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Summary

Ferrets are a major developmental animal model due to their early parturition. Here we show for 

the first time that ferrets could be used to study development of higher-level visual processes 

previously identified in primates. In primates, complex motion processing involves primary visual 

cortex (V1), which generates local motion signals, and higher-level visual area MT, which 

integrates these signals over more global spatial regions. Our data show similar transformations in 

motion signals between ferret V1 and higher-level visual area PSS, located in the posterior bank of 

the suprasylvian sulcus. We found that PSS neurons, like MT neurons, were tuned for stimulus 

motion and showed strong suppression between opposing direction inputs. Most strikingly, PSS, 

like MT, exhibited robust global motion signals when tested with coherent plaids – the classic test 

for motion integration across multiple moving elements. These PSS responses were described well 

by computational models developed for MT. Our findings establish the ferret as a strong animal 

model for development of higher-level visual processing.

eTOC blurb

Ferrets are a major animal model for development of early visual stages. Lempel and Nielsen 

establish signatures of complex motion processing in a higher visual area in the ferret, area PSS. 

This will allow developmental research in the ferret to expand into higher-level vision.
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Introduction

Ferrets are paradigmatic for studying visual development because they are born at an early 

stage of brain development, and eye opening does not occur until about postnatal day 30 [1]. 

This provides a long window for investigation and manipulation of neural development, 

including of developmental stages that occur in utero in other higher mammals. The late date 

of eye opening additionally enables experimental access to changes in emerging brain 

functions due to the onset of visual experience. So far, research in the ferret has focused on 

the development of early visual stages, but not the higher-level visual functions commonly 

investigated in non-human primates. Here, we show that ferrets share important principles of 

complex visual motion processing with primates. This opens a new opportunity to examine 

the development of higher-level vision.

Motion perception is an extensively studied aspect of higher-level visual processing. In order 

to analyze the complex moving patterns present in nature, the visual system needs to 

integrate over local motion signals in a meaningful way. In primates, area MT implements a 

major integration stage of motion signals from V1 [2,3]. Because of their small receptive 

fields, direction-selective V1 neurons largely represent local motion signals. MT neurons 

then integrate these local motion signals into global signals. This change in motion 

processing is usually demonstrated using coherent plaids, which are generated by 

superimposing two gratings moving in different directions. Perceptually, plaids appear to 

move in a third, intermediate direction [4,5] computed by integrating the two component 

grating directions. Consistent with a transition from local to global motion processing, MT – 

but not V1 – contains a population of neurons sensitive to the integrated pattern direction 

[2,3].

In general, little is known about the functions of potential higher-level visual areas in the 

ferret. Yet, previous studies identified a visual area likely involved in motion processing, 

located in the posterior bank of the suprasylvian sulcus and referred to as PSS or PMLS 

(Figure 1A). PSS neurons are highly direction selective [6], receive input from V1 neurons 

that is biased towards motion processing [7], and PSS lesions impair motion perception [8]. 

Here, we use PSS responses to complex motion stimuli (including coherent plaids) to 

systematically assess the transformations in motion processing occurring between V1 and 

PSS, and to provide a detailed comparison with MT. Our data reveal signatures of motion 

integration in PSS that are not found in ferret V1. Changes in motion processing between V1 

and PSS could be well explained by a computational model similar to those used to fit MT 

responses [9,10]. Our study therefore demonstrates a clear transformation in motion 

processing between V1 and higher-level visual cortex in the ferret, in a manner that is 

consistent with changes occurring in the primate motion pathway.

Results:

Basic PSS tuning properties indicate role in motion processing:

To provide the foundation for assessing responses to more complex motion stimuli, we first 

measured a number of basic tuning properties in PSS – direction selectivity, responses to 

static versus moving stimuli, and speed tuning. In addition, we directly compared these 
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tuning properties between PSS and V1. In all experiments, recordings in PSS and V1 were 

performed in anesthetized animals using single tetrodes and multi-channel silicon probes 

(Figure 1B).

Direction selectivity was assessed by measuring responses to sine-wave gratings drifting in 

12 or 16 different directions (see Figure 1C for an example PSS direction tuning curve). We 

then quantified direction tuning strength by computing a direction selectivity index (DSI), 

which compares responses to the preferred and the null direction. DSI values close to 1 

indicate strong direction selectivity, while values near 0 show lack of direction tuning. In 

general, PSS neurons were highly direction selective with a median DSI of 0.93 (Figure 1D). 

This is consistent with the results of a previous PSS study, which used stochastic random dot 

stimuli to determine direction responses [6]. The degree of direction selectivity observed in 

PSS differed significantly from that in V1 (Figure 1C & D), in which neurons generally 

were less direction selective (median DSI of 0.43; Kolmogorov-Smirnov test, p<0.001).

To further assess the processing of motion information in PSS and V1, we compared 

responses to static and moving stimuli. For this purpose, we systematically varied the 

temporal frequency of the drifting gratings. In both V1 and PSS, static gratings generally 

elicited weaker responses than moving gratings (Figure 1E & F). However, relative to 

responses to the optimal temporal frequency, static gratings evoked firing rates that were 

significantly lower in PSS than V1 (static/moving, PSS median: 0.06, V1 median: 0.14, 

Wilcoxon rank sum test, p = 0.03).

Lastly, we measured the speed tuning of PSS neurons using a drifting bar (Figure 2A). Bars 

could drift in 8 different directions at 5 different speeds, or remain static. PSS speed 

preferences were broadly distributed (Figure 2B): The median speed preference in PSS was 

40 deg/s, but we encountered neurons with speed preference as high as 160 deg/s, the fastest 

speed sampled. Speed tuning of neurons was further assessed by computing a low-pass 

index as the ratio of responses to the fastest speed (160 deg/s) and the preferred speed. This 

analysis confirmed the broad tuning distribution (Figure 2C). Our PSS sample included both 

neurons that responded strongly to the fasted speed (low-pass index < 0.15, 9/27 cells), and 

neurons that did not respond to it (low-pass index > 0.85, 10/27 cells). Note that these 

conclusions are limited by the fact that speeds faster than 160 deg/s could not be sampled. 

None of the recorded neurons preferred static over moving stimuli (Figure 2D & E). Yet, on 

average responses to a static bar were greater than responses to motion in the null direction 

(median normalized response to static: 0.23, median response to null direction at 40 deg/s: 0; 

Wilcoxon signed-rank test, p = 0.001), suggesting that direction selectivity in PSS is 

partially driven by suppression of responses to the null direction. This is consistent with 

recent findings linking direction selectivity in layer 2/3 of ferret V1 to null-direction 

inhibition [11].

In summary, the basic tuning properties of PSS neurons suggest a specialization for motion 

processing exceeding that of V1 (see Discussion for a comparison to the primate motion 

pathway).
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PSS neurons show motion opponency:

In MT, responses to a stimulus drifting in the preferred direction can be strongly suppressed 

by superimposing a second stimulus drifting in the opposite direction (e.g. [12,13]). This 

phenomenon is termed motion opponency. Inhibition of opposing direction signals is 

believed to be a crucial aspect of how MT neurons combine local direction signals [14,15]. 

