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Synopsis Shapes change during development because tissues, organs, and various anatomical features differ in onset,

rate, and duration of growth. Allometry is the study of the consequences of differences in the growth of body parts on

morphology, although the field of allometry has been surprisingly little concerned with understanding the causes of

differential growth. The power-law equation y¼ axb, commonly used to describe allometries, is fundamentally an em-

pirical equation whose biological foundation has been little studied. Huxley showed that the power-law equation can be

derived if one assumes that body parts grow with exponential kinetics, for exactly the same amount of time. In life,

however, the growth of body parts is almost always sigmoidal, and few, if any, grow for exactly the same amount of time

during ontogeny. Here, we explore the shapes of allometries that result from real growth patterns and analyze them with

new allometric equations derived from sigmoidal growth kinetics. We use an extensive ontogenetic dataset of the growth

of internal organs in the rat from birth to adulthood, and show that they grow with Gompertz sigmoid kinetics.

Gompertz growth parameters of body and internal organs accurately predict the shapes of their allometries, and that

nonlinear regression on allometric data can accurately estimate the underlying kinetics of growth. We also use these data

to discuss the developmental relationship between static and ontogenetic allometries. We show that small changes in

growth kinetics can produce large and apparently qualitatively different allometries. Large evolutionary changes in

allometry can be produced by small and simple changes in growth kinetics, and we show how understanding the

development of traits can greatly simplify the interpretation of how they evolved.

Introduction

As animals grow from embryo to adult, their shape

changes due to differences in the timing and relative

growth of their various parts. Size and shape are the

defining characteristics of species, and morphological

evolution, at least within a Phylum, is due almost en-

tirely to changes in body size and in the relative sizes of

body parts. In most species, there is a certain amount

of variation in body size of adults, and this variation is

often associated with a disproportional variation in

the relative dimensions of body parts, so that as a

result shape varies with overall variation in size.

At some ultimate level, variation in size comes

about through variation in genes and environment.

Heritabilities of body size typically vary around 0.5

(Falconer and Mackay 1996), suggesting that genetic

variance and environmental variance contribute in

approximately equal measure to the variance of

body size. At a more proximate level, variation in

size is due to variation in the physiological and

developmental processes that affect the rate and du-

ration of growth.

If variation in size is due to environment, the

resulting allometry constitutes phenotypic plasticity.

Well-known cases in which variation in size is en-

tirely due to environmental effects are found in the

castes of social insects and in the horns of scarab

beetles (Wilson 1971; Feener et al. 1988; Wheeler
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1991; Emlen 1996; Emlen and Nijhout 1999; Moczek

and Emlen 2000; Moczek 2002; Moczek and

Nijhout 2003).

If many independent factors affect variation in body

size one would expect size to have either a normal

distribution if the effects are additive, or perhaps

more commonly, a log-normal distribution if the

effects are multiplicative. Variation in size can also be

due to systematic effects of the environment. This is the

case in many polyphenisms in which an environmental

stimulus, such as temperature, photoperiod, nutrition,

or pheromones induce a change in the secretion of the

hormones that regulate growth and size and result in

alternative phenotypes that can differ substantially in

size (Emlen and Nijhout 1999, 2001; Nijhout 2003).

The analysis and quantification of scaling relation-

ships of body parts with variation in body size has been

dominated by applications of Huxley’s allometric

equation: y¼ axb (Huxley 1932), where x and y are

the dimensions of two body parts (x is often some

proxy for body size), and the two parameters describe

how part y varies with variation in part x. Different

authors have used different symbols for the parameters

of this equation. Here, we will call a the scaling factors,

and b the allometric coefficient (Nijhout 2011). The

allometric equation is fundamentally an empirical

equation whose use is justified largely by the fact that

many scaling relationships can be fit rather well with

such a power equation. Indeed, even when the data

have a nonlinear distribution it is customary to either

find the best-fitting power-law equation or transform

the data, so that a better fit is obtained. In attempting to

find a biological foundation for this empirical

equation, Huxley (1932) showed that the allometric

equation can be derived rather simply if one assumes

that the two structures to be compared grow exponen-

tially. Then, if

dx=dy ¼ ax and dy=dt ¼ by,

it follows that

dy=dx ¼ by=ax,

which has a solution that can be written as

y ¼ cxb=a: ð1Þ

This is the allometric equation, where the scaling

factor c is a constant of integration (and is the

value of y when x¼ 1), and the allometric coefficient

is the ratio of the two growth exponents, b/a.

