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Abstract

Land change is a cause and consequence of global environmental change1,2. Land-cover and land-

use change significantly alter the Earth’s energy balance and biogeochemical cycles, contributing 

to climate change, which in turn affects land surface properties and the provision of ecosystem 

services1–4. Yet quantification of global land change is lacking. Here, we analyze 35-years of 

satellite data and provide the first comprehensive record of global land change dynamics during 

1982–2016. We show that contrary to the prevailing view that forest area has declined globally5, 

tree cover has increased by 2.24 million km2 (+7.1% relative to 1982 level). This overall net gain 

is a result of net loss in the tropics outweighed by net gain in the subtropical, temperate and boreal 

climate zones. Global bare ground cover has decreased by 1.16 million km2 (−3.1%), most notably 

in agricultural regions in Asia. Of all land changes, 60% are associated with direct human land-use 

activities and 40% with indirect drivers such as climate change. Land-use change exhibits strong 

regional dominance, including tropical deforestation and agricultural expansion, temperate 

reforestation/afforestation, cropland intensification, and urbanization. Consistent across all climate 

domains, global montane systems have gained tree cover over the past 35 years, whereas many 

arid and semi-arid ecosystems have lost vegetation cover. The global land change quantified in our 

study and the driver attribution results reflect a human-dominated Earth system. The freely 

available dataset may be used to improve the modeling of land-use change, biogeochemical cycles 

and vegetation-climate interactions to further advance our understanding of global change1–4,6.

Humanity depends on land for food, energy, living space and development. Land-use 

change, a traditionally local-scale human practice, is increasingly affecting Earth system 
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processes, including the surface energy balance, the carbon cycle, the water cycle, and 

species diversity1–4. Land-use change is estimated to contribute a quarter of cumulative 

carbon emissions to the atmosphere since industrialization3. As population and per capita 

consumption continue to grow, so does demand for food, natural resources and consequent 

stress to ecosystems. Recent research suggests that human-induced perturbations to the 

Earth system, especially the climate system, have exceeded natural variability and that we 

have entered a new geologic epoch referred to as the Anthropocene7.

Because of their synoptic view and recurrent monitoring of the Earth’s surface, satellite 

observations contribute substantially to our current understanding of the global extent and 

change of land cover and land use. Previous global-scale studies were mainly focused on 

annual forest cover change (stand-replacement disturbance) for the time period after 20008 

or at sparse temporal intervals9,10. Long-term gradual changes in undisturbed forests as well 

as areal changes in cropland, grassland and other non-forested land are less well quantified.

For the time period 1982 to 2016, we create an annual global vegetation continuous fields 

product11, consisting of tall vegetation (≥ 5m in height) hereafter referred to as tree canopy 

(TC) cover, short vegetation (SV) cover and bare ground (BG) cover, at 0.05° × 0.05° spatial 

resolution (see details of definitions in Methods). For each year, every land pixel is 

characterized as percent of TC, SV and BG cover, representing the vegetation composition at 

the time of the local peak growing season. The dataset is produced by combining optical 

observations from multiple satellite sensors, including the Advanced Very High Resolution 

Radiometer, the Moderate Resolution Imaging Spectroradiometer, the Landsat Enhanced 

Thematic Mapper Plus and various very high spatial resolution sensors. We employ non-

parametric trend analysis to detect and quantify changes in tree canopy, short vegetation and 

bare ground over the full time period at pixel (0.05° × 0.05°), regional and global scales. 

Observed changes are attributed to direct human activities or indirect drivers based on a 

global probability sample and interpretation of high resolution images from Google Earth.

Total area of tree cover increased by 2.24 million km2 from 1982 to 2016 (90% confidence 

interval (CI) [0.93, 3.42] million km2) representing a +7.1% change relative to 1982 tree 

cover (Extended Data Table 1). Bare ground area decreased by 1.16 million km2 (90% CI 

[−1.78, −0.34] million km2) representing a decrease of 3.1% relative to 1982 bare ground 

cover. Area of short vegetation cover decreased by 0.88 million km2 (90% CI [−2.20, 0.52] 

million km2) indicating a decrease of 1.4% relative to 1982 short vegetation cover. A global 

net gain in tree canopy contradicts current understanding of long-term forest area change; 

the Food and Agriculture Organization of the United Nations (FAO) reported a net forest 

loss between 1990 and 2015. However, our gross tree canopy loss estimate (−1.33 million 

km2, −4.2%, Extended Data Table 1) agrees, in magnitude, with FAO’s net forest area 

change estimate (−1.29 million km2, −3%), despite differences in the time period covered 

and definition of forest (FAO defines forest as tree cover ≥ 10%; see details in Methods).

The mapped land change (Fig. 1) consists of all land-cover and land-use changes induced by 

natural or anthropogenic drivers. Land-cover and land-use change themes are also inherently 

linked in the tree cover – short vegetation – bare ground nexus. For example, deforestation 

for agricultural expansion is often manifested as tree canopy loss and short vegetation gain, 
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whereas land degradation may simultaneously result in short vegetation loss and bare ground 

gain. Pairs of ΔTC, ΔSV and ΔBG show strong coupling and symmetry in change direction 

but vary substantially over space (Fig. 1b and Extended Data Fig. 1). That is, the globally 

dominant, coupled land changes are ΔTC co-located with ΔSV and ΔSV co-located with 

ΔBG.

The overall net gain in tree canopy is a result of net loss in the tropics outweighed by net 

gain in the subtropical, temperate and boreal climate zones (Extended Data Table 2). A 

latitudinal north (gain)-south (loss) contrast in tree cover change is evident (Fig. 2a). 

Conversely, for short vegetation, tropical net gain is exceeded by extratropical net loss. The 

latitudinal profile of ΔSV largely mirrors that of ΔTC, most obvious in the northern mid-to-

high latitudes (45°N-75°N) and low latitudes (30°S-10°N) (Fig. 2b). For bare ground, 

subtropical net gain partially offsets losses in all other climate domains. In the northern low-

to-mid latitudes (10°N-45°N), the profile of bare ground loss (Fig. 2c) closely corresponds 

to that of short vegetation gain (Fig. 2b).