As a first assessment of PSS responses to more complex motion stimuli, we tested whether 

PSS neurons similarly exhibit motion opponency. To this end, we used a stimulus set 

previously used to measure MT motion opponency [13]. The main stimulus set (Figure 3A) 

consisted of three different random dot kinematograms (RDK). For two of these stimuli, all 

dots in the RDK moved in one direction, which was chosen to be either the preferred 

direction of the neuron under study (preferred stimulus) or the null direction (null stimulus). 

In the third stimulus, the preferred and null stimulus were superimposed to generate a RDK 

with opposing motion signals in the same region of space (motion-opponency stimulus). 

Note that the motion-opponency stimulus contained twice the number of dots than the other 

two RDKs, but maintained the same number of dots per direction. Perceptually, the motion-

opponency stimulus appears as two surfaces sliding across each other [13,16].

In general, PSS neurons responded vigorously to the preferred stimulus. Addition of the 

opposing direction signal in the motion-opponency stimulus reduced responses, 

demonstrating the presence of motion opponency. We quantified the strength of this effect 

by computing a motion opponency index (MOI) for each neuron. MOI values near 0 indicate 

equal responses to the preferred and motion-opponency stimulus, or a lack of motion 

opponency. MOI values near 1, on the other hand, indicate suppression of firing rates to 

baseline levels for the motion-opponency stimulus. The population data (Figure 3B) confirm 

strong motion opponency in PSS (median MOI: 0.62). In contrast, V1 neurons displayed a 

significantly lower degree of motion opponency (median MOI 0.36; Wilcoxon rank-sum 

test, p = 0.002).

To test whether this difference in motion opponency could be explained by the differences in 

direction selectivity in the two areas, we separately computed the MOI for direction-

selective V1 cells only (DSI > 0.75). Indeed, the mean MOI for direction-selective V1 

neurons was not significantly different from PSS cells (median MOI = 0.53, Wilcoxon rank-

sum test, p = 0.53). In general, plotting motion opponency against direction selectivity 

(Figure 3C) revealed that motion opponency and direction selectivity were positively 

correlated in both areas, and that V1 and PSS data formed a continuum (correlation for the 

combined data set, r = 0.44, p<0.001). These results suggest that suppression of null 

direction responses may play a role in shaping direction selectivity across the ferret’s motion 

pathway. Furthermore, the observed levels of motion opponency, as well as the relationship 

to direction selectivity, replicate findings for the primate motion pathway (see Discussion).

One possible confound in this experiment is the increased dot density in the motion-

opponency stimulus. To rule out effects of dot density, we generated a second motion-

opponency stimulus that maintained the same dot density as the preferred stimulus by 

halving the number of dots per direction (Figure 3A, ‘constant density’ stimulus). We then 

compared responses between the constant density and the preferred stimulus for an 

additional group of PSS and V1 neurons (Figure 3B). For V1, using the constant density 
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stimulus increased MOI levels (median MOI: 0.52, Wilcoxon rank sum test between the two 

motion opponency stimuli, p = 0.02). This change is likely due to the fact that the constant 

density stimulus contained fewer dots moving in the preferred direction than the original 

motion opponency stimulus, which would result in lower responses for the constant density 

stimulus and therefore stronger motion opponency (the preferred stimulus has the same 

number of dots in both experiments). At the same time, motion opponency remained 

stronger in PSS than V1 despite the changes in dot density (median MOI PSS: 0.65, 

Wilcoxon rank-sum test V1 versus PSS, p = 0.01).

A subset of PSS neurons encodes pattern motion:

One of the hallmarks of information processing in primate higher order motion cortex is the 

computation of plaid pattern motion, which requires integration of local motion signals 

[4,17]. We therefore investigated whether PSS neurons similarly encode pattern motion. As 

in the initial MT experiments [17], we addressed this question by measuring neuronal 

responses to 50% contrast sine-wave gratings and coherent plaids. Plaids were generated by 

superimposing two 50% contrast sine-wave gratings with directions that were 135 deg apart 

(Figure 4A). Perceptually, plaids appear to move in a direction bisecting the angle between 

the component directions [5,18]. For both gratings and plaids, 16 motion directions were 

sampled. The degree of motion integration exhibited by a neuron was then determined from 

the tuning curves for plaids and gratings, using the same analysis commonly employed for 

MT [17,19]. It rests on the following assumptions: Neurons that are only sensitive to the 

integrated pattern motion (so called pattern neurons) should have plaid tuning curves with a 

single peak, corresponding to the plaid moving in their preferred direction (Figure 4B). On 

the other hand, neurons sensitive to the individual components (so called component 

neurons) should have a bi-lobed plaid tuning curve, with maximal responses when either one 

of the components moves in the preferred direction (Figure 4C). The degree of motion 

integration by a neuron can then be quantified by comparing its actual plaid tuning curve to 

these predictions.

More precisely, we used each neuron’s grating tuning curve to generate two predictions for 

its plaid tuning curve. One prediction assumed pattern cell-like responses, and was identical 

to the grating tuning curve. The other prediction assumed component cell-like responses. It 

was computed as the sum of two copies of the grating tuning curve, shifted relative to each 

other to account for the direction difference between the two components. We then 

computed Z-corrected partial correlations between the measured plaid tuning curve and the 

two predictions. ZP indicates the strength of pattern responses, and ZC the strength of 

component responses. Cells were classified as pattern or component through comparisons of 

their ZP and ZC values. Neurons with significantly higher ZP than ZC (using p < 0.1 as in the 

primate studies [19]) were classified as pattern cells, while neurons that met the opposite 

criterion were classified as component cells (see Figure 4E & F for a depiction of the 

category boundaries; also see Methods). Using this analysis, 17% of PSS neurons (13/77) 

were classified as pattern cells, while 27% (21/77) were classified as component cells 

(Figure 4E). The rest of the cells remained unclassified. This result indicates that a 

substantial proportion of PSS neurons exhibits signatures of motion integration.
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Given the existence of pattern cells in PSS, an important question is how much of this tuning 

is inherited from V1, i.e. whether V1 neurons can similarly extract pattern motion. To 

investigate this issue, we recorded responses to grating and plaid stimuli in V1. None of the 

recorded V1 neurons (0/22) was classified as a pattern cell, while 77% of V1 neurons 

(17/22) were classified as component cells (Figure 4F). Since comparisons based on the 

number of pattern and component cells depend on the criteria used to classify cells, we 

further compared PSS and V1 by computing a criterion-independent pattern index as ZP-ZC 

(Figure 4D). Across the population, pattern indices were significantly higher in PSS than in 

V1 (PSS median pattern index: −0.41, V1 median pattern index: −2.62; Kolmogorov-

Smirnov test, p < 0.001). These data strongly suggest that pattern motion selectivity in PSS 

is not inherited from V1, just as pattern responses in primate MT are not inherited from V1.

Detailed characterization of PSS pattern selectivity

The above experiment assessed motion integration using plaids with one particular angle 

between the component directions (dOri). Yet, plaids can be constructed with a range of 

dOri values (as long as the extreme values of 0 and 180 deg are excluded). Importantly, 

while changing dOri impacts the overall appearance of the resulting plaid (Figure 5A), the 

perception of coherent pattern motion is maintained [4]. We therefore expanded our stimulus 

set by including more dOri values to probe PSS motion integration more finely. The 

expanded stimulus set consisted of 7 dOri values combined with 16 plaid directions. We also 

measured responses to individual gratings drifting in 16 directions, as well as a blank 

stimulus. To efficiently sample this large stimulus set, we modified the stimulus presentation 

paradigm. Instead of surrounding each stimulus presentation by blank periods as before, we 

adopted a streaming stimulus paradigm previously used for MT [9,19]. In this paradigm, 

each trial contained a 1 minute-long sequence of short stimulus presentations, with 3 to 6 

stimuli presented per second (Figure 5B). Stimulus sequences were determined randomly 

from all conditions. The responses to individual stimuli embedded in these sequences were 

determined by computing firing rates during 150 ms-long windows time-locked to stimulus 

onset. To account for response latency, the temporal window used for firing rate calculations 

was shifted relative to stimulus onset by a delay optimized for each neuron individually (see 

Methods).