Although for this view, the meaning of the allometric

coefficient is clear, there has been uncertainty and

disagreement about the biological meaning of the

scaling coefficient (Huxley and Teissier 1936; White

and Gould 1965; Gayon 2000). Clearly, it is a mea-

sure of how the two variables scale, but it is not clear

what aspects of growth it represents. Huxley’s

equation can be linearized by the log transform,

yielding the equation

log ðyÞ ¼ log ðaÞ þ b � log ðbÞ:

The graph of this equation is a straight line with

slope b. This is an attractive form of the equation

because it allows one to use linear regression (on

log-transformed data) to estimate parameters a and

b. Unfortunately, the apparent linearity has caused

many authors to call parameter a the ‘‘y intercept,’’

perhaps not recognizing that on a log scale, there is

no such thing. Changes in parameter a cause a

parallel displacement of the allometric curve (in the

logarithmic domain), indicating a change in the rel-

ative magnitudes of the parts at all sizes (White and

Gould 1965; LaBarbera 1989; Nijhout 2011).

There are several problems with the interpretation

of the Huxley equation. First, as mentioned above, it

provides no clear biological interpretation of the

scaling factor. Second, the Huxley equation fails to

account for differences in the duration of growth of

the two features. The implicit assumption is that the

two grow for exactly the same amount of time. This

is biologically unreasonable since we know that, in

addition to growing at different rates, many struc-

tures begin and end their growth at different times in

ontogeny. Third, although the study of allometry is

concerned with the effects of variation in size, the

Huxley equation says nothing about how variation in

overall size comes about. It could be due to variation

in the rate of growth, in the duration of growth, or

in the initial sizes of the parts. The actual cause of

variation in size can affect both the shape of the

allometry (Shingleton et al. 2009) and the form of

the allometric equation (Nijhout 2011, and see

below). Fourth, and perhaps most importantly, the

assumption that bodies and body parts grow expo-

nentially and then suddenly stop is patently unreal-

istic. Most growth is sigmoidal, with a slow and

gradual start and an equally slow and gradual termi-

nation as the final size is approached.

Nijhout (2011) has shown that it is possible to derive

allometric equations that overcome each of the four

problems outlined above, including derivations of the

allometric equations that result from realistic sigmoidal

growth with either logistic or Gompertz kinetics. Here,

we explore the use of some of those equations on real

data sets and show that use of these new allometric

equations gives deeper insights into how growth

kinetics affect allometries and how evolution of

growth patterns alter the shape of the allometry.
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The equations

Instead of solving the joint differential equations, for

two growing structures, as outlined above, it is also

possible to first solve each growth equation to obtain

size as a function of time for each structure and then

by algebraic substitution of variables solve one as a

function of the other. The details of this derivation

are in Nijhout (2011). Here, we show the forms of

the resulting allometric equations. For ease of orien-

tation, we designate one structure as y (e.g., body

size) and the other as yy and use duplicate letter

symbols for the parameters of the second structure

to indicate correspondence with those of the first

structure. For instance, if the equation for structure

#1 is y¼ a * t then the equation for structure #2 will

be yy¼ aa * tt.

Exponential growth

First, we will examine exponential growth, as Huxley

did, and then we will look at sigmoid growth, focusing

on Gompertz kinetics; for derivation of logistic allom-

etry see Nijhout (2011). The solution of the exponential

growth equation dy/dy¼ b * t is y¼ a * eb * t, where b is

the growth exponent and a is the initial size (at t¼ 0).

For structure #2, the equation is yy¼ aa * ebb * tt.

The joint solution of these two equations is

yy ¼ aa �
1

a

� �bb � tt
b � t

� y
bb � tt
b � t , ð2aÞ

This is the Huxley allometry equation that now includes

the duration of growth of the two structures (t and tt)

and shows that the scaling factor (a in Huxley’s equation

and the term aa � 1
a

� �bb � tt
b � t in the above equation) actually

contains information about the initial sizes of the struc-

ture as well as their growth constants and the duration of

growth. Thus, unlike the case of Huxley’s derivation in

which the scaling factora is biologically meaningless, the

a and aa terms in this derivation refer to the initial sizes

of the structures. Note that if the duration of growth of

both structures is the same (t¼ tt) the equation simpli-

fies to

yy ¼ aa �
1

a

� �bb
b

� y
bb
b ,

which confirms that the allometric coefficient is the

ratio of the two growth constants (bb/b). This new

derivation thus illustrates the biological origin of the

scaling factor, and shows that differences in the

duration of development of two body parts appear

both in the scaling factor and as a multiplier of the

allometric coefficient. Note that in this derivation the

exponential growth constants affect both the scaling

factor and the allometric coefficient, something that

is not obvious from Huxley’s equation. Thus, the

equation explains why a change in the growth rate

of either structure alters both the elevation and slope

of the allometry.

