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Abstract

Neuronal stimulation is an emerging field in modern medicine to control organ function and 

reestablish physiological homeostasis during illness. The nervous system innervates most of the 

peripheral organs and provides a fine tune to control the immune system. Most of these studies 

have focused on vagus nerve stimulation and the physiological, cellular and molecular 

mechanisms regulating the immune system. Here, we review the new results revealing afferent 

vagal signaling pathways, immunomodulatory brain structures, spinal cord-dependent circuits, 

neural and non-neural cholinergic/catecholaminergic signals and their respective receptors 

contributing to neuromodulation of inflammation in rheumatoid arthritis. These new 

neuromodulatory networks and structures will allow the design of innovative bioelectronic or 

pharmacological approaches for safer and low-cost treatment of arthritis and related inflammatory 

disorders.
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Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by deleterious 

inflammation in the joints, hyperplasia of synovial tissues and damage of the joint cartilage 

and bone [1]. RA is the most common type of autoimmune arthritis, affects approximately 

0.5–1% of the population worldwide, causes morbidity and reduces mobility and life 

expectancy [2]. Although its etiology is unknown, RA is a multifactorial process not well 

understood. Both, inflammatory cells and cytokines are found in the synovial fluid and 
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contribute to joint inflammation and tissue damage in arthritis. Currently, there is no cure for 

RA and the most effective treatments are the new biological disease-modifying 

antirheumatic drugs (bDMARDs) that neutralize cytokines (such as TNF, IL-1β and IL-6) or 

their receptors [3–5]. The most common treatments for RA include the use of monoclonal 

antibodies that neutralize TNF as Remicade® (infliximab), a chimeric IgG1κ antibody 

(composed of human constant and murine variable regions), and Humira® (adalimumab), a 

human monoclonal antibody in rheumatoid arthritis. Likewise, Enbrel® (etanercept), a 

fusion recombinant protein of the human eTNF receptor 2 and the Fc end of the IgG1, also 

binds and neutralizes TNF. Biological agents targeting IL-6 (sirukumab, olokizumab and 

clazakizumab), IL-6 receptor (tocilizumab and sarilumab) or IL-1 receptor antagonist 

(IL-1Ra; anakinra) have also provided beneficial effects in RA patients [6–10]. These drugs 

decrease joint inflammation in RA, but they are very expensive and increase the risk of 

opportunistic infections and immunosuppression [11–13].

Recent studies on neuromodulation revealed the potential of the nervous system to control 

organ function and re-establish physiological homeostasis during illness [14–18]. These 

results encouraged investigators to analyze the potential of neuromodulation for treating 

infectious and inflammatory disorders. The autonomic nervous system can be divided into 

the enteric, sympathetic and parasympathetic divisions that control physiological 

homeostasis including the urogenital, cardiovascular and gastrointestinal systems. Likewise, 

the nervous system modulates the immune system to re-establish immune homeostasis after 

infections, trauma and other immunological challenges. Nerve stimulation and bioelectronic 

medicine is an emerging field in modern medicine to control organ function and re-establish 

physiological homeostasis during illness [14]. Vagus nerve, the main nerve connecting the 

brain with the viscera, is a bidirectional nerve with afferent signal toward the brain and 

efferent signals toward the viscera. An initial study showed that efferent vagal projections 

attenuates inflammation in endotoxemic mice [19], while the afferent vagal fibers activate 

the hypothalamic–pituitary–adrenal (HPA) axis [20,21]. These results encouraged many 

investigators to analyze the potential of vagal stimulation in multiple inflammatory disorders 

such as RA [22–27]. Our results concur with other investigators in showing that neuronal 

stimulation attenuates inflammation in RA both in experimental and clinical settings 

[24,28,29]. This article reviews the recent advances in neuroimmune interactions, 

bioelectronic medicine and the potential of neuronal stimulation for treating arthritis.