Changes were unevenly distributed across biomes (Fig. 3, Extended Data Fig. 2 and 

Extended Data Table 2). The largest area of net tree canopy loss occurred in the tropical dry 

forest biome (−95,000 km2, −8%) (Extended Data Fig. 2a), closely followed by tropical 

moist deciduous forest (−84,000 km2, −2%) (Fig. 3c) [all percent net changes are expressed 

relative to the benchmark of the area of the cover class in 1982]. Tree canopy in major forest 

biomes outside the tropics increased over the past 35 years, with temperate continental forest 

experiencing the largest gain (+726,000 km2, +33%) (Fig. 3d), comparable to the next two 

biomes combined: boreal coniferous forest (+463,000 km2, +12%) (Extended Data Fig. 2m) 

and subtropical humid forest (+280,000 km2, +18%) (Extended Data Fig. 2e).

Short vegetation loss mirrored tree cover gain dynamics, but with smaller magnitudes: 

temperate continental forest (−610,000 km2, −14%), boreal coniferous forest (−430,000 

km2, −10%) and subtropical humid forest (−249,000 km2, −9%). In contrast, tropical forest 

biomes all gained short vegetation, with tropical shrubland experiencing the largest areal 

increase (+417,000 km2, +10%) (Fig. 3e), twice the amount of short vegetation gain in 

tropical dry forest (+246,000 km2, +5%). Tropical shrubland also experienced the largest 

bare ground loss (−408,000 km2, −10%).

Subtropical desert, the second largest dryland biome on Earth, had the largest gain in bare 

ground (+154,000 km2, +4%) (Fig. 3f), followed by subtropical steppe (+107,000 km2, 

+5%) (Extended Data Fig. 2h).

Consistent across all climate domains, mountain systems experienced net bare ground loss, 

net short vegetation loss, and net tree canopy gain (Extended Data Fig. 2c, f, i, n and 

Extended Data Table 2). In the high-latitude boreal tundra woodland and the polar ecozone 

(Extended Data Fig. 2o, p), bare ground decreased and tree canopy increased in both 

biomes, while short vegetation decreased in tundra woodland, but increased in the polar 

ecozone.

Based on the data from the global probability sample, an estimated 60% of all changes were 

associated with direct human land-use activities and 40% with indirect drivers such as 
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climate change (Extended Data Figs. 3 and 4; see Methods). Direct human impact varied 

from 36% for bare ground gain to 70% for tree canopy loss. At the continental scale, land-

use activities account for the majority of observed land changes in Europe (86%), South 

America (66%), Asia (62%) and Africa (50%), but play a smaller role in North America 

(47%) and Oceania (35%). The specific land change drivers are diverse, multi-scale and 

interactive1,13 (see below for detailed discussion). However, changes collectively induced by 

the various drivers at the global scale appear gradual over time (Extended Data Fig. 5).

Expansion of the agricultural frontier is the primary driver of deforestation in the tropics14. 

The three countries with the largest area of net tree cover loss during 1982–2016 are all 

located in South America: Brazil (−385,000 km2, −8%), Argentina (−113,000 km2, −25%) 

and Paraguay (−79,000 km2, −34%) (Supplementary Information Table 1). The “arc of 

deforestation” along the southeastern edge of the Amazon has been well 

documented8,9,14,15. Clearing of natural vegetation for export-oriented industrial agriculture 

also prevailed in the Cerrado (Fig. 4a) and the Gran Chaco (Fig. 4b). Spatially clustered 

hotspots of deforestation are also found in Queensland, Australia and Southeast Asia, 

including Myanmar, Vietnam, Cambodia and Indonesia, diminishing the already scarce 

primary forests of the region16. In sub-Saharan Africa, tree cover loss was pervasive across 

the Congolian rainforests and the Miombo woodlands (Fig. 4c), historically related to small-

holder agriculture, and increasingly for commodity crop cultivation17. Forests in boreal 

Canada, eastern Alaska and central Siberia exhibited large patches of tree canopy loss and 

short vegetation gain, similar to the tropics (Fig. 1b). However, these are the result of 

persistent disturbances from wildfires and subsequent recovery of natural vegetation18.

Discernible impacts of climate change on vegetation change are also revealed at regional 

scales. In the Western United States (Fig. 4d), forests are suffering from increasing stress 

from insects, wildfires, heat and droughts due to regional warming19. But in the temperature-

limited Arctic, warming is facilitating woody vegetation growth in northeastern Siberia, 

western Alaska and northern Quebec20 (Fig. 4e). Land-use activities are rare in these boreal 

tundra and polar ecosystems, contributing less than 1% to observed land changes (Extended 

Data Fig. 3e). In water-limited savannas in Central and West Africa (Fig. 4f), forest 

expansion and woody encroachment, observed both from space and in the field21, are likely 

driven by increases in precipitation and atmospheric CO2 22. Extreme high rainfall 

anomalies also contributed to the greening of the Sahel22 (Fig. 4f). Altitudinal biome shift is 

also expected in a changing climate. Global treeline positions have been advancing since 

1900 AD as a result of climate warming23. The aforementioned bare ground loss, short 

vegetation loss and tree canopy gain in global mountain systems further suggest that an 

enduring transformation is occurring with regard to the distribution, structure and 

composition of montane vegetation.

Political, social and economic factors can influence vegetation in conjunction with climate 

drivers. Tree canopy in Europe, including European Russia, has increased by 35%—the 

greatest gain among all continents (Extended Data Table 1). Spatially contiguous hotspots of 

tree canopy gain were found in European Russia and Carpathian montane forests (Fig. 4g). 

Natural afforestation on abandoned agricultural land is a common process in Eastern Europe 

after the collapse of the Soviet Union24. Our satellite record confirms the effectiveness of 
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China’s large-scale reforestation and afforestation programs, particularly in the Loess 

Plateau and the Qin Ling–Daba Mountains25 (Fig. 4h). Increasing area of plantations in 

southeastern China has also led to China’s tree canopy gain (+34%). Tree canopy also 

increased in the United States (+15%), mostly in the eastern U.S (Fig. 1b). Unlike declining 

forest cover in the western U.S. (Fig. 4d), southeastern forests are recovering from historical 

disturbances or are under intensive forestry management26.