It is sometimes convenient to write the parameters of

the second structure as a multiple of the value of the first

[e.g., aa¼ c * a (where c40)]. In the equations below,

we will use the following conventions: bb¼ k * b, aa¼ f *

a, tt¼ s * t, cc¼ d * c. Thus, s is the factor by which the

duration of growth of structure #2 is longer than

(or shorter than) that of structure #1, and so forth.

Using these conventions, it is possible to derive

equations that make specific assumptions about

how variation in size comes about (Nijhout 2011).

Thus, one can derive the allometry equation by

eliminating time (t), which yields:

yy ¼ aa �
1

a

� �bb
b
�s

� y
bb
b
�s: ð2bÞ

In this formulation, a, aa, b, and bb are fixed parame-

ters and only t and tt are free to vary (the time difference

between the two structures is still represented as s, see

above) and implies that variation in size is due to

variation in development time. This is basically the

Huxley equation, which, on this view, implicitly as-

sumes that variation in size comes about through

variation in development time. Solving the allometric

equation by eliminating the growth rate yields the

following allometric equation:

yy ¼ aa �
1

a

� �k�tt
t

� yk�tt
t ð2cÞ

Here, the growth rate is a free variable (only the factor k

by which the two growth rates differ remains) and this

equation thus implicitly assumes that variation in size is

due to variation in growth rate.

Both equations are allometric equations that

assume exponential growth and thus equivalent in

usefulness to the Huxley equation. They simply

make different assumptions about which of the pa-

rameters of the exponential growth equations are

fixed and which are eliminated and thus free to

vary and cause variation in overall size. Many struc-

tures almost certainly grow with exponential kinetic

during some portion of their ontogeny, and the pre-

ceding set of equations can be used to describe al-

lometry when such kinetics apply.

Sigmoidal growth

The full growth trajectory of most structures is typ-

ically sigmoidal. There are many kinds of sigmoid

equations that might be used to represent sigmoidal
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growth, but in practice two of these dominate:

Logistic growth, most commonly used in population

biology and ecology, and Gompertz growth, more

commonly used in cell biology and developmental

biology (Laird 1964; German and Meyers 1989;

Miller and German 1999; Stewart and German

1999; Reichling and German 2000; Lammers and

German 2002). Both equations assume that early

growth is exponential, but differ in how growth is

limited as size increases. The logistic equation is due

to Verhulst (1838) and is written dy/dt¼ ay � by2,

showing that when y is small growth is exponential

and as y increases the squared term begins to dom-

inate and growth slows. The biological mechanism

that causes the squared term is not obvious.

The Gompertz equation is the solution of a pair of

equations. The first one describes standard exponential

growth and the second describes an exponential decline

of the growth exponent of the first equation. It is

typically thought that the second equation describes a

process that limits growth due to a progressively

decreasing efficiency of supply of a factor required for

growth (e.g., oxygen, a key nutrient, or a growth factor)

as the structure becomes larger (Laird 1964;

Edelstein-Keshet 2005). The Gompertz equations are

dy

dt
¼ n � y

dn

dt
¼ �c � n,

which have the solution:

y ¼ a � e�b � e�c�t

,

where b is the exponential growth-rate constant at

t¼ 0, c is the exponential rate of damping of the

growth rate, and a is the maximum value of y

when t¼ large (and e�ct
¼ 0).

If two structures grow with Gompertz kinetics as

follows:

y ¼ a � e�b � e�c�t

and

yy ¼ aa � e�bb � e�cc�tt

this leads to the following allometric relationship

among them:

yy ¼ a � f � e�b � k � �
lnðyÞ�lnðaÞ

b

� �d�s

, ð3aÞ

recalling the definitions of k, f, d, and s given above.