Vagal regulation of the innate immune system in endotoxemia

Endotoxemia is the standard experimental model used to study the innate immune responses 

to bacterial infection [30,31]. The injection of bacterial endotoxin (Lipopolysaccharide; 

LPS), a cell membrane component of Gram-negative bacteria, activates macrophages to 

produce inflammatory cytokines such as TNF, IL-1β and IL-6 [30,32]. Overzealous TNF 

production can be more dangerous than the original infection, and can cause cardiovascular 

collapse, septic shock and multiple organ failure in severe sepsis [33,34]. The original 

studies in endotoxemic mice indicated that electrical stimulation of the parasympathetic 

vagus nerve inhibits the production of proinflammatory, but not anti-inflammatory (e.g., 

IL-10) cytokines from macrophages [14–16,19,33,35]. Since macrophages M1 and M2 

phenotypes are categorized by the production of proinflammatory (e.g., TNF) and anti-
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inflammatory (e.g., IL-10) cytokines, it has been suggested that vagal signaling can induce 

macrophage switch from M1 to M2 profile [36–38].

The vagus nerve is the crucial neurosensitive conduit with around 80% of sensory afferent 

fibers and represents the most studied example of neuroimmune crosstalk. This mechanism 

can be divided into two different anatomical portions based on vagal pathways. First, the 

afferent sensitive nerve can be activated by inflammatory factors in the periphery and 

transmit the information to the brain [15,39]. The brain processes the information and can 

activate multiple neuronal pathways to control peripheral inflammation, including the HPA 

axis and the sympathetic nervous system [20,21,40,41]. Second, the brain can also activate 

efferent pathways such as the efferent motor vagus nerve that innervate specific organs and 

will contribute to counteract peripheral inflammation [19]. These systems can also interact 

between them, and the vagus nerve (which does not innervate the spleen) can activate the 

sympathetic splenic nerve to release norepinephrine in the spleen (Figure 1A) [42–43]. 

Multiple studies suggest that the preganglionic vagus nerve can activate the post-LPS-

ganglionic splenic nerve through the mesenteric ganglia. Although recent studies argue the 

synaptic connection from vagal preganglionic neurons to splenic postganglionic neurons 

[44,45], most studies concur in the lack of cholinergic innervations in the spleen and the 

joints and synovial capsule [46]. Most studies in sepsis suggest that neurogenic splenic 

norepinephrine activates β2-adrenoceptors of periarteriolar cholinergic lymphocyte sheet 

surrounding splenic nerve [28,42,47–49]. These lymphocytes can produce acetylcholine, 

which inhibits TNF production in the macrophages of the marginal zone [15,50,51]. This 

modulatory signaling depends on α−7 nicotinic acetylcholine receptors (α7nAChRs) 

expressed in macrophages because electrical vagal stimulation attenuates serum TNF levels 

in wild-type but not in α7nAChRs-KO mice [52]. In this neuroimmune pathway, the 

parasympathetic vagus nerve and sympathetic splenic nerve are connected as a sequential 

part of the same pathway. These models of functional organization of the nervous system 

can help to design novel therapeutic strategies co-stimulating different neuronal networks to 

achieve the most effective control of inflammation.

Efferent vagal & cholinergic regulation of inflammation

The potential of efferent vagal signaling to control inflammation in several critical disorders 

including infectious diseases [14,34], ischemia and reperfusion [53–55], postoperative 

trauma [56], hemorrhage, resuscitation [55], pancreatitis [57], endotoxemia [19], septic 

shock and severe sepsis [58,59] was demonstrated in multiple experimental studies. Most of 

these studies show that vagal stimulation inhibits TNF production in macrophages. This 

strategy is similar to using neutralizing anti-TNF antibodies, which were actually first used 

in endotoxemia to prevent septic shock [60]. Unfortunately, anti-TNF antibodies therapies 

failed in clinical trials for sepsis for two main reasons. First, sepsis induces an acute ‘early’ 

production of TNF that peaks within the first 2 h after the infection, and serum TNF levels 

return to a baseline by the time the patients arrive to the hospital. Thus, anti-TNF therapies 

are effective to ‘prevent’ experimental sepsis when the treatment is started before the septic 

challenge, but they provide a very narrow therapeutic time-window in clinical settings. 