We first validated the effectiveness of this paradigm by analyzing only responses to plaids 

with a dOri value of 135 deg, the angle used in the first experiment. As before, we used each 

neuron’s plaid and grating tuning curves to compute ZP and ZC. Based on this analysis, 23% 

of PSS cells (9/40) were classified as pattern cells, and 35% (14/40) as component cells, in 

agreement with the first experiment. The pattern index distribution also did not differ 

significantly between experiments (Kolmogorov-Smirnov test, p = 0.4). We therefore 

concluded that the rapid succession of stimuli in the streaming paradigm did not interfere 

with the detectability of PSS pattern responses.

We then used the full stimulus set to provide a more general analysis of PSS motion 

integration. Each plaid in the stimulus set could be described by two parameters, pattern 

direction and dOri. dOri influences the plaid’s spatial parameters (such as spatial frequency) 

and apparent speed [4,20]. Since both parameters could be expected to impact neuronal 
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responses, we chose to summarize the stimulus space as the 2D space spanned by them (see 

Figure 5C & D). We also assumed that direction and dOri tuning were separable, so that 

tuning curve predictions for the entire stimulus ensemble could be generated as the product 

of direction and dOri tuning curves.

Similar to the standard analysis, we quantified the amount of motion integration exhibited by 

a neuron by comparing its actual tuning curve to pattern and component predictions. Both 

predictions were generated by estimating a direction tuning curve and a dOri tuning curve 

and computing their product (see Figure S1 for examples). All tuning curves were estimated 

based on the entire data set (i.e., gratings and plaids) to increase their robustness. More 

precisely, the direction tuning curve for the pattern prediction was computed by averaging 

across all plaids moving in the same direction (independent of dOri) as well as the matching 

gratings. The dOri tuning curve was similarly computed by collapsing across all stimuli with 

the same dOri. For the component prediction, we first computed direction tuning as a 

function of component direction. This was achieved by averaging across all plaids based on 

component direction (i.e. each plaid contributed twice), again including the matching 

gratings. Since we chose to represent tuning curves in a 2D space spanned by plaid direction 

and dOri, we then transformed the direction tuning curve from a function of component 

direction to a function of plaid direction. For this transformation, we summed two copies of 

the component direction tuning curve at each dOri, shifted relative to each other according to 

the dOri value. The dOri tuning curve for the component prediction was identical to that of 

the pattern prediction. After generating both predictions, they were compared to the actual 

responses of each neuron by computing Z-corrected partial correlations.

In agreement with our previous results, we observed a range of motion integration behavior 

in PSS, including both pattern and component cells. 45% of cells (29/65) were classified as 

pattern cells, 35% (23/65) as component cells, and the rest remained unclassified (Figure 

5E). In contrast, using the same stimulus set and analysis in V1 resulted in 100% component 

cells (26/26) and no pattern or unclassified cells (Figure 5F). The pattern index distributions 

were also significantly different between PSS and V1 (Figure 5G), with generally higher 

pattern indices in PSS than V1 (PSS median: 0.45, V1 median: −9.27; Kolmogorov-Smirnov 

test: p < 0.001).

In conclusion, the streaming stimulus experiment further confirms that signatures of motion 

integration can be found in PSS but not V1. It extends our other findings by demonstrating 

that PSS pattern cells extract pattern motion despite changes in dOri, in agreement with the 

perception of these stimuli. This is consistent with the behavior of pattern cells in MT [9]. In 

comparison with the previous data set, the analysis based on the larger stimulus set enhanced 

the differences between V1 and PSS. The large number of component cells detected in V1 

rules out that the increased number of pattern cells in PSS is simply a product of the chosen 

analysis method. Rather, we suggest that the increased number of stimuli used for tuning 

curve computations, as well as the increased number of data points used for computing 

partial correlations, enhance the ability to differentiate the two cases.

This data set allowed a further comparison between PSS and MT: MT pattern cells tend to 

respond more strongly to plaids than gratings, reflected in a significant correlation between 
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the pattern index and the ratio of firing rates for plaids versus gratings [21]. We similarly 

observed a significant correlation between pattern index and plaid/grating response ratio 

(expressed in logarithmic scale) in PSS (r = 0.5, p < 0.001; Figure 5H).

Motion representation in PSS can be explained by a multistage motion pathway model:

The results presented so far suggest strong similarities between PSS and MT. To further test 

this idea, we asked whether computational models developed for the primate motion 

pathway could be adapted to the ferret. To this end, we developed a multistage model of the 

ferret’s motion pathway based on recent V1-MT pathway models [9,10]. The model 

consisted of the following stages (Figure 6A):

(1) Contrast scaling: The first model stage implements the scaling of visual inputs resulting 

from contrast response functions in processing stages preceding V1. Contrast response 

functions were modeled using the Naka-Rushton equation [22], with the shape of the 

functions controlled by the parameters C50 and N. We included this stage to allow future 

developmental studies to model the impact of maturing contrast response functions (e.g. 

[23–25]) on overall motion pathway behavior. Additionally, contrast scaling provides a 

mechanism for controlling the relative V1 response to gratings and plaids. This is necessary 

for generating pattern cells that respond more strongly to plaids than gratings, as observed in 

the data. For the same reason, recent V1-MT models included a so-called ‘tuned’ 

normalization stage in V1, which served to scale the responses of individual V1 direction 

channels. Here, contrast scaling was implemented as the first model stage to maintain 

contrast-invariant orientation tuning in V1 [26,27].

(2) Direction filters: The second stage represents a bank of 16 V1 direction filters. Direction 

selectivity was implemented using motion energy detectors [14] as in previous models 

[10,15,28]. All parameters determining the direction filters were fixed, and chosen based on 

existing values for carnivores (see Methods). Note that we chose not to include a divisive 

normalization stage in V1 as often found in V1-MT models [9,10,15,28]. The divisive 

normalization serves to scale overall responses across all direction channels. In V1-MT 

models using both this ‘untuned’ and the previously mentioned ‘tuned’ V1 normalization, 

the weight of the untuned normalization was generally low [9,10]. We therefore omitted the 

divisive normalization stage to reduce the number of model parameters.

(3) PSS integration: In the third stage, integration of V1 responses was modeled as a linear 

combination of the V1 direction channels. To account for motion opponency, we chose to 

include two weight functions in this stage, one for excitation and one for inhibition. The 

excitatory weight function was modeled as a von Mises function of concentration kE, 

centered on the preferred direction. The amplitude of the excitatory weight function was 

fixed at 1. Inhibition was similarly modeled as a von Mises function of concentration kI, and 

amplitude I, centered on the null direction. The complete weight function was then 

computed by subtracting the inhibitory weights from the excitatory weights.