The world’s arid and semi-arid drylands exhibited large areas of decrease in short vegetation 

and increase in bare ground, indicating long-term land degradation. Hotspots of vegetation 

loss include southwest U.S., southern Argentina, Kazakhstan, Mongolia (Fig. 4i), Inner 

Mongolia, China, Afghanistan (Fig. 4j) and large areas of Australia. The decrease of short 

vegetation cover in eastern Australia is likely the consequence of long-term precipitation 

decline in the local growing season27. Rising surface temperatures, reduction in rainfall, and 

overgrazing caused extensive grassland deterioration in the Mongolian steppe28. A U.S. 

nationwide ground survey revealed degradation of soils and vegetation along with increased 

dominance of invasive species in the southwest29.

Human activities undoubtedly play the dominant role in agricultural and urban landscapes, 

where lands have been continually modified through human history. India and China had the 

largest bare ground loss among all countries (India: −270,000 km2, −34%; China: −250,000 

km2, −7%). India also ranked second in short vegetation gain (+195,000 km2, +9%), after 

Brazil (+396,000 km2, +12%). While the short vegetation gain in Brazil is mainly due to the 

expansion of agricultural frontiers into natural ecosystems, short vegetation gain in India is 

primarily due to intensification of existing agricultural lands—a continuation of the “Green 

Revolution”30. Some of the observed bare ground gain can be attributed to resource 

extraction and urban sprawl, most notably in eastern China (Fig. 4h). However, at the global 

scale, the growth of urban areas accounts for a small fraction of all land change31.

Previous studies have found a greening Earth based on trends in satellite-based vegetation 

properties (e.g. leaf area index or LAI) and have linked the greening trend to a number of 

climatic and ecological factors25,32–35. Recently, using ecosystem models, Zhu et al. (2016) 

attributed 70% of observed global LAI increase to the CO2 fertilization effect and 4% to 

land-use change. Our finding that global bare ground cover has decreased over the past 35 

years suggests a net increase in vegetation cover and thus agrees with the greening trend. 

However, our results differ from previous studies by quantifying the prominent role of land 

use in global vegetation change. Using a global probability-based sample, we attribute 60% 

of observed land changes to land-use activities (Extended Data Fig. 3). Our empirical 

approach is based on observations of high-resolution satellite data (Extended Data Fig. 4), 

avoiding the challenges of modeling the underlying drivers of land change1,13. Additionally, 

our TC-SV-BG land-cover product is thematically more advanced than vegetation indices in 

characterizing land surface change. For example, differentiating long-term changes in tree 

cover from other vegetation can facilitate improved understanding of global fluxes of water, 

carbon and energy11. Our study provides observational evidence of increasing tree cover in 

northern continents, which may constitute the missing carbon sink3,36. In contrast, tropical 

tree cover loss is associated with higher biomass forests and responsible for carbon 

emissions from deforestation3,15.
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Results of this study reflect a human-dominated Earth system. Direct human action on 

landscapes is found over large areas on every continent, from intensification and 

extensification of agriculture to increases in forestry and urban land uses, with implications 

for the maintenance of ecosystem services2. However, human-induced climate change has 

been documented as an indirect cause of many of the quantified large-scale regional change 

dynamics, including woody encroachment in Arctic and montane systems and vegetation 

loss in semi-arid ecoregions. Continuing land-use change and the increasing role of climate 

change in modifying land cover warrants continued monitoring of the Earth’s land surface 

from space.

Methods

Definitions

Vegetation continuous fields (VCF) represent land surface as a fractional combination of 

vegetation functional types that can be remotely sensed from satellites11. Consistent with 

previous research37–41, the VCF product developed in this study consists of percentages of 

tree canopy (TC) cover, short vegetation (SV) cover and bare ground (BG) cover. Trees are 

defined as all vegetation taller than 5 meters in height. TC refers to the proportion of the 

ground covered by the vertical projection of tree crowns42,43. SV characterizes the 

proportion of the ground covered by vegetation other than trees, including shrubs, 

herbaceous vegetation, and mosses, while BG represents the proportion of the land surface 

not covered by vegetation. TC, SV and BG are quantified from nadir view at top of canopy 

and are mapped during the local annual peak of a growing season31,41,44. TC is not 

equivalent to forest cover, although forest cover may be defined based on TC. For example, 

the FAO defines forest as a parcel or unit of land of at least 0.5 hectares in size which is 

covered by 10% or more trees that are 5 meters or taller5. Gain or loss in TC, SV, or BG 

refers to net increase or decrease in each respective cover over the study period due to any 

anthropogenic or natural factors, excluding temporary changes attributable to within-year 

vegetation phenology or year-to-year rotations.

Generation of AVHRR VCF

The Advanced Very High Resolution Radiometer (AVHRR) instruments on-board NOAA 

satellites remain an important data source for studying long-term changes in land surface 

properties as they provide the longest time-series of global satellite measurements45–47. We 

used the version 4 Long Term Data Record (LTDR) to generate the annual VCF 

products47,48. The LTDR was compiled from AVHRR observations through a series of 

processing steps including radiometric calibration, geolocation correction, atmospheric 

correction and bi-directional reflectance effect correction47. The daily LTDR surface 

reflectance data contain 5 multi-spectral layers of AVHRR channels 1–5 and the normalized 

difference vegetation index (NDVI) layer computed from channels 1 and 249. Each pixel is 

0.05° × 0.05° in size. We implemented an improved version of the operational Moderate 

Resolution Imaging Spectroradiometer Vegetation Continuous Field (MODIS VCF) 

approach to convert daily LTDR to yearly VCF38 (Supplementary Information Fig. 1a).
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Daily AVHRR was first aggregated into monthly composites based on the maximum NDVI 

value in the month. Maximum NDVI composition can minimize cloud contamination, 

reduce bi-directional and off-nadir viewing effects, minimize band-correlated atmospheric 

effects and enhance vegetation discrimination50. The technique has been widely adopted for 

generating NDVI and land-cover products from daily satellite data for sensors such as 

AVHRR, MODIS and VEGETATION46,51–54.

Monthly composites were subsequently converted to annual phenological metrics8,38,55–57 

(Supplementary Information Fig. 1b). Metrics are statistical transformations of pixel time-

series that can capture the salient features of vegetation phenology while maintaining high 

spatial and temporal data consistency. Metrics thus provide a unique advantage to large-area 

land cover mapping and monitoring. We created a total of 735 annual metrics from a 

combination of 5 multi-spectral bands and one NDVI layer, each available as time-series of 

12 months.