Second, sepsis is characterized by the production of multiple inflammatory factors that can 

cause sepsis even in TNF-knockout mice [60–63]. Unlike sepsis, RA is characterized by a 
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chronic production of TNF and neutralizing anti-TNF therapies are currently the most 

effective treatment for arthritis [13].

From a pharmacological perspective, cholinergic agonists such as acetylcholine and nicotine 

inhibit the production of inflammatory cytokines in macrophages via α−7 nicotinic 

acetylcholine receptors (α7nAChRs) [35]. Recent studies indicated that α7nAChRs may 

regulate inflammation through cholinergic mechanisms independent on the vagus nerve, as 

nicotine can also activate neuronal pathways such as the splenic nerve by binding to 

neuronal α7nAChRs on the mesenteric ganglia (Figure 1B) [47]. As ganglionic cell bodies 

express nicotinic receptors, nicotine may act on these neurons to activate the splenic nerve to 

release neurogenic norepinephrine in the spleen inhibit TNF production in splenic 

macrophages [33,47,52]. At the cellular level, α7nAChR-agonists can activate several 

intracellular pathways to control cytokine production in macrophages by inhibiting the NF-

κB and Jak2/Stat3 pathways as well as inducing miRNA124 [58,64–66]. Treatment with 

nicotine inhibits serum TNF and high mobility group box-1 (HMGB1; a late 

proinflammatory cytokine) levels and improves survival in experimental models of 

polymicrobial peritonitis [58]. Actually, cholinergic agonists such as nicotine have been 

previously used in clinical trials to control inflammation in ulcerative colitis [67]. These 

results suggest that specific cholinergic agonists may provide pharmacological advantages 

for treating autoimmune disorders.

Pharmacological translation for arthritis

The most standard experimental model of arthritis is challenging the animals with type II 

collagen, a protein mostly found in cartilages [68]. Collagen induces joint inflammation and 

pathological markers similar to that observed in human arthritis. Given that vagal 

stimulation inhibits TNF production in endotoxemic animals [19], investigators analyzed 

whether cholinergic agonists such as nicotine inhibit TNF production in experimental 

arthritis. Treatment with nicotine can reduce synovial TNF levels, joint swelling, 

inflammatory factors and histopathological score including both hyperplasia and bone 

erosion in collagen-induced arthritis [69–71]. However, the mechanism of these anti-

inflammatory effects remains controversial. These results concur with recent studies 

showing that depletion of α7nAchR worsens inflammation in collagen-induced arthritis 

[72]. Thus, selective α7nAChR-agonists has been considered for treating arthritis due to 

their potential to inhibits TNF production and joint inflammation in arthritic mice 

[70,73,74]. Recent studies suggest that nicotinic agonists modulate macrophages by 

regulating specific subsets of lymphocytes. For example, nicotinic agonists induce T-helper 

cells shift to a Th2 anti-inflammatory phenotype [75]. Nicotine can also inhibit 

inflammation in arthritis by reducing IL-17 production by splenic α7nAChR-expressing 

Th17 cells [76], or preventing macrophage infiltration into the synovial tissues by inhibiting 

the expression of adhesion molecules such as ICAM-1 [77]. Indeed, RA was originally 

considered a Th1-mediated disease due to the high levels of TNF and IFN-γ and the lack of 

Th2-cytokines such as IL-4. However, recent studies show that Th1-cytokines are not the 

main effectors of arthritis autoimmunity, but a new subset T cells producing IL17 in human 

arthritic synovial fluid [78–80]. This lineage of Th17 cells is characterized by the expression 

of transcriptional factor RAR-related orphan receptor gamma-t (RORγ-t) as compared with 
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classical Th1 (Tbet) and Th2 (GATA3) [81–83]. Thus, inhibiting Th1/Th2/Th17 imbalance 

can be a potential strategy for treating arthritis [84,85]. Likewise, α7nAChRs in T-regulatory 

cells can also inhibit cytokine production in macrophages and prevent inflammation in 

arthritis [86]. Thus, α7nAChR-agonists can limit inflammation even in tissues lacking 

parasympathetic innervation such as the skin, skeletal muscle and synovial tissue, by 

regulating non-neuronal cells [46,87–90]. Macrophages and fibroblasts expressing 

functional α7nAChRs were originally identified in the synovial tissue of the arthritic 

patients [74,91,92] (Figure 1C). α7nAChR activation in these cells inhibits the nuclear 

translocation of NF-κB and thereby the production of inflammatory factors such cytokines 

[93].