(4) PSS non-linearity: In the last model stage, a threshold non-linearity with threshold T was 

applied to the PSS responses.
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To test whether this model was capable of reproducing the range of plaid responses observed 

in PSS, we used it to fit a set of strongly direction selective (DSI>0.75) PSS neurons for 

which we had collected responses to the large plaid set. For each neuron, the fit procedure 

determined the best values for the six parameters listed above (C50, N, kE, kI, I, T). The 

model was able to explain not only PSS component and pattern responses, but also the 

responses of unclassified, intermediate cells (Figure 6B). Generally, tuning profiles 

generated from the model fit agreed well with the actual data. Across neurons, the median 

correlation between model fit and actual data was 0.81, which is remarkable given that only 

six variables were used to fit 128 data points per tuning profile. As a control, we also fit the 

model to a shuffled data set, in which each neuron’s responses were shuffled across stimuli 

to destroy the tuning profile while preserving overall response rates. The model poorly 

explained the random structure of the shuffled data set (Figure 6C), resulting in significantly 

lower correlation values for the shuffled than the actual data (median correlation shuffle data 

0.46; Kolmogorov-Smirnov test, p < 001).

In an effort to identify potential mechanisms responsible for generating pattern cells, we 

investigated how different model parameters contributed to the emergence of pattern 

responses. To this end, we tested how well individual parameters correlated with the pattern 

index. Amongst the six parameters, the concentration kE of the excitatory PSS weight 

function (Figure 6D) correlated most strongly with the pattern index (r = −0.52, p < 0.001). 

In addition, the strength of inhibitory weights I (Figure 6E) was also significantly correlated 

with the pattern index (r = 0.38, p = 0.005). Together, these findings imply that pattern cells 

have an overall weight function with a broad excitatory peak and a strong inhibitory 

component (Figure 6F). Component cells, on the other hand, have a narrow excitatory peak 

with little inhibition (Figure 6F). Similar observations were made for MT [9]. The C50 

component of the contrast response function (Figure 6G) was also strongly correlated with 

pattern index (r = −0.39, p = 0.003) while the PSS threshold parameter T (Figure 6H) 

showed a weaker, but still significant correlation (r = 0.35, p = 0.01). The remaining 

parameters of the model (N and kI) were not correlated with the pattern index (data not 

shown).

Discussion:

In this study, we investigated the properties of visual area PSS in ferrets. While previous 

studies pointed towards a general involvement in motion processing, our findings now 

identify PSS as a higher-level motion area. This conclusion is based on striking similarities 

between PSS and primate MT. Anatomically, PSS – like MT – is more heavily myelinated 

than the surrounding areas [6,29], and also receives direct input from V1 [2,7,30]. In terms 

of basic responses properties, PSS and MT exhibit a similarly high degree of direction 

selectivity. In our data, the mean DSI in PSS was 0.84; previous MT studies report a mean 

DSI of 0.8 – 1.05 depending on primate species and stimuli used [31–34]. For both PSS and 

MT, the degree of direction selectivity is significantly higher than that found in V1 (ferret 

mean V1 DSI: 0.48, macaque mean: 0.56 [31,34]), consistent with an increased 

specialization for motion processing in PSS/MT.
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Similarities extend to more complex motion processing. PSS shows strong motion 

opponency, at comparable levels to MT (ferret median MOI: 0.62, mean: 0.59; primate 

median: 0.54 [13], mean: 0.36 [12]). In both species, these levels are higher than those 

observed in V1 (ferret median and mean: 0.36; primate median: 0.04 [13], mean 0.2 [12]). In 

addition, in ferrets and primates motion opponency correlates well with direction selectivity 

in V1 and PSS/MT [12,13], and the overall differences in motion opponency between areas 

can largely be explained by their different degrees of direction selectivity [12]. Thus, 

suppression of opposing direction signals may play an important role in generating direction 

selectivity across areas and species.

The most important similarity, however, is the existence of pattern cells in PSS, combined 

with the absence of these cells in V1. As for the primate, this allows us to conclude that 

lower visual stages like V1 are largely concerned with the extraction of local motion signals, 

while higher stages like PSS handle local motion integration. We observed 17% pattern cells 

in PSS for the most commonly used MT stimulus set. Enlarging the stimulus set so that 

more conditions could be included in the analysis increased this fraction to 45%, with the 

changes most likely due to an increase in discriminability of pattern and component 

predictions. In macaque MT, data pooled over many studies resulted in 23% pattern cells 

[21], while 19% pattern cells have been observed in the marmoset [35]. Note, however, that 

these studies usually only include highly direction-selective neurons in their analyses. If we 

similarly restrict our data set for the ‘classic’ stimulus set (criterion: DSI > 0.75), the 

proportion of pattern cells increases to 27% (13/49). Thus, the proportion of pattern cells in 

the ferret is comparable to that in the primate. This also holds for the fraction of component 

cells, which is 27% in PSS using the classic stimulus set, and 37% in the macaque [21].

Finally, PSS responses could be fit well with a computational model recapitulating main 

features of recent MT models, suggestive of similarities between areas on a more 

fundamental level. This is further supported by the observation that both PSS and MT 

modeling efforts point to the shape of the direction integration function in PSS/MT as an 

important determinant of pattern index. For both models, broader excitatory integration with 

stronger inhibition is linked with higher pattern indices [9]. Whether these predictions – 

which are based on the implementation of a particular motion pathway model – indeed 

accurately capture the mechanisms underlying motion integration in PSS and MT remains to 

be verified experimentally.

It should be noted that there are differences between PSS and MT, which so far largely seem 

to be related to the ferret’s overall lower visual acuity [36,37]. This includes the observation 

that PSS receptive fields are significantly larger than those in MT (Figure S2), and that 

preferred spatial frequencies are lower in PSS (PSS: 0.06 – 0.12 cycles/deg; MT: 0.1 – 4 

cycles/deg [38]). For other processing aspects it is currently unknown how PSS compares 

with MT. For example, it remains to be determined whether PSS shares MT’s columnar 

organization for direction [39] and whether disparity is represented as strongly as in MT 

(e.g., [40]).

The evolution of motion processing from V1 to higher visual areas is well established in 

primates [2,3]. The findings presented here are the first demonstration of a very similar 
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cortical motion processing cascade in the ferret, and more generally in a non-primate 

species. Complex motion processing in carnivores has previously been investigated in the 

cat. As in the ferret and primate, processing in cat V1 is restricted to local motion signals 

[17,41]. A number of higher-level visual areas were found to have strong direction tuning in 

the cat [42]. Motion integration was tested explicitly in one of these areas, PMLS, but failed 

to reveal pattern cells [17,41]. So far, pattern cells were only found in cat frontal cortex and 

pulvinar [43,44]. Our results strongly suggest the existence of a higher-level visual area with 

pattern cells in the cat, most likely one of the motion areas not tested so far. Motion 

processing has also been investigated in the mouse, in which local motion directions are 

already robustly represented at the level of retina and LGN [45,46]. Motion integration 

similarly appears to occur earlier. When probed with coherent plaids, the largest fraction of 

mouse V1 neurons consistently falls into the ‘unclassified’ category, in which neurons have 

intermediate levels of motion integration [47–49], unlike the strong predominance of 

component cells in primate and carnivore V1. Thus, motion processing in the mouse differs 

notably from that in ferrets and primates. It is possible that motion processing in other 

rodents proceeds differently: Visual areas ML and L of the squirrel have been shown to 

contain a large number of direction-selective neurons [50], but motion integration has not yet 

been studied in this species.