An empirical normalization procedure was applied to enhance the year-to-year consistency 

of the AVHRR metrics (Extended Data Fig. 6). Time-series data from AVHRR are known to 

have systematic discrepancies due to different satellite platforms, orbital drift, changes in 

sensor design and sensor degradation45,46,58. The systematic differences are particularly 

pronounced before and after year 2000; beginning with NOAA-16 in 2000, satellite orbits 

were stabilized and a major improvement was introduced in the sensor design to increase 

sensitivity at the low end of radiance45. Research has also shown that the varying 

observational solar zenith angle as a result of orbital drift affects reflectance more than 

NDVI and is negatively related to leaf area or positively related to soil exposure59. That is, 

dense vegetation is less affected than sparse vegetation. Additionally, remaining atmospheric 

effects in the AVHRR surface reflectance can also cause inconsistency between years. The 

normalization was designed to remove these artifacts unrelated to actual surface change.

A rich literature exists on calibration of AVHRR time series. One commonly used method is 

to apply calibration coefficients estimated from “stable targets” such as deserts, oceans, 

clouds or rainforests60–65. For example, earlier works by Myneni et al.32,63 used the Sahara 

desert as reference to adjust global NDVI. Gutman (1999)64 used global deserts and 

rainforests to correct reflectances as well as NDVI. Recently, data from well-calibrated 

sensors such as MODIS and SPOT were used as reference for anchoring AVHRR-based 

NDVI time series45,46.

To normalize annual metrics, we designed a two-step approach, using MODIS data as 

reference. The first step was to apply a dark object subtraction (DOS) to remove systematic 

biases for vegetated surfaces, especially forest. DOS is also a simple and effective method of 

removing atmospheric contamination in remotely sensed data66–70. We used the intact forest 

landscapes (IFL)71 of the tropical rainforest biome (i.e. the minimally disturbed tropical 

rainforests, average tree cover 97%; Extended Data Fig. 6c) as the dark stable target, which 

was also considered a spectral end-member. The second step was to apply a slope-based 

adjustment for pixels that contained visible bare ground. This step involved the use of 

tropical, subtropical and temperate deserts with 100% Landsat-based bare ground cover28 

(Extended Data Fig. 6c) as the bright stable target, or the other spectral end-member. Biases 
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over other land surfaces are assumed to be within these two extreme end members64. To 

create the MODIS reference data, an identical procedure (Supplementary Information Fig. 

1a) was applied to daily MODIS LTDR44 to derive annual metrics for years 2000 through 

2016. The 17-year median values for each metric were subsequently derived and used as 

reference.

DOS was conducted by applying the following equations:

ym, t, i = xm, t, i − Bm, IFL (1)

Bm, IFL =
∑ j = 1

nIFL xm, t, j − rm, j
nIFL

(2)

where, xm,t,i is the original AVHRR value of metric m in year t and pixel i, ym,t,i is the DOS-

adjusted AVHRR value, Bm, IFL is the mean bias of metric m over a total of nIFL IFL pixels 

indexed by j, rm,j is the MODIS reference value of metric m in IFL pixel j.

The soil-induced bias was then corrected relative to the desert end-member, which has 

maximum residual bias after DOS correction, as well as the IFL end-member, which has 

minimum residual bias. Dense vegetation is largely immune to this correction. The 

correction is summarized by the following equations:

zm, t, i = ym, t, i − Bm, DES *
vt, i − V t, IFL

V t, DES − V t, IFL
(3)

Bm, DES =
∑k = 1

nDES ym, t, k − rm, k
nDES

(4)

V t, IFL =
∑ j = 1

nIFL vt, j
nIFL

(5)

V t, DES =
∑k = 1

nDES vt, k
nDES

(6)
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where, zm,t,i is the slope-adjusted AVHRR value of metric m in year t and pixel i, ym,t,i, is 

the DOS-adjusted value from equation (1), Bm, DES is the mean bias of metric m over a total 

of nDES desert (DES) pixels indexed by k, 𝑣t,i is the peak growing season NDVI value of 

pixel i in year t, V t, IFL is the mean peak growing season NDVI value of all IFL pixels, 

V t, DES is the mean peak growing season NDVI value of all desert pixels, and rm,k is the 

MODIS reference value of metric m in desert pixel k. Here we use peak growing season 

NDVI, which is one of the metrics and computed as the mean of all NDVI values between 

75 and 100 percentiles, in the slope term instead of the annual mean NDVI as used in 

Gutman (1999)64, because our annual VCF represents the vegetation state of the local peak 

growing season. Using this annual metric (before any correction) dynamically optimizes 

AVHRR data for the growing season of each year.

Adjusted annual metrics were used as input to supervised regression tree models to generate 

the annual TC and BG product. This non-parametric machine learning method was chosen 

as it can accommodate nonlinear relationships between the dependent variable (percent TC 

or percent BG) and independent variables (AVHRR metrics); in addition, the decision rules 

are easily interpretable72–74. Training data for TC were obtained by spatially aggregating the 

circa-2000 Landsat-based percent TC product from 0.00025° × 0.00025° to 0.05° × 0.05°, 

which was in turn trained using very-high spatial resolution images8. For each 0.05° × 0.05° 

grid cell, we computed the average value of all Landsat TC pixels that fall in the grid cell 

and derived the percentage of TC per grid cell. Likewise, training data for BG were obtained 

by spatially aggregating the circa-2000 Landsat-based percent BG product31. Model training 

and prediction were performed separately for TC and BG. We pooled two years of AVHRR 

metrics before and after 2000 (i.e. 1999 and 2001) as input features to train 21 bagged 

regression tree models to account for the remaining inter-annual bias of AVHRR metrics, if 

any, as well as to avoid over-fitting of the regression tree algorithm. The 21 trained models 

were applied to annual AVHRR metrics to generate percent TC and BG for each year. Due 

to missing data in years 1994 and 2000, TC and BG maps in these two years were not 

produced from AVHRR, but were linearly interpolated using antecedent and subsequent 

annual TC or BG estimates on a per pixel basis. Following the MODIS VCF approach38, 

annual SV was derived as the residual term by subtracting TC and BG percentages from 

100. Permanent water surfaces were excluded based on the Landsat-derived permanent 

surface water product8.