Despite the beneficial effects of peripheral nicotinic control of inflammation in experimental 

sepsis and arthritis, the potential of nicotine-like drugs is limited by their side effects such as 

toxicity and addiction. Other studies reported that nicotine increases inflammation in 

experimental arthritis. Nicotine can enhance the formation of neutrophil extracellular traps 

by human neutrophils and exacerbate inflammation in murine collagen-induced arthritis by 

inducing autoantigens [94,95]. These results concur with epidemiological studies showing 

that cigarette smoking can contribute to autoimmune diseases such as arthritis [96]. This 

discrepancies about the effects of nicotine in arthritic may be due to its administration: 

pretreatment (before the arthritis induction) with nicotine aggravated adjuvant-induced 

arthritis severity in rats, whereas the nicotine post-treatment decreased inflammation and 

clinical score signs of arthritis [97]. Still, the effects and mechanisms of nicotinic agonists 

on inflammatory diseases such as RA are not totally understood.

Recent studies in murine collagen–induced arthritis depict a local non-neural 

catecholaminergic system modulating pro- and anti-inflammatory cytokines in the initial 

asymptomatic and secondary symptomatic phases of arthritis, respectively [98]. In the 

asymptomatic phase, the sympathetic signaling exacerbates collagen-induced arthritis via 

CD4+CD25+ T cells [99]. Synovial tissues of the patients with chronic RA show a 

significant decline in the density of sympathetic nerve fibers [100], similar to that observed 

in arthritic mice [98]. However, non-neural cells producing catecholamines are found in the 

synovial tissue and they seem to substitute the sympathetic innervations destroyed during the 

arthritis progression. These non-neural cells produce catecholamines to reduce local 

inflammation in the arthritic joints [101]. In the symptomatic phase, catecholamines activate 

B cells to produce IL-10 and attenuate joint inflammation in arthritis (Figure 1D) [102]. 

These basic physiological studies on neuromodulation are allowing the design of innovative 

therapeutic approaches to control inflammation in RA and other inflammatory and infectious 

disorders.

Vagal afferent signal & central processing of inflammation

Most studies show that the vagus nerve stimulation, focused on the efferent vagal signals 

toward the periphery, controls systemic inflammation in experimental sepsis by inhibiting 

splenic TNF production. Although some studies proposed a direct vagal innervation of the 

spleen [103], most studies suggest that the vagus nerve does not innervate the spleen [44]. 

Instead, efferent vagal terminals enter the celiac ganglion to activate the splenic nerve [43]. 
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These apparent contradictions from surgical vagotomy and splenectomy provided different 

results depending on the experimental conditions. For instance, unilateral cervical vagotomy 

increased inflammation in septic and arthritic mice worsening morbidity and mortality 

[70,77,104,105].

Selective surgical neurectomies showed that cervical or subdiaphragmatic vagus nerve exerts 

specific functions transmitting afferent and efferent signals along the anti-inflammatory 

network. As the cervical vagal trunks are critical for both afferent and efferent nerve signals, 

its ablation blocks all signals regardless of their origin and processing [106]. The original 

studies on endotoxemia showed that the spleen has a critical role modulating systemic 

inflammation by linking both the nervous and immune system [14,51]. The spleen also 

contributes to sustain the chronic synovial inflammation in peptidoglycan–polysaccharide-

induced arthritis in rats [107]. These studies showed that surgical splenectomy prevents the 

development of collagen-induced arthritis [107,108], but increased acute joint inflammation 

induced with intra-articular zymosan injection [24,109]. These results show that 

splenectomy per se has different effects on synovial immune response depending on several 

factors, as the inflammatory stimulus, the disease outcome and the immune cells stimulated. 

As RA has different inflammatory patterns along its development, these results may explain 

the debatable effects of splenectomy on clinical arthritis progression [110–112]. 