In summary, our data show striking similarities in complex motion processing in ferrets and 

primates. This presents opportunities for the investigation of higher-level visual processing: 

A transgenic ferret model of microcephaly was recently established [51], raising the 

prospect that transgenic ferrets might become increasingly more available. More important, 

however, are the advantages of ferrets as a developmental animal model. Previous research 

has already established the developmental timeline of direction selectivity in V1, as well as 

the impact of visual experience (e.g. [52–54]). Our results in adult ferrets lay the foundation 

to expand this research into development of complex motion processing in higher-level 

visual cortex, both under normal and abnormal conditions.

STAR Methods:

Contact for reagent and resource sharing:

Further information and requests for resources and reagents should be directed and will be 

fulfilled by the Lead Contact, Kristina J. Nielsen (Kristina.nielsen@jhu.edu).

Experimental model and subject details:

All procedures were approved by the Johns Hopkins Animal Care and Use Committee and 

adhered to the guidelines of the National Institute of Health. Experiments were performed in 

female sable ferrets (Mustela putoris furo, Marshall Farms) with normal immune status, with 

ages between 1.5 months and 1.8 years. Animals were housed in a 16h light/8h dark or a 12h 

light/12h dark cycle. Ferrets were not involved in previous studies.

Methods details:

Animal preparation and surgery—Ferrets were pretreated with atropine (0.05 mg/kg, 

IM) and anesthesia was induced with ketamine (40 mg/kg, IM). After induction, anesthesia 

Lempel and Nielsen Page 11

Curr Biol. Author manuscript; available in PMC 2020 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was maintained with isoflurane (during surgery: 1.5 – 3%, during recording: 0.5 – 2%). A 

tracheostomy was performed and an IV catheter was inserted into the external jugular vein 

for delivery of 2.5% dextrose in lactated Ringer’s solution (4 mL/kg/hr). Body temperature 

was maintained at 37 – 39 deg C using a heat pad. A small metal plate was attached to the 

skull with dental acrylic (Dentsply or Lang Dental), which was then connected to a custom 

stereotaxic apparatus to rigidly hold the head. Two screws were implanted over frontal 

cortex to record the EEG. Throughout the procedure, heart rate, SpO2, EKG, EtCO2 and 

EEG were monitored continuously to maintain the animal in an adequate plane of 

anesthesia. Before the start of recording, animals were paralyzed with pancuronium bromide 

(0.15 mg/kg/hr). Respiration was maintained with a ventilator (Ugo Basile), adjusting 

breathing rate and volume to maintain the EtCO2 between 3.3 and 4.8%. Neosynephrine and 

atropine were applied to the eyes to retract the nictitating membrane and dilate the pupil, and 

animals were fitted with contact lenses. Before recordings, craniotomies were made above 

either V1 or the posterior bank of the suprasylvian sulcus to reach PSS. We targeted central 

visual field regions in V1, and central and more peripheral visual field regions in PSS. Small 

durotomies were made inside the craniotomies to allow recording probes to penetrate the 

brain. The brain was covered with 1.5 – 5% agarose (type III-A, Sigma-Aldrich) in artificial 

cerebrospinal fluid during recordings.

Electrophysiology—Neural signals were recorded using either custom-made tetrodes 

made from 12μm nichrome wire (California Fine Wire Company) or 64-channel silicon 

microprobes (Masmanides lab, UCLA). Tetrodes were plated using a gold solution (Sifco 

ASC) to reach final impedances of 150-500 kΩ; silicon probes were gold-plated to reach 

final impedances of 150-300 kΩ. Signals were amplified and recorded using a CerePlex 

Direct amplifier (Blackrock Microsystems) or a RHD2000 amplifier (intan Technologies). 

Raw data was acquired at 30 kHz and filtered between 250 Hz and 5 kHz. Spike detection 

threshold was set manually for each recording based on noise levels. Single unit isolation 

was performed off-line using MATLAB (MathWorks) custom-made software. Isolation was 

based on multiple waveform characteristics (e.g., spike amplitude peak, area under the 

waveform, repolarization phase slope) recorded on the four tetrode channels or on 

neighboring channels of the silicon probe. Quality of isolation was confirmed by inter-spike 

interval (ISI) analysis. Units that displayed ISIs below 1.2ms were not included in further 

analyses.

Visual stimuli and experiment design—Visual stimuli were generated using the 

Psychophysics Toolbox extensions for MATLAB [55,56] and displayed on a 24-inch LCD 

monitor with refresh rate of 120 Hz, placed 25 - 35 cm in front of the ferret. The monitor 

was gamma corrected using a SpectraScan 655 (PhotoResearch). For a subset of 

experiments, a 43-inch LCD monitor with a refresh rate of 60 Hz was used instead.

Classic stimulus presentations:  Experiments consisted of 5 repetitions of each stimulus 

condition (including a blank condition), presented in a pseudo-random sequence. This 

presentation mode was used with gratings, plaids, bars, and random dots. Stimulus 

parameters that varied across conditions are described for each experiment in the results 

section. Other stimulus parameters for the different experiments are listed below.
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Gratings and plaids:  Stimulus sizes were optimized for each neuron. In most experiments, 

stimuli were shown in circular aperture with radius 8 – 30 deg (see Figure S2 for example 

receptive field sizes); in a few experiments, we instead used rectangular stimuli of 65 × 50 

deg. All experiments used sine-wave gratings. Grating spatial frequency was set to the 

optimal value for each neuron (range 0.05 - 0.1 cycles/deg), as was temporal frequency 

(range 2 - 6 Hz) outside of the temporal frequency experiment. In plaid experiments, 

gratings were shown at 50% contrast; otherwise they were shown at 100% contrast. Plaids 

shown using the classic presentation mode were generated by superimposing two 50% 

contrast sine-wave gratings of optimal spatial and temporal frequency at an intersection 

angle of 135 deg. Plaids were always shown at full contrast. Stimuli were presented 

interspersed with presentation of a gray screen of equal mean luminance. Stimuli were 

presented for 1 s with inter-stimulus intervals of 2 – 5 s.

Drifting bar stimulus:  We presented either a white bar on a black background or a black 

bar on a white background, depending on the preferences of the neuron under study. Bar size 

was set to 10 × 5 deg. Bars moved perpendicular to their orientation, and their starting point 

was adjusted such that the bar reached the center of the neuron’s receptive field at half the 

stimulus presentation time. Static bars were positioned in the center of the neuron’s 

receptive field. Bar presentations were interspersed with presentation of a blank stimulus of 

background color. Stimuli were shown for 1 s, and inter-stimulus intervals ranged from 2 to 

5 s.