Accuracy assessment

Validating a global land-cover product spanning multiple decades is a challenge. The 

primary obstacle is the lack of sufficient ground observations that match the spatial extent, 

the temporal frequency and the thematic content of a satellite-derived product. Satellite 

observations with higher spatial and temporal resolutions can characterize land cover and 

change with higher accuracy75. Thus, higher-resolution satellite or aerial imagery is often 

employed to replace ground observations when determining the reference condition for 

validation76. Here we leverage the established validation protocols77,78 and the best 

available reference datasets to evaluate the accuracy of our VCF product. Specifically, we 

used a sub-meter resolution, global land-cover validation sample developed by the United 
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States Geological Survey (USGS)79 as the primary reference for TC. We also used the 30-m 

resolution Landsat-based TC, SV and BG estimates as reference to evaluate the AVHRR-

derived TC, SV and BG layers.

The USGS reference dataset is a stratified random sample of TC estimates produced from n 

= 475 sample blocks distributed across the globe77–79 (Extended Data Fig. 7a). Each sample 

block was 5-km × 5-km (~0.05° × 0.05°) in size. Sub-meter resolution commercial images 

including QuickBird, WorldView, IKONOS and GeoEye between years 2002 and 2014, 

depending on each block, were classified to categorical land cover classes including tree 

cover79. The percent TC for each block was computed from these data to provide the 

reference values for comparison to the AVHRR percent TC. The USGS reference data were 

developed in Universal Transverse Mercator (UTM) projection and the footprints of the 5-

km × 5-km reference sample blocks did not exactly overlap with AVHRR pixels, which were 

in Geographical Latitude / Longitude projection (Extended Data Fig. 7b-c). This geolocation 

mismatch inevitably introduced some error in the validation results. Thus, we also evaluated 

AVHRR TC using the Landsat-based TC estimates. Because the spatial units of the Landsat 

estimates were spatially aligned with the AVHRR pixels, this comparison is free from 

geolocation error. For BG and SV, due to the lack of reliable high-resolution reference data, 

we used Landsat-based BG and SV (computed as 100% – Landsat-based BG% – Landsat-

based TC%) estimates at the USGS sample locations as reference data for estimating 

accuracy. These BG and SV reference data were obtained for the same stratified sample of 

blocks used to evaluate the AVHRR TC product77,78.

The paired AVHRR and reference VCF values were used to calculate four accuracy metrics 

including root-mean-square-error (RMSE), mean absolute error (MAE), mean error (ME) 

and r2 78,80:

RMSE =
∑i = 1

n wi * pi − ri
2

∑i = 1
n wi

(7)

MAE =
∑i = 1

n wi * pi − ri

∑i = 1
n wi

(8)

ME =
∑i = 1

n wi * pi − ri

∑i = 1
n wi

(9)
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r2 = 1 −
∑i = 1

n pi − ri
2

∑i = 1
n pi − r

(10)

where pi, ri and wi are estimated VCF, reference VCF and sample weight (inverse of 

inclusion probability of the sample block for the stratified design) at a location i in a sample 

of size n; r is the estimated mean of the reference values.

We also computed the conventional confusion matrices including overall accuracy (OA), 

user’s accuracy (UA) and producer’s accuracy (PA) using the paired AVHRR and reference 

VCF values and a general ratio estimator78,81:

R =
∑h = 1

H Nh * yh

∑h = 1
H Nh * xh

(11)

where, H is the total number of strata; Nh is the total number of 5-km × 5-km blocks within 

stratum h; yh and xh are the sample means of variables y and x in stratum h and the specific 

identity of y and x depends on the accuracy metric being estimated. To estimate OA, y = 

area of agreement between AVHRR and reference for a VCF class c in each sample block 

(i.e., overlapped area) and x = area of the sample block. To estimate UA, y = area of 

agreement between AVHRR and reference for a VCF class c and x = area of class c mapped 

by AVHRR. To estimate PA, y = area of agreement between AVHRR and reference for a 

VCF class c and x = area of class c given by reference.

The estimated variance of R is:

V(R) = 1
X2 ∑h = 1

H Nh
2 1 − nh/Nh syh

2 + R2 * sxh
2 − 2 * R * sxyh /nh (12)

where X2 = ∑h = 1
H Nh * xh, nh is the number of sample blocks selected from stratum h, syh

2  and 

sxh
2  are the sample variances of y and x for stratum h and sxyh is the sample covariance of x 

and y for stratum h. The standard error of R is the square root of the estimated variance. As 

noted above, the identity of x and y depends on the accuracy metric being estimated. A 

summary of accuracy results for TC, SV and BG is provided in Extended Data Fig. 7.

Trend analysis

Per-pixel TC, SV and BG percentages were aggregated to a series of spatial scales including 

global, continental, climate zone, biome and country scales to obtain annual total area 

estimates at these aggregated scales. For example, for the trend analysis of Africa, the per-

pixel values of each cover type were aggregated to produce a single value for each year in 

the time series. We used the FAO ecological zones boundary shapefile to report VCF area 
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estimates per biome and per climate zone12. We also used the Global Administrative Areas 

(GADM) country boundary shapefile (http://www.gadm.org) to report VCF area estimates 

per country.

The approach to change analysis was predicated on using a linear trend (Theil-Sen 

estimator) to smooth the annual time series of data when determining net change82. 

Although the classification methodology (monthly compositing, annual metrics calculation, 

inter-annual bias adjustment and multi-year model training) was constructed to ensure year-

to-year consistency to the degree possible, the smoothing approach was still necessary 

because of the annual variation in the percent TC, SV, and BG values attributable to a variety 

of sources including different weather conditions, varying vegetation phenology, and image 

misregistration. For TC, SV and BG time series in each aggregated spatial unit (e.g., a biome 

or a country), we applied the Theil-Sen estimator to derive the slope (annual change) of 

trend and provide the estimate of net change between 1982 and 2016 (i.e., slope times 34 

years). The upper and lower change estimates based on the 90% confidence interval for the 

slope were also derived (Extended Data Tables 1 and 2, Supplementary Information Table 

1). It is important to point out that the derived Theil-Sen trend represents long-term land-

cover changes as the effect of changes in sensor capabilities has been effectively removed.