Furthermore, surgical splenectomy did not prevent the anti-inflammatory effect of vagus 

nerve stimulation in intra-articular zymosan-challenged animals or other models of 

inflammatory diseases [24,109,113], suggesting the existence of other vagal neuroimmune 

pathways.

In addition to the efferent vagal signal, the afferent vagal signals toward the brain can also 

contribute to modulate inflammation. Stimulation of the proximal part of sectioned vagus 

nerve also controls systemic inflammation in endotoxemic animals [47,114,115]. 

Neurophysiological studies showed that vagus nerve stimulation modulates splenic nerve 

activity by an afferent pathway (Figure 1E) [44]. Another example is that electrical 

stimulation of aortic depressor nerve inhibited joint inflammation, cytokine production and 

neutrophil infiltration in experimental arthritis [109]. The aortic depressor nerve is a critical 

component of the afferent vagal system that contributes to the baroreflex system, an 

autonomic neuronal network that maintains cardiovascular homeostasis. Although the vagus 

nerve is the principal nerve of the parasympathetic system, morphological studies show a 

subpopulation of tyrosine hydroxylase positive (sympathetic) fibers at the cervical vagus 

nerve [116,117]. Moreover, the synovial tissue is innervated by adrenergic but not by 

cholinergic nerves [46]. Afferent vagal stimulation activates specific brain sympathetic-

excitatory structures, especially the locus coeruleus (LC) and the paraventricular 

hypothalamic nucleus, and reduces knee joint inflammation in an acute model of RA (Figure 

1F) [24]. Of note, the synaptic connection between vagal afferent signals (toward the NTS) 

and the LC (a brain noradrenergic nucleus) was mandatory for the vagal anti-inflammatory 

effects. This vagus nerve-LC-joint network is completely independent of the spleen and the 

adrenal glands, but is mediated by central and local sympathetic neural networks and 

synovial β-adrenergic receptors [24,109]. Several studies concur with these findings, 

reporting the role of sympathetic nervous system [118,119] and β2-adrenoreceptors [48,120] 

in the neural regulation of immunity. A similar anti-inflammatory effect in mice was also 
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observed after the stimulation of C1 neurons, a neuronal group located in the medulla 

oblongata with reciprocal connections with the LC (Figure 1G) [121]. Vagal stimulation has 

a widespread and stimulatory effect on many specific cortical and subcortical regions of the 

brain [122–126]. Of note, cortical or vagal stimulation activated similar brain structures: in 

addition to the LC and paraventricular hypothalamic nucleus, both stimulatory modalities 

increased the activity of other neural structures involved with autonomic control, as the 

periaqueductal gray matter, raphe, amygdaloid nuclei and piriform cortex [29]. Actually, 

stimulation of the piriform cortex reduces joint inflammation in arthritic rats through a LC-

dependent sympathetic mechanism. These results reveal, for the first time, a brain map 

formed by specific neural structures with potential immunomodulatory properties (Figure 

1H) [29]. These results concur with clinical studies showing that some arthritic patients that 

suffered central neural lesions or cerebrovascular accidents, displayed reduced or even 

absence of arthritis on the affected side [127–130] and clear impairments on the local 

sympathetic activity and vascular permeability [131,132]. However, the neural or humoral 

networks between the brain and joint inflammation remained unknown. Further studies 

indicated that stimulation of primary afferent nociceptors from the inflamed area can 

attenuate the inflammatory process via a brain feedback toward the HPA axis activation 

[133–135]. Curiously, this anti-inflammatory effect was potentiated in animals that 

underwent subdiaphragmatic vagotomy, suggesting that vagal mechanisms are involved in 

central modulation of peripheral inflammation [134,136]. These results reveal that, in 

addition to the efferent vagal pathway, afferent vagal signaling modulates peripheral 

inflammation by activating central neuronal pathways [137,138].