Random dot kinematograms:  Random dot stimuli consisted of white dots on a black 

background. Dot size, density and speed were set manually to elicit the strongest neuronal 

responses. Dot radius ranged from 1 – 2 degrees, speed from 15 - 60 degrees/s, and dot 

density from 0.8 – 3.5 dots per 100 degree2. This resulted in inter-dot distances of 3 - 7.5 

deg, similar to a previous PSS study using random dot stimuli [6]. The overall size of the 

stimulus was also optimized for each neuron (either circular with radius of 15 – 30 deg, or 

65 × 50 deg). To avoid contamination of responses by luminance changes, the presentation 

of dot motion was preceded by a static presentation of the first frame of the random dot 

stimulus, displayed for 2 – 3 s. The dots were then moved for 1 s. Any dot that left the 

stimulus aperture during this time period was replotted in a random position on the opposite 

side of the stimulus to preserve dot density. At the end of the stimulus, the last frame was 

shown static for another 1 – 2 s. Different random dot stimuli were separated by brief 

presentations of a black screen. In some of the motion opponency experiments (mostly using 

tetrodes), we first determined the preferred direction of each neuron manually, and then only 

presented the preferred, null and motion opponency stimuli. In the rest of the experiments, 

we instead sampled 8 or 12 directions for the single direction stimuli. We also generated 

motion opponency stimuli for each of these directions by superimposing the opposing 

direction.

Streaming stimulus presentation:  Each trial consisted of a 60 s long sequence of short 

stimulus presentations (3 - 6 stimuli/s). Each sequence was preceded and followed by a 2 s 

presentation of a gray screen of equal mean luminance. Stimulus sequence was determined 

randomly by picking from all stimulus conditions with replacement. The following stimulus 

Lempel and Nielsen Page 13

Curr Biol. Author manuscript; available in PMC 2020 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



conditions were used: blank (uniform gray screen), 100% contrast sine-wave gratings 

moving in 16 directions, and plaids with 7 different component intersection angles (dOri; 

22.5, 45, 67.4, 90, 112.5, 135 and 157.5 deg) moving in 16 directions. In a subset of 

experiments we also included 50% contrast gratings moving in 16 directions. Spatial 

frequency (0.05 - 0.15 cycles/deg), temporal frequency (2 – 5 Hz) and stimulus size (circular 

aperture of radius 10 – 35 deg) were optimized per neuron. For each stimulus, the initial 

phase of each grating was chosen randomly from 4 possible values (0, 90, 180 and 270 deg). 

30 or 45 trials were run for each experiment, which ensured that each stimulus was 

presented at least 10 times.

Data analysis and inclusion criteria—The number of animals and neurons per analysis 

are listed in Table 1. Note that data for multiple stimulus types could be collected in the 

same animal (i.e., animals may be used for multiple analyses).

Classic stimulus presentations:  For gratings, plaids and random dots, neuronal responses 

were calculated as the firing rate during stimulus presentation minus the firing rate during 

the last second of the prestimulus period. For bar stimuli, firing rates were measured during 

the time period in which the stimulus was within 20 deg of the center of the receptive field, 

corrected assuming a fixed response latency of 50 ms. All neurons were then screened for 

general stimulus responsiveness. For gratings, plaids and bars, we performed this test by 

using a one-way ANOVA to compare responses across all stimulus conditions (including the 

blank). Only cells that passed p<.01 for the ANOVA were included in further analyses. For 

random dot stimuli, we tested for responsiveness using a t-test between the best single 

direction stimulus and the blank, using a Bonferroni correction to adjust for multiple 

comparisons (either 2, 8 or 12, depending on how many directions were shown in an 

experiment). Cells that passed p<.05 were included in further analyses. In addition to these 

tests, neurons with a mean response lower than 2 Hz for the best stimulus condition were 

excluded. For all remaining neurons, tuning properties were then calculated from mean 

responses across stimulus repetitions.

Streaming stimulus presentation:  Computing stimulus-evoked responses from the 

streaming stimulus requires shifting spike times relative to stimulus onset to account for 

response latency. The analysis used to determine the optimal delay was based on the 

assumption that stimulus differences would be most pronounced for the real response 

latency, while other delay values would dilute these differences because of incorrect 

stimulus-response assignments [19]. First, we computed mean responses for all stimuli in 

stimulus-locked, 150 ms-long windows, offset from stimulus onset by 20 different delays 

ranging from 0 to 475 ms. When computing the mean, the initial phase of the gratings was 

ignored. For each delay, we then subtracted the mean blank response from all stimulus 

conditions (including the blank), and compared all conditions using a one-way ANOVA. The 

resulting p-values were Bonferroni corrected to account for the 20 comparisons. The delay 

resulting in the smallest p-value was then used in all further analyses for the neuron. At this 

point, neurons for which the smallest p-value was larger than 0.01 (after correction) were 

excluded. Two additional criteria were used to remove cells with limited responsiveness to 

gratings and/or plaids: For one, cells had to pass an ANOVA across all plaids with dOri = 90 
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deg and the blank with p<.01, using the optimal delay to compute responses. For the other, 

the responses to the best grating and the best plaid with dOri = 90 deg had to be larger than 2 

Hz.

Tuning curve analyses—Direction selectivity was quantified using a direction index 

comparing responses between preferred and null direction, which was computed as

DSI = 1 − R(N)
R(P)

where R(P) is the response to the preferred direction, and R(N) is the response to the null 

direction. For drifting bar experiments we computed a low-pass index as

Low− pass index = 1 −
R(Smax)
R(Spref )

where Smax indicates the fasted speed sampled (160 deg/sec), and Spref indicates the 

neuron’s preferred speed. The strength of motion opponency was determined by computing 

the following index:

MOI = 1 − R(MO)
R(P)

Here, R(MO) indicates the response to the motion opponency RDK and R(P) the response to 

the preferred RDK.

Analysis of plaid responses

Classic stimulus presentations:  We used standard methods to compute partial correlations 

between the measured responses to plaids and predictions for pattern and component 

responses [17]. Partial correlations were then Z-transformed to stabilize the variance and 

allow comparisons across conditions. The Z-transform was computed as [19]:

Z = N − 31
2ln 1 + r

1 − r

where r is the partial correlation (either pattern or component), and N refers to the number of 

points in the correlation (here, 16). Cells were classified as pattern cells if they met ZP – Zc 

> 1.28 for ZC ≥ 0, and ZP > 1.28 otherwise. Component cells had to meet the opposite 

criterion. We also computed a pattern index as ZP-ZC. As in the cell classification, any 

negative values (ZP or ZC) were set to 0 when computing the index.

Streaming stimulus presentation:  Each neuron’s pattern and component predictions were 

computed for the larger plaid stimulus set in the following way: For the pattern prediction, 

we computed a direction tuning curve by averaging responses across all plaids with a shared 

pattern direction, as well as the gratings moving in the same direction. We also computed a 

dOri tuning curve, which was estimated by averaging across all stimuli with the same dOri. 
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The complete pattern prediction was then computed as the product of the direction and dOri 

tuning curves.

For the component prediction, we first estimated a direction tuning curve as a function of 

component direction by averaging across all plaid stimuli with a shared component direction 

(i.e. each plaid contributed twice), as well as the gratings moving in the same direction. This 

tuning curve was then transformed into a function of plaid direction by summing two copies 

of the component direction curve at each dOri, shifted relative to each other according to the 

dOri value. The resulting direction tuning curve was multiplied with the dOri tuning curve 

(identical to the one used for the pattern prediction) to generate a complete component 

prediction. We then computed partial correlations of each neuron’s actual responses with the 

two predictions, and converted these values to Z-scores as before (with N set to 112 to 

account for the 7 plaid sets and 16 directions involved in the computation).

