11) 34 (10)

BMI Percentile 683

<50th 254 (37) 1.05 0.99, 1.12 1.20 (0.69) 0.18, 4.30 117 (34) 137 (40)

50 - <85th 230 (34) 1.02 0.96, 1.08 1.15 (0.67) 0.34, 5.30 120 (35) 110 (32)

85 - <95th 104 (15) 1.01 0.91, 1.12 1.17 (0.77) 0.29, 5.40 54 (16) 50 (15)

≥95th 95 (14) 1.02 0.93, 1.10 1.11 (0.52) 0.41, 2.80 51 (15) 44 (13)

Height Percentile 683

<25th 134 (20) 1.02 0.94, 1.10 1.13 (0.61) 0.43, 4.20 61 (18) 73 (21)

25th- <50th 150 (22) 1.09 1.01, 1.18 1.23 (0.69) 0.19, 5.30 66 (19) 84 (25)

50th - <75th 176 (26) 1.03 0.96, 1.11 1.17 (0.64) 0.18, 4.70 92 (27) 84 (25)

≥75th 223 (33) 0.99 0.93, 1.06 1.14 (0.71) 0.29, 5.40 123 (36) 100 (29)

Caregiver Education 666

High School or Less 265 (40) 1.09 1.03, 1.16 1.24 (0.70) 0.29, 4.70 122 (36) 143 (43)

College 257 (39) 1.00 0.94, 1.06 1.14 (0.67) 0.18, 5.30 137 (41) 120 (36)

Graduate School 144 (22) 0.95 0.89, 1.01 1.03 (0.49) 0.34, 4.30 77 (23) 67 (20)
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GM, geometric mean; 95%CI, 95% Confidence Interval; BMI, Body Mass Index

*
Sociodemographic characteristics of girls were assessed at the time of collection of PbB concentrations

**
chi-squared test, p<0.05
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Table 2.

Predicted mean differences* in height among girls from ages 7 through 14 years with ≥1 ug/dl versus <1 ug/dl 

blood lead (PbB) concentrations (n=683).

Age (years) Height
(cm) 95% CI P

7 −2.0 −3.0, −1.0 <0.001

8 −1.9 −2.8, −0.9 <0.001

9 −1.7 −2.7, −0.8 <0.001

10 −1.6 −2.6, −0.7 0.001

11 −1.6 −2.5, −0.6 0.002

12 −1.5 −2.5, −0.5 0.004

13 −1.5 −2.5, −0.5 0.004

14 −1.5 −2.5, −0.4 0.01

*
Linear mixed-effects models included dichotomous PbB concentrations, age (at anthropometric measurement, centered and estimated to the 

nearest tenth of a year), age squared, race, an interaction term between age and PbB concentrations, an interaction term between age squared and 
PbB concentrations, and an interaction term between race and age.
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Table 3.

Predicted mean differences* in body mass index (BMI), waist circumference (WC), and percent body fat (BF) 

among girls ages 7 through 14 years with ≥1 ug/dl versus <1 ug/dl blood lead (PbB) concentrations (n=686).

Age
(years)

BMI
(kg/m2)

95% CI P WC
(cm) 95% CI P BF

(%) 95% CI P

7 −0.7 −1.2, −0.2 0.005 −2.2 −3.8, −0.6 0.01 −1.8 −3.2, −0.4 0.01

8 −0.8 −1.3, −0.3 0.001 −2.5 −3.8, −1.1 <0.001 −2.0 −3.3, −0.7 0.003

9 −0.9 −1.4, −0.4 0.001 −2.7 −4.0, −1.4 <0.001 −2.1 −3.4, −0.8 0.001

10 −0.9 −1.4, −0.4 0.001 −2.9 −4.3, −1.4 <0.001 −2.2 −3.4, −0.9 0.001

11 −0.9 −1.5, −0.3 0.002 −3.0 −4.5, −1.4 <0.001 −2.1 −3.4, −0.9 0.001

12 −0.9 −1.5, −0.3 0.005 −3.0 −4.7, −1.3 0.001 −2.1 −3.4, −0.8 0.002

13 −0.8 −1.5, −0.2 0.02 −3.0 −4.8, −1.1 0.002 −1.9 −3.2, −0.6 0.003

14 −0.8 −1.5, −0.02 0.05 −2.9 −4.8, −0.9 0.005 −1.7 −3.1, −0.4 0.01

*
Linear mixed-effects models included dichotomous PbB concentrations, age (at anthropometric measurement, centered and estimated to the 

nearest tenth of a year), age squared, race, an interaction term between age and PbB concentrations, an interaction term between age squared and 
PbB concentrations, and an interaction term between race and age.
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