Experimental and clinical studies show that vagal stimulation limits inflammation in RA 

through central vagal-mediated mechanisms controlling joint arthritis inflammation 

[27,139]. These physiological mechanisms appear similar to that of the spleen [43]. The 

vagus nerve can modulate inflammation in the arthritic joints by coordinating with the 

sympathetic adrenergic system. Unlike the spleen, whose neural activity is modulated via a 

vagal efferent subdiaphragmatic connection in the celiac-mesenteric ganglia with the splenic 

nerve, vagal regulation of arthritic joints may be mediated by afferent vagal signals 

activating central pathways and efferent sympathetic adrenergic networks innervating the 

joints [140,141].

From a physiological perspective, these studies on neuromodulation depict new models of 

functional organization of the nervous system to control inflammation [14]. Classically, the 

sympathetic and parasympathetic systems are described as ‘antagonistic’ mechanisms 

opposing one another to balance physiological homeostasis. The sympathetic and 

parasympathetic nervous systems produce antagonistic signals with norepinephrine and 

acetylcholine to balance both heart beat rate and blood pressure. A characteristic example is 

the baroreceptor reflex system [142]. Arterial baroreceptors are stretch receptors stimulated 

by distension of the arterial wall to control blood pressure. If blood pressure falls, 

baroreceptor firing rate decreases, and the central nervous system activates the sympathetic 

system to produce norepinephrine and increase the heart rate and blood pressure. 

Conversely, when blood pressure rises, the baroreceptor reflex activates the parasympathetic 

nervous system to release acetylcholine and decrease the heart rate and blood pressure. The 

recent findings of vagal neuromodulation of inflammation in endotoxemia suggest a 

Kanashiro et al. Page 7

Bioelectron Med (Lond). Author manuscript; available in PMC 2019 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



different level of functional organization through a ‘sequential’ connection between the 

parasympathetic and sympathetic systems to inhibit cytokines production.

Bioelectronic medicine

Bioelectronic medicine is a new medical field that includes electrical engineering, 

neurophysiology and molecular biology designing novel treatments and diagnostics by using 

electronic devices to interface with the body [143]. Electric fields could be used to improve 

the outcome of patients with cancer [144,145]. Bioelectronics medicine has also been 

proposed as an innovative strategy to control inflammation and organ function by targeting 

distinct nerves and brain networks [143,146–149]. In 1997, the US FDA approved the use of 

a pulse generator implanted under the skin below the clavicle to induce electrical vagal 

stimulation for treating refractory epilepsy [150]. These treatments are proved safe without 

major side effects, and similar stimulation procedure was also approved in 2005 by the FDA 

for drug-resistant depression [151].

Growing preclinical and clinical studies evidence the potential of vagal stimulation to reduce 

inflammation in arthritis. An initial preclinical study demonstrated that cervical vagal 

stimulation with implantable electrodes reduced inflammation, articular bone loss and 

clinical score of collagen-induced arthritis in rats [26]. Electrical vagal stimulation with an 

implanted device (Cyberonics®/LivaNova) in epilepsy patients (n = 7) decreased the TNF, 

IL-1β and IL-6 production in whole-blood incubated with lipopolysaccharide (LPS) [27]. 

Also, vagus nerve stimulation for a short period (maximum time: 4 min/day for 84 days) 

inhibited cytokine production and improved the clinical score in 12 of 17 RA patients in two 

cohorts (total n = 17; cohort I: RA patients in the early stage of disease refractory to 

methotrexate treatment; cohort II: RA patients in the late stages of disease refractory to 

biological therapy) [27,147].

Recently, transcutaneous noninvasive vagus nerve stimulation has become available to 

replace permanent device implantation in RA patients by using gammaCore© (a cervical 

vagus nerve stimulator approved for the treatment of various types of primary headaches, 

including migraine and cluster headaches) [152,153] and Nemos® (a device of auricular 

branch vagal stimulation used in drug-resistant patients to decrease the seizure frequency) 

[154]. A preliminary, randomized and blinded pilot trial demonstrated in whole blood 

culture of healthy volunteers (n = 20) that gammaCore decrease the release of 

proinflammatory cytokines and chemokines and increase IL-10 anti-inflammatory cytokine 

as compared with sham stimulation [155]. The bilateral stimulation of cervical vagal nerve 

with gammaCore increase the cardiac vagal tone and reduces TNF blood levels in healthy 

subjects (n =20) [156]. Likewise, transcutaneous auricular vagus nerve stimulation can also 

inhibit blood levels of proinflammatory cytokines in endotoxemic rats [157].