We further imposed the objective constraint of statistical significance of the trend to define 

net change at the pixel level. A Mann-Kendall test was applied to the TC, SV, and BG time 

series in each pixel83. If the Mann-Kendall test was not statistically significant (p ≥ 0.05), 

we defined net change as 0. If the trend test was significant (p < 0.05), we applied the Theil-

Sen estimator to estimate the per-pixel net change between 1982 and 2016. These non-

parametric statistical methods were chosen due to their robustness for trend detection and 

insensitivity to outliers. They have been applied to detect the greenness trend of land surface 

using AVHRR-based NDVI and leaf area index datasets34,84,85 as well as the microwave-

based vegetation optical depth data86. Six global VCF gain (positive slope) and loss 

(negative slope) layers were derived: (i) tree canopy gain; (ii) tree canopy loss; (iii) short 

vegetation gain; (iv) short vegetation loss; (v) bare ground gain; and (vi) bare ground loss 

(Fig. 1b and Extended Data Fig. 1). Subsequently, per-pixel loss (gain) were aggregated to 

global, continental, climate zone, biome and country scales to derive gross loss (gain) 

estimates for each aggregated spatial unit (Extended Data Tables 1 and 2, Supplementary 

Information Table 1).

Driver attribution

Drivers of land-cover and land-use change are diverse, multi-scale and interactive1,13,87–89. 

Different drivers can be most broadly classified into two groups: anthropogenic and natural. 

Anthropogenic drivers are mainly related to land-use activities (e.g., deforestation, 

agricultural expansion, agricultural intensification, infrastructure construction and resource 

extraction), which are in turn driven by a number of underlying demographic, economic, 

technological, institutional, and cultural factors. Natural land-change drivers also include a 

variety of agents such as wildfire, drought, flood, windthrow, landslide, disease, insect 

attack, natural vegetation growth and glacial retreat, many of which are related to long-term 

climatic variation. Different drivers interact with each other in complex ways and the 
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interactions are even evident at the broadest level in the Anthropocene7. With substantial 

human perturbations to the climate system, human-induced climate change and natural 

climatic variation and their effect on terrestrial ecosystems are intertwined. Disentangling 

human-induced climate change from natural climatic variation is a challenge, which can be 

studied using Earth system models35. Our objective for the global driver attribution was to 

provide a statistical, observation-based estimate of the relative contribution of direct human 

activities versus indirect drivers (including the combined effects of natural and human-

induced climate change) to the observed global land change. Regionally dominant, specific 

land-change drivers were not explicitly quantified, but were identified and summarized 

through a comprehensive literature review.

We used a global probability sample and interpretation of high resolution images from 

Google Earth to estimate the proportion of changes attributable to drivers90,91, separately for 

each VCF change type: (i) tree canopy gain; (ii) tree canopy loss; (iii) short vegetation gain; 

(iv) short vegetation loss; (v) bare ground gain; and (vi) bare ground loss. For each VCF 

change type, 250 sample pixels (a pixel is a 0.05° × 0.05° grid cell) were selected with 

probability proportional to each pixel’s absolute change area (−1 * change area in the case of 

loss) of the target VCF change type, where the area of change was obtained from the global 

change layers described above. A total of 1500 sample pixels were selected (Extended Data 

Fig. 3a). For each sample pixel, we created a polygon feature representing its boundary and 

imported it in Google Earth (Extended Data Fig. 4). Each polygon was also divided into 25 

0.01° × 0.01° grid cells to aid photo interpretation (Extended Data Fig. 3b-h). We used high-

resolution images and the time slider tool in Google Earth to estimate the proportion of a 

pixel under human land use, including forestry and agricultural landscapes, cities, villages, 

houses, roads and other artificial objects. This proportion value was defined as the direct 

human impact associated with land-cover and land-use changes within the pixel. The impact 

of indirect drivers was defined as the residual of direct human impact. Areas of long-term 

land degradation resulting from the combined effects of land use and climate change were 

labeled as indirect if no signs of land use, for example fence lines or grazing paddocks, were 

observed. We estimated the direct human impact for each VCF change type as well as all 

land changes, using the following equations:

Hc =
∑ j = 1

nc h j
nc

(13)

OH =
∑c = 1

6 wc * Hc

∑c = 1
6 wc

(14)

where Hc is the direct human impact of each of the 6 cover change types indexed by c, ℎj is 

the proportion of pixel j that is under human land use, nc is sample size (nc= 250), OH is the 

overall direct human impact of all land changes, and wc is the weight of each cover change 

type, given by the proportion of its global area over total absolute change area of all types 
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(Extended Data Table 1). Similarly, we also estimated the overall direct human impact for all 

land changes within a continent and a biome. Attribution results are summarized in 

Extended Data Fig. 3.

Uncertainty analysis

The uncertainties of the area estimates of net land-cover change were characterized as 

statistical bounds (Extended Data Tables 1 and 2). Here we conducted an additional 

uncertainty analysis on gross change estimates to investigate whether the overall VCF trends 

hold true.

We first varied the statistical significance level in the Mann-Kendall trend test for defining 

change. Compared with change area estimates resulted from the p < 0.05 threshold, using p 

< 0.1 to define change, the estimated TC, BG and SV change area would differ by 6%, 2% 

and 14% respectively, whereas using p < 0.01 to define change, the estimated TC, BG and 

SV change area would differ by 16%, 1% and 31% respectively. Moreover, the signs of TC, 

BG and SV change were consistent at all significance levels — net gain in TC, net loss in 

BG and net loss in SV.

We further investigated the effect of VCF mapping uncertainty on change characterization. 

We employed the deviance value (i.e., the sum of squared difference between predicted 

value and training reference value) of each leaf node of the bagged regression tree models 

and computed a root-mean-square-deviation (RMSD) layer as VCF prediction 

uncertainty72,92. This per-pixel uncertainty layer was produced for each year between 1982 

and 2016. Since RMSD is a quantitative indicator of land-cover uncertainty, we compared it 

with the magnitude of land-cover change by constructing a “signal-to-noise” ratio. The 

uncertainty of change for a given pixel i is then represented by the ratio of land-cover change 

to RMSD, summarized using the following equations:

RMSDi =
∑k = 1

N RMSDi, k
N (15)

ri =
ΔVCFi
RMSDi

(16)

where, for each pixel i in year k, the annual mean RMSDi (unit: percent land cover) is the 

average value of N years; the ratio metric ri for each pixel i is computed as 1982–2016 VCF 

change within the pixel (ΔVCFi in units of percent land cover) to 1982–2016 average model 

prediction uncertainty RMSDi.