Image-computable motion pathway model

Stimulus:  We presented 1 s of each stimulus, divided into 50 frames, to the model. Stimuli 

were modeled to span 50 by 50 degrees of visual space, with a spatial resolution of 0.25 

degree/pixel. Thus, each stimulus could be summarized by a 200 × 200 × 50 matrix. Stimuli 

consisted of gratings and plaids. Spatial frequency was fixed at 0.1 cycles/deg and temporal 

frequency at 1 cycles/s. Gratings and plaids could move in 16 different directions. Gratings 

were shown at 50% and 100% contrast, and plaids were constructed from 50% gratings 

using 7 different values of dOri. This stimulus set replicates the entire set of conditions used 

in the streaming stimulus experiments.

Thalamic layer:  LGN responses were calculated for each pixel in each frame of the 

stimulus matrix using a 2D LGN receptive field centered on each pixel. Receptive fields 

consisted of center and surround components modeled as 2D Gaussian functions with σ = 2 

deg and 6 deg, respectively. Values were set to reflect the size of ferret LGN receptive field 

centers [57,58] and center-surround size ratios of cat LGN [59], similar to a previous image-

computable LGN model [60]. Gaussian amplitudes were set so that the response to a 

homogeneous field with no contrast was 0 and the maximum response to a 100% contrast 

grating was 1.

Following the spatial filtering induced by the receptive field structure, we scaled responses 

at each pixel according to a contrast response function. This function was implemented as a 

hyperbolic function of the form

R = rN

rN + C50
N

with r representing the value at each pixel derived after applying the spatial filters. C50 and 

N are free model parameters. This kind of function has been widely used to model contrast-

response functions, and fits well to experimental data [22,26,60,61].
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V1 simple cell layer:  Responses of V1 simple cells were computed by applying space-time 

oriented Gabor filters to the output of the LGN layer, and then summing the output of each 

filter across all pixels and time. Following the standard motion energy model [14], we used 

two Gabor filters with a quadrature relationship per direction channel. In total, we used 16 

direction channels, set to be 22.5 deg apart. We set the width of the V1 receptive fields (σ) to 

5 deg, the spatial frequency to 0.1 cycles/deg, and the temporal frequency to 1 cycle/s. 

Receptive field size was chosen based on experimental estimations of LGN to V1 receptive 

field ratios in carnivores [62,63]. The ratio between V1 receptive field size and spatial 

frequency determines the orientation tuning of modeled V1 neurons. It was set so that V1 

orientation tuning (quantified as the circular variance [64–66] of the model’s complex cells) 

was consistent with the high end of circular variance encountered in our own recordings 

from ferret V1 (circular variance of 0.81). All of our model V1 neurons were direction 

selective by design. This is consistent with MT motion pathway models, which usually 

assume a purely direction-selective V1 stage [9,10,15,28].

V1 complex cell layer:  Responses in the complex cell layer were computed by combining 

the output of the even and odd Gabor filter for each direction channel, following the standard 

motion energy model [10,14]:

c = seven
2 + sodd

2

where s represents the output of the V1 simple cell stage for one direction channel. We 

compute the square root of the simple cell responses to maintain the shape of the contrast 

response functions set in the LGN stage. For plaids, the phase difference between the two 

component gratings impacts the model’s response at the complex cell stage. To eliminate 

response contaminations caused by phase differences, responses to four plaids with different 

phase differences were computed, and the responses were averaged in the complex cell layer 

before being passed to the PSS layer.

PSS layer:  In the last stage of the model, the responses of the 16 V1 complex cells were 

combined linearly. We used two weight functions for this purpose, one representing 

excitatory interactions and one inhibitory. Weight functions were modeled as

WE(θ) = 1
2πB0(kE)exp( − kEcos(θ − θP))

and

WI(θ) = 1
2πB0(kI)exp( − kIcos(θ − θN))

Here, B0(k) is a modified Bessel function of order 0, θ is one of the 16 directions 

represented in V1, θP is the direction preference of the PSS neuron, and θN is its null 

direction (i.e., θN = θP + 180 deg). kE and kI define the width of the weight functions and 
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are free model parameters. The two weight functions are then combined into one final 

weight functions by computing

W(θ) = WE(θ) − I * WI(θ)

I, which determines the relative amplitude of the inhibitory weights, is another free model 

parameter. The final stage of the model represented an output nonlinearity in PSS. We 

implemented this nonlinearity as a half-wave rectification by setting all responses below a 

threshold T to 0. T was the final free model parameter, and was expressed as a fraction of the 

maximum response of the modeled PSS neuron.

Model fitting:  One million instances of the model were computed using 10 possible values 

for each of the 6 variables described above. For each direction selective PSS cell (DSI > .

75), we then picked the model instance with the lowest mean square error. To test for model 

over-fitting, a control data set was generated by shuffling the responses of each neuron 

across all conditions. We then fit the model to this control data set as described above for the 

real data.

Quantification and statistical analysis:

We used a one-way ANOVA or two-sided t-test to decide whether to include neurons in the 

data sets used for more detailed analysis (described in the previous section). Results of any 

test were Bonferroni-corrected where necessary. For statistical comparisons of two data sets, 

we used Wilcoxon rank-sum or Wilcoxon signed-rank tests as well as Kolmogorov-Smirnov 

tests. Center and spread values are reported as median or mean ± SEM, unless noted 

otherwise. Correlations were calculated as Pearson’s. Statistical tests and significance levels 

are reported in the Results section and Figure legends, and exact n values in Table 1. No 

tests were conducted to check for normality or homogeneity of variance. All statistical 

analyses were performed using MATLAB software.

Data and software availability:

Data are available from corresponding author upon reasonable request. The code for 

implementing the motion pathway model is available online (https://github.com/

nielsenlabmbi/PSSModel2018).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Visual area PSS is a higher-level motion area in ferrets

• PSS neurons show signatures of motion integration

• PSS responses can be fit by a motion pathway model similar to ones for the 

primate

• Complex motion processing in ferrets parallels that in primates
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Figure 1: Basic PSS tuning properties indicate a role in motion processing.
(A) Sagittal view of the ferret brain indicating the location of PSS and V1 (ss: suprasylvian 

sulcus).

(B) Schematic of experimental setup. Neural responses to visual stimuli were recorded in 

anesthetized ferrets using tetrodes or multi-channel silicon probes.

(C) Direction tuning of an example PSS (top) and V1 neuron (bottom). The polar plot 

indicates mean firing rates to different directions (gray area: ± SEM).

(D) Cumulative DSI distributions for V1 and PSS.

(E) Temporal frequency tuning for a V1 neuron (left) and PSS neuron (right), measured 

using sinusoidal gratings drifting at different temporal frequencies (0 Hz indicates a static 

grating). Error bars represent ± SEM.

(F) Responses to static gratings relative to responses to preferred temporal frequencies. 

Boxplots indicate the spread of the observed response ratios in V1 and PSS. In this and all 

subsequent figures, the box indicates 25th, 50th and 75th percentiles. Whiskers indicate 

range, and crosses indicate outliers.

* = p < 0.05; *** = p < 0.001.
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Figure 2: Speed tuning in PSS.
(A) Responses of an example PSS neuron to the drifting bar stimulus (illustrated on the top 

of the figure). Each row of the raster plot corresponds to one cycle of the bar drifting across 

the screen. The period during which the bar traverses the central 40 deg of the estimated 

receptive field is indicated by dashed lines. This time window was used to compute 

stimulus-evoked responses (see Methods).