Future perspective

The design of new neuroimmunomodulatory therapies for arthritis will require the study of: 

the physiological neural networks modulating the immune system, especially in the joints, 

the specific neurotransmitters and receptors controlling immune cells and their 
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pharmacological properties, the role of autonomic dysfunction in arthritis and other chronic 

inflammatory disorders, the design of low-cost bioelectronic devices to control inflammation 

and organ function through neuronal stimulation; and potential side-effects of these new 

therapies.

Recent studies indicate that cholinergic regulation of the immune system is not exclusive to 

the vagus nerve. For instance, high concentrations of norepinephrine (1 mM) can activate 

splenic lymphocytes to produce acetylcholine, which inhibits cytokine production in splenic 

macrophages [42,47]. Acetylcholine can also be produced by choline acetyltransferase-

expressing T cells that migrate into the spleen after efferent vagal stimulation (Figure 1I) 

[28]. These results warrant further studies to determine why lymphocytes require such high 

concentrations of norepinephrine to produce acetylcholine, the specific homing of T cells 

into the spleen, and their cellular responses. Furthermore, new studies should analyze the 

role of other organs involved in arthritis, such as the lymph nodes, which modulate the 

immune response in RA and that are innervated by sympathetic fibers and regulated by β-

adrenergic signaling [158].

The stimulation of specific cholinergic pathways by pharmacological agents such as acetyl-

cholinesterase inhibitors and β2 adrenergic agonists can be considered as potential strategies 

to control inflammation in arthritis [159–162]. Recent studies showed that activation of 

central muscarinic M1 or peripheral M3 receptors reduced inflammation in endotoxemia and 

delayed the progression of collagen-induced arthritis, respectively [163,164]. It is also 

known that vagal stimulation releases other neurotransmitters such as the neuropeptide 

vasoactive intestinal peptide (VIP). VIP has immunomodulatory effects on collagen-induced 

arthritis and therefore VIP could be used for treating arthritis [165]. The spinal cord is 

considered the key intermediate between the brain and peripheral sympathetic networks 

[18,24,166,167]. Therefore, pharmacological or electrical (bioelectronics) strategies 

modulating the spinal cord excitability could represent therapeutic approaches for treating 

arthritis. Examples of drugs that modulate spinal neuronal activity and inhibit inflammation 

in arthritis are GABAb receptor antagonists and cytokine-neutralizing agents, such as p38 

MAPK inhibitors and anti-TNF molecules [168].

Heart rate variability (HRV) is a functional measure of the autonomic balance. Multiple 

studies suggest that HRV correlates with inflammation and may reflect autonomic 

dysfunction contributing to inflammatory disorders [169]. However, this view is still 

controversial because parasympathetic and sympathetic signaling are essentially organ-

specific [104]. In addition, autonomic dysfunction is a common signal in inflammatory 

diseases, suggesting that the disruption of the parasympathetic/sympathetic balance is not 

specific to a neural system. Lower HRV may correlate to the higher incidence of sudden 

death in the arthritis patients [170]. Indeed, several studies correlated decreased vagal or 

increased sympathetic tonus with a worse outcome in RA [169,171]. For example, it has 

been shown an association between reduced vagal tonus and elevated blood levels of 

HMGB-1, a proinflammatory cytokine, contributing to arthritis [171]. In fact, high HMGB-1 

levels were associated with low α7nAChR expression by peripheral circulating monocytes 

in the arthritic patients, suggesting a cholinergic signaling deficiency [172]. In summary, 

HRV is a biological signal with promising application to predict arthritis outcome, and to 
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investigate the efficacy of pharmacological treatments, as anti-TNF therapies [173], although 

its mechanisms need further study.