A greater absolute value of the ratio metric ri indicates lower uncertainty of land-cover 

change and vice versa (Extended Data Figure 8). The density distributions (Extended Data 

Fig. 8c and 8d) suggest that for any threshold (dashed lines), the proportion of area under the 
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frequency curve for tree cover gain always exceeds tree cover loss and similarly the 

proportion of area under the frequency curve for bare ground loss always exceeds bare 

ground cover gain. Hence, the overall trends in ri corroborate the main findings of our study, 

which are that there is a net gain in tree cover and a net loss in bare ground cover over the 

study period of 1982 to 2016.

Extended Data

Extended Data Figure 1. 
Satellite-derived, long-term (1982–2016) tree canopy cover change (ΔTC), short vegetation 

cover change (ΔSV) and bare ground cover change (ΔBG) show strong coupling and 

symmetry in change detection. a, Global map of co-located ΔTC and ΔSV. Pixels showing a 

statistically significant trend (Mann-Kendall test, p < 0.05) in both TC and SV are depicted 

on the map. b, Global map of co-located ΔTC and ΔBG. c, Global map of co-located ΔSV 

and ΔBG. d, From left to right, intensity plot of change area for ΔTC vs. ΔSV, ΔTC vs. ΔBG 

and ΔSV vs. ΔBG, corresponding to a, b and c respectively. To create these intensity plots, 

paired percent change layers (Fig. 1b) are used to construct a 2D histogram with bin size of 

1% for both axes. Then, the total change area in each bin is calculated and plotted.
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Extended Data Figure 2. 
Long-term (1982–2016) gross change dynamics of tree canopy (TC) cover, short vegetation 

(SV) cover and bare ground (BG) cover vary considerably between biomes (a-p). Mountain 

systems (c, f, i, n) all exhibit larger area of TC gain than TC loss, larger area of SV loss than 

SV gain and larger area of BG loss than BG gain. q, Geographical distribution of all 

biomes12. See Extended Data Table 2 for change area estimates.
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Extended Data Figure 3. 
Attributing direct human impact (DHI) versus indirect drivers to detected tree canopy (TC) 

cover change, short vegetation (SV) cover change, and bare ground (BG) cover change. 

Indirect drivers include both natural drivers and human-induced climate change. a, Spatial 

distribution of the probability sample used for the attribution estimates (n = 1500). b, DHI of 

each sample unit interpreted using a time-series of high resolution images in Google Earth. 

c, Estimated direct human impact at the global scale. Global average is calculated by 

weighting the human impact of each type by each respective global total area provided in 

Extended Data Table 1. Error bars represent the standard error (SE) for the estimated percent 

of direct human impact. d and e, Estimated direct human impact at the continental and 

biome scales.
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Extended Data Figure 4. 
Selected sample examples for driver attribution. Screenshots are taken from Google Earth. 

Each panel is 0.05° × 0.05° in size, corresponding to one AVHRR pixel. a, Deforestation for 

industrial agriculture expansion in Mato Grosso, Brazil (11.275°S, 52.125°W); b, Expanding 

shifting agriculture in northern Zambia (11.625°S, 28.625°E) c, Intensification of small-

holder agriculture in Punjab, Pakistan (30.025°N, 71.675°E); d, Short vegetation gain in 

low-intensity agricultural lands in northern Nigeria (12.825°N, 7.825°E), e, Short vegetation 

increase due to effective fire suppression in pasture lands in Omaheke, Namibia93 (22.175°S, 

18.925°E); f, Managed pasture lands in western Kazakhstan (49.475°N, 47.725°E), g, 

Forestry in southern Finland (61.075°N, 24.475°E), h, Urbanization in Shanghai, China 

(30.925°N, 121.175°E). i, Oil extraction in New Mexico, USA (32.875°N, 104.275°W). j, 
Herbaceous vegetation increase due to glacial retreat in Chuy, Kyrgyzstan (42.575°N, 

74.775°E); k, Bare ground cover variation along Mar Chiquita lake shore in Cordoba, 

Argentina (30.675°S, 63.025°W). l, Forest fires in Saskatchewan, Canada (55.225°N, 

102.225°W); m, Tree cover increase in unpopulated savannas in Western Equatoria, South 

Sudan21,22 (6.575°N, 27.725°E); n, Climate change-driven woody encroachment in Quebec, 
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Canada20 (59.475°N, 73.225°W). Examples a-i show various types of land use, whereas 

examples j-n do not show visible signs of human activity.

Extended Data Figure 5. 
Global trends in (a) tree canopy (TC) cover, (b) short vegetation (SV) cover, and (c) bare-

ground (BG) cover during 1982–2016. The following steps were taken for each cover type 

using TC as the example. The TC gain layer (Fig. 1b) was overlaid on the annual TC% stack 

to compute annual global TC area within the gain mask (solid dark blue lines); the TC loss 

layer (Fig. 1b) was overlaid on the annual TC% stack to compute annual global TC area 

within the loss mask (solid dark red lines). Gross gain (loss) estimates between 1986 and 

2016 are marked by blue (red) arrows and dashed lines. See Extended Data Table 1 for exact 

gross change estimates.
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Extended Data Figure 6. 
Adjusting systematic biases in annual AVHRR metrics using multi-year MODIS median as 

reference. The metric displayed in (a) is mean NDVI between 75 and 100 percentiles. This 

metric is related to the local peak growing season and was the most important variable 

driving the derived regression tree models for bare ground cover estimation. The metric 

displayed in (b) is mean red reflectance between 0 and 25 percentiles. This metric is also 

related to the local peak growing season and was the most important variable for tree cover 

estimation. For both (a) and (b), the dot plots on the left show the normalized and 
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unnormalized, annual, global mean values, excluding Antarctica and Greenland, and the 

density scatter plots on the right show pixel-level comparison between years 1999 and 2001 

before (upper figure) and after normalization (lower figure). Normalizing AVHRR using 

MODIS as reference not only changes the absolute value and data range of each individual 

year, but also enhances year-to-year consistency. c, Maps of the intact forest landscape 

(upper figure, green) and deserts (lower figure, orange) that are used as stable targets for 

normalization.