This equation can also be written as

yy ¼ aa � e�bb � �
lnðyÞ�lnðaÞ

b

� �cc
c �s

ð3bÞ

if we assume that variation in size comes about

through variation in development time, or as

yy ¼ aa � e�bb � �
lnðyÞ�lnðaÞ

b

� �d�ttt

ð3cÞ

if variation in size comes about through variation in

the decline of the growth rate.

The allometric equations that emerge from sig-

moidal growth kinetics are neither as simple nor as

pretty as the equations that emerge from exponential

growth. Neither do they invite simplistic interpreta-

tions about the nature and causes of the scaling re-

lationships among body parts.

Implementation

We next examine the application of this improved view

of allometry to real data, using the data set on rats’

developmental described by Stewart and German

(1999). This data set is composed of the masses of

tissues and internal organs over a 200-day period,

from birth to adult. Figure 1 illustrates growth of the

body of males, and the growth of four internal organs

that have very different growth trajectories, durations

of growth, and final sizes. All growth trajectories are

sigmoidal and thus fail to conform to the assumptions

that would generate Huxley’s equation. The growth

trajectories are well approximated by the Gompertz

equation (Stewart and German 1999). Gompertz

regressions are shown in Fig. 1 and the corresponding

parameter values are shown in Table 1.

We next used these growth parameters to derive the

allometric curves using Equation (3). The allometries

are shown in blue in Fig. 2 and in which we superim-

pose the calculated allometric curves over the raw data.

In addition, we estimated the allometric parameters

from the raw allometric data (using the nonlinear anal-

ysis tools in JMP-Pro 9.0.0; SAS Institute, Cary, NC,

USA). The estimated curves are shown in red in Fig. 2

and the estimated parameter values are shown in

Table 2. The allometries estimated by nonlinear

regression closely fit those derived from the growth

data, indicating that nonlinear regression methods

can provide suitable estimates of the allometric rela-

tionships and of the underlying growth parameters.

Figure 3 shows these allometries plotted on double

logarithmic axes, which show that with one exception,

the allometries are nonlinear, even after log-

transformation.

Ontogenetic and static allometries

The allometries illustrated in Fig. 2 are ontogenetic

allometries, because they follow the change in propor-

tions over developmental time as the animal grows
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larger. Static allometries are allometric relationships

among body parts at a given stage of development. In

most studies, the stage of interest is the adult, but it

could be any stage with definable characteristics. In

mammals, this could be a stage such as birth, age at

weaning, or age at first reproduction. In arthropods,

the stage could be the hatchling, a specific larval

stage, the pupa, or the adult.

Most studies use Huxley’s equation to describe

static allometry. Huxley’s equation is derived from

the growth kinetics of body parts and is an equation

for ontogenetic allometry, so the implicit assumption

is that static allometry is due to individual differ-

ences in the growth trajectory up to that stage in

development. As, we argued above, Huxley’s equa-

tion implicitly assumes that time is a free variable, so

the implicit assumption of such studies is that static

allometry is due to individual differences in the

duration of growth until that stage.

Fig. 1 Growth trajectories of body and internal organs of male rats. Fitted curves are nonlinear Gompertz regressions. All plots use

the same time axis. Parameters of the regressions are in Table 1. Data from Stewart and German (1999).

Table 1 Parameters for Gompertz growth of various organs in

male rats

Organ a b c r2

Body 675 4.58 0.035 0.965

Heart 1.82 3.44 0.038 0.939

Liver 26.7 7.22 0.061 0.907

Spleen 1.17 5.82 0.078 0.861

Gonads 4.46 9.70 0.062 0.959
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In a system in which all parts grow simultaneously

and continuously, as the one we explore here, it is

difficult to define a ‘‘stage’’ based on morphometric

traits. Even defining the adult stage is difficult, as

rats become sexually mature at about 60 days, but

continue to grow, albeit at an ever-decreasing rate,

until well after 200 days. Two simple possibilities can

be considered: A developmental stage could be

equivalent to development time, or it could be the

time at which a given organ, say the gonad, reaches a

particular size. In either case, the static allometry

would be the same as the ontogenetic allometry.

Without an independent marker of stage, attempts

to define a static allometry that is different from an

ontogenetic allometry will be incorrect.