From a bioelectronic perspective, the stimulation of other nerves (e.g., splanchnic nerve) 

with noninvasive approaches (e.g., pulsed ultrasound) may also provide therapeutic 

advantages to control inflammation without the side effects observed with conventional 

invasive methods [119,137,148,174]. Electroacupuncture is another alternative medical 

treatment with promising use in RA. Stimulation of the sciatic nerve with 

electroacupuncture controls systemic inflammation in endotoxemic mice through a vagal-

adrenal dependent pathway and dopaminergic modulation of the immune cells [175]. This 

novel neuroimmune pathway could shed light on the mechanisms of electroacupuncture to 

alleviate arthritis [176–179]. Moreover, from a pharmacological perspective dopaminergic 

agonists could be used to control inflammation in arthritis due to their ability to inhibit Th17 

cytokines [180].

In addition to the promising results on vagal control of joint inflammation, the potential side 

effects of vagal stimulation in RA are not known. The current use of vagal stimulation for 

the treatment of refractory epilepsy appears to induce minor side effects related to cervical 

surgical implantation, as such local infections, vocal cord paralysis and electrode rejection 

[181,182]. These clinical studies indicate that vagal stimulation does not produce 

immunosuppression as found with the biological drugs used in the treatment of arthritis. The 

patients under antirheumatic drug therapy appear to have more severe side effects mainly 

immunosuppression [11,12]. On the other hand, it has been proposed that neurological 

disorders can affect peripheral inflammation. For instance, neurological damages increase 

the susceptibility to infections triggering chronic autonomic output signals [183–185]. A 

recent study showed that occlusion of one middle cerebral artery (a classic model of stroke) 

prevents the progression of arthritis [186]. These studies suggest that vagal stimulation may 

also re-establish neurological function contributing to potential inflammatory disorders.

Conclusion

Despite its recent identification, a large number of studies show the potential of the vagus 

nerve to control the immune system and attenuate inflammation in both infectious and 

inflammatory disorders. A growing number of studies show the beneficial effects of cervical 

vagal stimulation to control experimental and clinical arthritis, even in patients refractory to 

current antirheumatic treatments. The local (joints) and/or systemic (spleen) targets of 

distinct (afferent/efferent) vagal signals may be more complex than anticipate and they need 

to be described in detail. Moreover, while the sympathetic and parasympathetic nervous 

systems have been described as opposing functional systems, multilevel interactions 

between both systems may be responsible for the control/exacerbation of inflammation in 

arthritis and must be clarified in the future. It is also possible that in the experimental models 

of arthritis, time and/or intensity of vagal stimulation influence diverse neuroimmune 

pathways in isolated or integrative (when more than one pathways are activated 

simultaneously) mechanisms. A recent study shows a central neural arc that includes vagal 

afferents-LC-sympathetic innervations in the regulation of joint inflammation. In addition, 

this novel neuronal network involving cortical-LC-sympathetic signaling could be 
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stimulated by noninvasive methods such as electrical and magnetic transcranial techniques. 

Finally, the presence of catecholaminergic and cholinergic non-neural systems in the 

synovial tissue can provide new therapeutic targets for designing innovative treatments for 

arthritis.
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Figure 1. Description of neuroimmune circuits with potential therapeutic use in the treatment of 
arthritis.
An efferent vagus nerve can inhibit inflammation through the activation of splenic nerve (A) 
by a neuroimmune pathway constituted by alpha-7 nicotinic acetylcholine receptor 

(α7nAChR)-expressing mesenteric ganglia (B) and splenic acetylcholine-producing T 

lymphocytes. Afferent vagal signaling, sympathetic C1 neurons (G) and cortical stimulation 

(H) can prevent local joint inflammation by a mechanism dependent on activation of LC (F) 
followed by stimulation of splanchnic nerve (E) or synovial sympathetic innervations (C & 
D). An articular non-neural cholinergic system improves local inflammation by a 

mechanism dependent on a7nAchR expressed in macrophage/fibroblast (C) while a neural 

adrenergic system inhibits local inflammation by direct (β-adrenoceptors) or indirect (IL-10-

producing B lymphocytes) mechanisms (D). A recent hypothesis suggests that non-neural 

acetylcholine can be produced by peripheral T-cells that migrate to organs (e.g., spleen) after 

vagal stimulation (I). LC: Locus coeruleus.
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