Extended Data Figure 7. 
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Accuracy assessment of AVHRR tree canopy (TC) cover, bare ground (BG) cover and short 

vegetation (SV) cover, based on a validation sample of 475 AVHRR pixels. a, Spatial 

distribution of the validation sample (red dot) overlaid on long-term (1982–2016) mean tree 

cover. The USGS tree cover reference data (5-km × 5-km, Universal Transverse Mercator 

projection) have greater spatial details (colored squares in b and c) due to their sub-meter 

resolution but have geolocation mismatch with the AVHRR product (0.05° × 0.05°, gray-

scale squares in b and c) due to different projections. d, Temporal distribution of the USGS 

tree cover sample. e, Scatter plots of AVHRR tree cover against USGS reference tree cover. 

AVHRR and reference are matched by year and center coordinates. f-h, Scatter plots of 

AVHRR TC, BG and SV (year 2001) against Landsat-based estimates, which are free from 

geolocation mismatch. i, Quantitative error metrics, including conventional confusion 

matrices as well as root-meansquare-error (RMSE), mean absolute error (MAE), mean error 

(ME) and r2. The standard error (SE) for the estimated error metrics is provided in the 

parentheses.

Extended Data Figure 8. 
Uncertainty of tree cover change (ΔTC) and bare ground change (ΔBG). a, Spatial 

distribution of annual mean root-mean-square-deviation (RMSD) of TC between 1982 and 

2016. b, Spatial distribution of annual mean RMSD of BG between 1982 and 2016. c, 

Spatial distribution of ΔTC uncertainty. d, Spatial distribution of ΔBG uncertainty. e, 

Normalized frequency distribution of ΔTC uncertainty. f, Normalized frequency distribution 

of ΔBG uncertainty. TC, BG and associated RMSD are outputs of regression tree models. 
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Uncertainty is represented by the ratio of long-term TC (BG) change estimates to associated 

RMSD estimates. Positive values of the ratio metric represent uncertainty of gain and 

negative values represent uncertainty of loss. A greater absolute value indicates lower 

uncertainty and vice versa. Area under the frequency distribution equals 1. The frequency 

distributions suggest that tree cover gain exceeds tree cover loss and bare ground loss 

exceeds bare ground gain for any threshold level (e.g. dashed lines), hence the observed 

trends (net gain in tree cover and a net loss in bare ground cover over the study period) are 

valid.
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Figure 1. 
A satellite-based record of global tree canopy (TC) cover, short vegetation (SV) cover and 

bare ground (BG) cover between 1982 and 2016. a, Mean annual estimates. b, Long-term 

change estimates. Both mean and change estimates are expressed as percent of pixel area at 

0.05° × 0.05° spatial resolution. Pixels showing a statistically significant trend (Mann-

Kendall test, p < 0.05) in either TC, SV or BG are depicted on the change map. Circled 

numbers in the color legend denote dominant change directions: 1: ΔTC+ with ΔSV-; 2: 

ΔBG+ with ΔSV-; 3: ΔTC+ with ΔBG-; 4: ΔBG+ with ΔTC-; 5: ΔSV+ with ΔBG- and 6: 

ΔSV+ with ΔTC-.
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Figure 2. 
Latitudinal profiles of land cover change between 1982 and 2016. a, tree canopy cover 

change (ΔTC). b, short vegetation cover change (ΔSV). c, bare ground cover change (ΔBG). 

Area statistics were calculated for every 1° latitude.
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Figure 3. 
Intensity plots of gross loss and gain area in tree canopy (TC) cover, short vegetation (SV) 

cover and bare ground (BG) cover during 1982–2016. a, Global-scale plots (upper-left color 

bar). Initial land cover (x-axis) is defined as mean value of the first five years 1982–1986. To 

create these plots, for each cover class, percent change layer (Fig. 1b) and initial cover layer 

are used to construct a 2D histogram with bin size of 1% for both axes. Then, total change 

area in each bin is calculated and plotted. Data points located towards the lower-right corner 

of the TC plot are more likely to be deforestation (that is, points with large initial tree cover 

and large reduction in tree cover). The concentrated blue region of the SV plots reflects 

cropland intensification. The green belt on the BG plot suggests that vegetation loss 

occurred across the entire range of BG coverage. The dominance of TC gain over TC loss, 

SV loss over SV gain and BG loss over BG gain are also clearly revealed; b, Geographical 

distribution of four highlighted biomes12 with largest gross areal changes; c, largest gross 

TC loss and SV gain; d, largest gross TC gain and SV loss; e, largest gross BG loss; f, 
largest gross BG gain. The lower-left color bar is consistent across biomes (c-f) and cover 

types. Long-term gross dynamics of TC, SV and BG changes vary considerably between 
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biomes. See Extended Data Fig. 2 for other biomes and Extended Data Table 2 for change 

area estimates.
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Figure 4. 
Regional subsets of changes in tree canopy (TC) cover, short vegetation (SV) cover and bare 

ground (BG) cover. a, Cerrado ecoregion in Brazil, centered at (11.4°S, 46.5°W). b, Gran 

Chaco ecoregion in Bolivia, Argentina and Paraguay, centered at (22.5°S, 55.7°W). c, 
Miombo woodlands in southeast Africa, centered at (12.4°S, 33.9°E). d, Western United 

States, centered at (44.5°N, 110.0°W). e, Quebec, Canada, centered at (57.9°N, 71.6°W). f, 
Central Africa, centered at (10.4°N, 19.4°E). g, Eastern Europe, centered at (46.1°N, 

20.3°E). h, Eastern China, centered at (35.0°N, 115.1°E). i, Eastern Mongolia, centered at 

(48.7°N, 111.0°E). j, Afghanistan and Pakistan, centered at (30.7°N, 70.6°E). Circled 

numbers in the color legend denote dominant change directions: 1: ΔTC+ with ΔSV-; 2: 

ΔBG+ with ΔSV-; 3: ΔTC+ with ΔBG-; 4: ΔBG+ with ΔTC-; 5: ΔSV+ with ΔBG- and 6: 

ΔSV+ with ΔTC-.
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