(B) Distribution of preferred speeds.

(C) Distribution of low-pass indices for the same neurons as in (B).

(D) Average PSS speed tuning curve. To compute this curve, the response of each neuron 

was normalized by its maximum before averaging (same neurons as in (B)). Positive speeds 

indicate movement in the preferred direction, negative speeds movement in the null 

direction. 0 corresponds to a static bar. Note the decreased response to motion in the null 

direction relative to the static stimulus. Gray area: ± SEM.

(E) Comparison of responses to static bars and motion in the null direction at 40 deg/s. All 

responses were normalized by the maximum response per neuron.

** = p < 0.01.
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Figure 3: PSS neurons show motion opponency.
(A) Illustration of RDK used to investigate motion opponency in PSS and V1.

(B) MOI distributions for PSS and V1, using either the standard motion opponency stimulus 

(lower left in (A)) or the constant density version (lower right in (A)).

(C) DSI versus MOI for V1 and PSS neurons, calculated based on the standard motion 

opponency stimulus. Dotted line represents fit for both data sets combined.

* = p < 0.05; ** = p < 0.01; *** = p<0.001.
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Figure 4: A subset of PSS neurons encodes pattern motion.
(A) Schematic representation of gratings and plaids used to investigate pattern motion 

responses in PSS and V1. Blue arrows indicate the directions of the component gratings, the 

red arrow the perceived plaid direction.

(B) Direction tuning curve of an example PSS pattern cell measured using plaids (red) and 

gratings (blue). Direction is relative to the neuron’s preferred direction for the grating. For 

plaids, direction indicates the perceived pattern direction (the components move at ±67.5 deg 

relative to this direction). For each neuron, the measured plaid tuning curve is compared to 

two predictions, one for idealized pattern responses (tuning curve identical to the grating 

tuning curve), one for idealized component responses (prediction indicated by dashed line). 

Z-transformed partial correlation indices ZP and ZC indicate how closely the measured plaid 

tuning curve resembles these predictions. Error bars: ± SEM.

(C) Plaid and grating direction tuning curves of an example V1 component cell. Same 

format as in (B).

(D) Cumulative pattern index distributions for V1 (dashed line) and PSS (solid line).

(E) Pattern versus component selectivity for PSS neurons. For each neuron, ZP is plotted 

against ZC. Black lines indicate the category boundaries used to classify cells into pattern, 

unclassified and component cells. Percentages indicate the portion of neurons falling into the 

different categories.

(F) Pattern versus component selectivity for V1, using the same format.

*** = p<0.001.
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Figure 5: Detailed characterization of PSS pattern selectivity.
(A) Illustration of the stimulus set containing plaids generated from component gratings 

with different dOri values (left).

(B) Schematic representation of the streaming stimulus paradigm used to measure responses 

to the larger stimulus set.

(C) 2D contour plot showing responses of a PSS pattern cell as a function of dOri and 

direction (dOri = 0 deg corresponds to 100% contrast gratings). Direction is relative to the 

cell’s preferred grating direction, and indicates the perceived direction of the grating or plaid 

(i.e., the pattern direction). The response profile shows consistent responses to gratings and 
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plaids moving in the preferred direction, independent of dOri, as would be expected for a 

pattern cell. The plot indicates ZP and ZC for the neuron, computed using the entire 2D 

response profile as described in the Methods.

(D) 2D contour plot for a V1 component cell (same format as (C)). The response profile 

shows the regular direction tuning curve for gratings at dOri = 0 deg. For plaids (dOri > 0 

deg), direction tuning curves show two peaks with increasing distance for larger dOri values, 

which correspond to one of the two components moving in the neuron’s preferred direction.

(E) Pattern versus component selectivity for PSS neurons based on the large stimulus set. 

Plot format as in Figure 4E. See Figure S1 for examples of the predicted tuning curves 

underlying the computation of pattern and component selectivity.

(F) Pattern versus component selectivity for V1 neurons for the same stimulus set.

(G) Cumulative distribution of pattern indices for V1 and PSS based on the same data.

(H) Relationship between pattern index and the relative response to plaids versus gratings. 

Only responses to plaids with dOri = 90 deg were considered in this analysis. The response 

ratio compares the maximum response measured for all plaids with dOri = 90 deg to the 

maximum response measured for all 100% contrast gratings. The dotted line represents the 

linear fit for these data.

*** = p<0.001. See also Figure S1.
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Figure 6: Motion representation in PSS can be explained by a multistage motion pathway model.
(A) Diagram of model used to explain PSS plaid responses (see Methods for details). 

Stimuli first passed through LGN spatial filters, which also served to scale responses 

according to contrast. The next stage was composed of 16 V1 motion-energy filters. 

Responses from the V1 stage were integrated in PSS using a combination of an excitatory 

and an inhibitory weight function (P – preferred direction; N – null direction). Finally, an 

output non-linearity was applied to the PSS responses. The model had 6 variables, which are 

listed below the stage to which they belong. All other parameters were fixed.

(B) Top: Responses of 3 example PSS neurons to the large plaid set (format as in Figure 

5C). Bottom: Model fits, chosen to minimize the mean square error for each of the 3 cells. 
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For each cell, r denotes the correlation coefficient between modeled and measured 

responses.

(C) Cumulative distribution of the correlation coefficient between modeled and measured 

PSS responses (solid line) or between modeled and shuffled responses from the same 

neurons (dashed line).

(D, E, G, H) Relationship between different model parameters and the pattern index. 

Correlation coefficients and their significance are indicated for each parameter.

(F) PSS weight function for the component cell (left) and pattern cell (right) shown in (B). 

The weight functions show the shape and relative contribution of the excitatory and 

inhibitory components determined for these cells by the model. Component cells have a 

sharp excitatory weight function with little inhibition, while pattern cells have a broad 

excitatory function combined with strong inhibition. P – preferred direction; N – null 

direction. Note that the amplitude of the excitatory weight function was fixed at 1.

* = p < 0.05; ** = p < 0.01; *** = p<0.001.

Lempel and Nielsen Page 30

Curr Biol. Author manuscript; available in PMC 2020 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lempel and Nielsen Page 31

Table 1:
Number of animals and neurons for each analysis.

Experiment, analysis or metric (Figure and panel) Group Animals Neurons

Direction selectivity index (Figure 1: D) PSS 10 88

Direction selectivity index (Figure 1: D) V1 9 69

Static vs moving stimulus response (Figure 1: F) PSS 5 33

Static vs moving stimulus response (Figure 1: F) V1 5 14

Speed tuning (Figure 2: B-D) PSS 4 27

Static vs null motion response (Figure 2: E) PSS 4 21

Motion opponency (Figure 3: B and C) PSS standard 7 30

Motion opponency (Figure 3: B and C) V1 standard 5 26

Motion opponency (Figure 3: B) PSS constant density 4 14

Motion opponency (Figure 3: B) V1 constant density 3 26

Pattern motion, classic stimulus set (Figure 4: D and E) PSS 8 77

Pattern motion, classic stimulus set (Figure 4: D and F) V1 4 22

Pattern motion, streaming stimulus (Figure 5: E, G and H) PSS 12 65

Pattern motion, streaming stimulus (Figure 5: F and G) V1 7 26

Motion pathway model (Figure 6: C-G) PSS 12 54
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