In some systems, a developmental stage can be

defined in a way that is independent of development

time or of the size of a particular structure. The

adult stage of an insect is a good example. Adults

do not grow or change form, and individual varia-

tion in the size and shape of adults is due to differ-

ences in the growth trajectories and the durations of

growth of their various body parts. For instance,

wings and bodies of holometabolous insects have in-

dependent growth trajectories and development

times to a discrete final size that depends on both

genetic and environmental factors (Nijhout and

Grunert 2010). In such cases, the static allometry is

not the same as the ontogenetic allometry. Instead,

the static allometry can be deduced from individual

differences in the growth trajectories and develop-

ment times of the structures that are being com-

pared. Such static allometries are the collection of

endpoints of ontogenetic trajectories, and the

Fig. 2 Ontogenetic allometries of body and internal organs in male rats based on the data in Fig. 1. Blue lines: Allometries derived from

growth kinetics according to Equation (3b). Red lines: Allometries based on parameters estimated by nonlinear regression (Table 2).

Table 2 Allometric parameters estimated from data on growth

(Table 1), and estimated by nonlinear regression using Equation

(3c) with t¼ tt.

Allometry Source a aa b bb d

Body/heart

Growth 675 1.82 4.58 3.44 1.07

Regression 675 1.85 6.72 4.57 1.00

Body/liver

Growth 675 26.7 4.58 5.82 1.72

Regression 675 26.2 4.03 4.99 1.56

Body/spleen

Growth 675 1.17 4.58 5.82 2.22

Regression 670 1.15 3.53 2.75 2.06

Body/gonads

Growth 675 4.46 4.58 9.70 1.67

Regression 680 4.40 4.60 8.86 1.72
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equations that describe them do not resemble those

of ontogenetic allometries (Nijhout and Wheeler

1996; Shingleton et al. 2008).

Phenotypic plasticity and allometry

There are two ways in which an environmental factor

can alter an allometry. First, a factor such as

temperature or nutrition could have a direct effect on

the growth rate (or on the initiation or termination of

growth), and this would alter both the ontogenetic and

the static allometries among body parts. Second, an

environmental factor can have an indirect effect by

reprogramming development, for instance by altering

the secretion of developmental hormones or growth

factors or altering the expression of their receptors.

Such effects can be tissue-specific. Good examples of

this can be found in the allometries associated with

insect polyphenisms, in which the relative growth of

specific body parts is reprogrammed during metamor-

phosis and results in the disproportionate development

of heads and appendages in ants (Feener et al. 1988;

Wheeler 1991; Nijhout and Wheeler 1996), or in

beetles’ horns (Emlen and Nijhout 2000; Moczek and

Emlen 2000; Moczek and Nijhout 2002; Emlen and

Allen 2003). Such plastic allometries (sensu

Schlichting and Piggliucci [1998])are often nonlinear.

The explanation for such nonlinearity in holometabo-

lous insects is a bit more complicated than that outlined

in the previous sections of this article, because the

appendages of the adult begin their growth during

metamorphosis, after the body has stopped growing

(Nijhout and Emlen 1998; Nijhout and Grunert

2010). Thus, appendages grow in bodies of different

sizes, and the size they attain is controlled by their

growth rate in that environment (Nijhout and

Wheeler 1996; Nijhout and Grunert 2010). In

Manduca sexta, for instance, the wings grow slower

and for a briefer period of time in a small body than

in a large one (Nijhout and Grunert 2010), and limita-

tion of the time available for growth has been

implicated in the nonlinear wing-body scaling at large

body sizes (Tobler and Nijhout 2010). The yearly

growth of antlers in deer is another example of struc-

tures that grow in proportion to (a pre-existing) body

size, and as deer grow larger from year to year, so do

their new antlers (Schroder 1983; Weladji et al. 2005).

Linear and nonlinear allometries

Figure 4 shows a set of allometries that can be

produced by Equation (3) using different sets of

parameter values. Evidently, sigmoidal growth kinet-

ics can produce quite diverse nonlinear allometries.

Insofar, as growth trajectories are typically sigmoidal

one would expect allometries to be fundamentally

nonlinear. Note, however, that the size scale of var-

iation in y in Fig. 4 ranges from 1 to 100. This is a

Fig. 3 Double logarithmic plots of the allometries shown in Fig. 2.
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large range that is typically only encountered in

ontogenetic allometries. Static allometries usually

deal with variation in size by a factor of 2 or less,

and this would be represented by small segments of

the curves in Fig. 4. Such small segments are often

linear, or nearly so.

Two questions naturally arise from this observa-

tion. First, is the (near) linearity we typically find in

static allometries accidental or does evolution favor

combinations of growth parameters and body sizes

that lead to (nearly) linear allometries? Second, how

does one pick the right equation to fit to the observed

data when the relationship looks nearly linear?

The first question suggests a new approach to

studying the evolution of allometries. It seems

reasonable to assume that natural selection would

favor growth parameters that do not produce

highly aberrant shapes at the extremes of a natural

variation in body size, which implies that growth

parameters and size ranges are likely to be selected

to produce nearly linear allometries over the range of

natural variation of size. It is an open question

whether the severely nonlinear allometries one finds

in many sexually selected traits (Emlen and Nijhout

2000) arose from the evolution of parameter values

that produce just such an allometry, or whether they

are more complex and require the reprogramming of

growth kinetic parameters at certain body sizes

(Wheeler 1991).

The answer to the second question depends rather

on what kind of information one wishes to extract from

the morphometric data. The study of allometry is often

tackled as an exercise in curve fitting, and if the primary

aim is to draw a well-fitting curve then one can use

linear regression, or find the fit to a power equation

or a polynomial equation and settle on the one that

gives the largest coefficient of determination.

Although such empirical equations allow one to

compare allometries and determine if they differ

statistically from one another, they are, unfortunately,

biologically meaningless. If the aim is to understand the

biology that gave rise to the allometry, or how differ-

ences in allometries are related to differences in the

underlying growth patterns, or how the evolution of

allometries is defined by (or constrained by) the

evolution of growth patterns, then it is rather impor-

tant to use biologically informative equations. The

choice of equation then depends on the kinetics of

growth and on the mechanism that causes variation

in size. Most growth in biological systems is approxi-

mately Gompertz, so Equation (3) will generally be the

most appropriate for ontogenetic allometries.

The evolution of allometries

One of the principal contributions that developmental

biology can make to the study of evolution is to

elucidate and explain the underlying mechanisms that

give rise to traits, and thus provide the causal link be-

tween genotype and phenotype. Insofar as phenotypic

evolution of morphology occurs primarily by changes

in the sizes and proportions of body parts, understand-

ing the developmental causes of size, variation in size,

and proportional scaling helps us to understand how

the evolution of form is due to the evolution of growth

patterns. The study of scaling and allometry has had to

rely on an inadequate causal mapping, and investiga-

tors have used a diversity of equations ranging from

Huxley’s power law to polynomials to ‘‘fit’’ scaling

relationships without much concern for the underlying

biology that gave rise to that relationship. We have

shown here that allometric equations and the values

of parameters can be derived from realistic sigmoid

growth kinetics. Conversely, the underlying sigmoid-

growth kinetic parameters can be deduced from the

nonlinear allometry. In addition, this new set of

allometric equations can be used to analyze what por-

tions of a growth trajectory changed during evolution

of the phenotype.

Fig. 4 A set of nonlinear allometries (based on Equation [3b]) that can be produced by Gompertz growth. For simplicity, in all four

plots, a and aa are fixed at 100, and t¼ tt. The other parameter values are (A) b¼ 30, bb¼ 8, c¼ 2, cc¼ 1; (B) b¼ 0.1, bb¼ 0.1, c¼ 1,

cc¼ 1.2; (C) b¼ 2, bb¼ 0.5, c¼ 1, cc¼ 2.5; (D) b¼ 2, bb¼ 3, c¼ 0.5, cc¼ 2.
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An example of how this could work is shown in

Fig. 5. In Fig. 5A and D, we illustrate growth trajectories

for a pair of structures, and the resulting allometric

relationships. In Fig. 5B and E, we change one growth

parameter, the damping exponent of structure yy, which

causes it to reach its final size earlier than before and

dramatically alters the shape of the allometry. In Fig. 5C

and F, we change the growth exponent of structure y,

which causes it to reach maximal size earlier than before

with a very different effect on the shape of the allometry.

Attempting to understand the evolution of these allo-

metries by fitting and comparing polynomials, or by

doing piecewise regressions on the inherently nonlinear

data would likely yield rather convoluted explanations

that obscure the fact that they come about by very

simple changes in the growth kinetics of one of the

structures. Here, understanding development is

essential in understanding morphological evolution.
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