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Abstract

Introduction: Despite decades of focused research efforts, cancer remains a significant cause of 

morbidity and mortality. Tumor necrosis factor(TNF)-related apoptosis-inducing ligand (TRAIL) 

is capable of inducing cell death selectively in cancer cells while sparing normal cells.

Areas covered: In this review, the authors cover TRA therapy and strategies that have been 

undertaken to improve their efficacy, as well as unconventional approaches to TRAIL pathway 

activation including TRAIL-inducing small molecules. They also discuss mechanisms of 

resistance to TRAIL and the use of combination strategies to overcome it.

Expert commentary: Targeting the TRAIL pathway has been of interest in oncology, and 

although initial clinical trials of TRAIL receptor agonists (TRAs) showed limitations, novel 

approaches represent the future of TRAIL-based therapy.
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1. Introduction

Apoptosis, activated under pathological and physiological conditions, results in the 

programmed destruction of a cell. The hallmarks of apoptosis include cell shrinkage, nuclear 

DNA fragmentation, and membrane blebbing [1]. Apoptosis can be triggered following the 

activation of the cell-intrinsic pathway or the cell extrinsic pathway. Activation of the 

intrinsic, or mitochondrial, pathway is regulated by the B-cell lymphoma-2 (Bcl-2) family of 

proteins. The Bcl-2 family includes pro-apoptotic proteins and anti-apoptotic proteins, all of 

which function to control the permeability of the mitochondrial outer membrane [2]. 
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Cellular stresses such as DNA damage activate pro-apoptotic and inhibit anti-apoptotic 

Bcl-2 family proteins in a p53-dependent manner. This results in mitochondrial outer 

membrane permeabilization (MOMP) and release of cytochrome c. Cytochrome c associates 

with Apaf-1 and activator caspase-9, forming the apoptosome [3]. Caspase-9, as a part of the 

apoptosome, can cleave and activate effector caspase-3 [4], which goes on to cleave 

downstream targets and induce cell death.

The extrinsic pathway is activated following binding of pro-apoptotic stimuli such as tumor 

necrosis factor(TNF)-related apoptosis-inducing ligand (TRAIL) to cell surface receptors. 

TRAIL/Apo2L was discovered as an inducer of apoptosis [5, 6] that, unlike other TNF 

superfamily members, selectively targets cancer cells while leaving normal cells unharmed 

[7]. TRAIL binds to cell surface receptors DR4 (TRAIL-R1) [8] and DR5 (TRAIL-R2) [9] 

as a homotrimer [10]. DR4 and DR5 have functional intracellular carboxyl terminal death 

domains (DDs), and ligand binding leads to receptor oligomerization and recruitment of 

adaptor protein Fas-associated death domain (FADD). Alternative TRAIL receptors TRAIL-

R3, TRAIL-R4, and the soluble osteoprotegerin (OPG) lack a viable DD [11–13]. TRAIL-

R3 and TRAIL-R4 may function to act as decoy receptors and inhibit TRAIL-induced 

apoptosis [14]. Through its death effector domain (DED), FADD recruits pro-caspase-8 and 

pro-caspase-10 [15, 16]. Proper formation of this death inducing signaling complex (DISC) 

is required for apoptosis induction. Once recruited to the DISC, pro-caspase-8 and −10 are 

cleaved and activated [17]. In type I cells, caspase-8 cleavage is sufficient to induce cleavage 

of caspase-3 and cell death. In type II cells, an extra step is required: caspase-8 mediated 

BH3-interacting-domain death agonist (BID) cleavage activates the intrinsic apoptosis 

pathway [18]. The cleaved form of Bcl-2 family protein BID, tBID, enables mitochondrial 

outer membrane permeabilization (MOMP) and cytochrome c release [19, 20]. Release of 

mitochondrial cytochrome c is necessary for formation of the apoptosome and ultimately 

caspase-3 cleavage and the induction of cell death in type II cells.

TRAIL is expressed on the surface of activated NK cells [21] and can bind to death receptors 

expressed on tumor cells, triggering their apoptosis [22, 23]. TRAIL-deficient mice are more 

susceptible to tumor initiation and metastasis following carcinogen exposure, in a partially 

NK-cell-dependent manner [24]. Similarly, TRAIL-deficient mice show increased 

susceptibility to the growth of primary tumors and their spontaneous liver metastasis 

following inoculation of syngeneic breast cancer cells [25]. In addition to triggering 

apoptosis, death receptor engagement can activate pro-inflammatory transcription factor NF-

KB [26–28] and induce TRAIL-resistant cancer cells to proliferate [29] and secrete tumor 

promoting cytokines [30, 31].The mechanism by which TRAIL activates NF-KB involves 

nuclear translocation following phosphorylation and degradation of inhibitor of KB (IKB) 

proteins [32].

The identification of TRAIL as an extrinsic apoptosis pathway ligand with such a strong 

selectivity for cancer cells over normal cells [7] sparked an interest in developing TRAIL 

receptor agonists (TRAs) as anti-cancer therapeutics.
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2. TRAIL-R agonists

2.1: Soluble recombinant human TRAIL

Two subtypes of TRAs have been developed for use in the clinic: recombinant forms of the 

TRAIL protein and DR4/5 agonistic antibodies. The initial efficacy of recombinant human 

TRAIL against cancer cells was shown in the early 1990’s [10]. Early forms of recombinant 

TRAIL contained poly-histidine or FLAG epitope tags [5, 6] used to aid in the protein 

purification process. These forms of TRAIL showed toxicity against primary hepatocytes in 
vitro [33], which prompted concern about potential in vivo hepatotoxicity until it was 

determined that untagged versions of the molecule did not have the same effect [34]. 

Recombinant TRAIL was clinically developed as rhApo2L.0/dulanermin. Preclinically, 

dulanermin binds to both DR4 and DR5 to induce cell death in cancer cells but not normal 

cells [10]. While safe and well tolerated in patients [35], the protein was also 

disappointingly inactive when tested in the setting of a randomized phase II trial [36]. The 

protein’s extremely short half-life [37] has been blamed for these discouraging results. The 

second class of TRAs is made up of monoclonal death receptor binding antibodies. These 

antibodies boasted a half-life on the order of days, much longer than that of dulanermin, the 

plasma concentration of which halves in under an hour after injection.

2.2: TRAIL receptor agonistic antibodies

Death receptor agonistic antibodies that have been tested clinically include one DR4 

agonistic antibody (mapatumumab), and five DR5 agonistic antibodies (drozitumumab, 

conatumumab, lexatumumab, tigatuzumab, LBY-135). A recent study compared the efficacy 

of anti-DR5 antibody tigatuzumab plus nanoparticle albumin-bound paclitaxel or 

nanoparticle albumin-bound paclitaxel alone in patients with triple negative breast cancer. 

Prolonged survival of several patients treated with the combination support further study of 

these agents [38]. While TRA antibodies including tigatuzumab have been generally well 

tolerated, they have not yet advanced into phase III.

3. Strategies for improving the efficacy of TRAIL-R agonists

3.1: Increasing the stability and trimerization ability of TRAIL

Despite the unsatisfactory performance of early TRAs in the clinic, scientists and clinicians 

are not ready to give up on targeting the TRAIL pathway. Cell death induction by TRAIL 

requires ligand trimerization prior to death receptor binding. Tagged formats of recombinant 

human TRAIL with trimerization domains were initially abandoned for development after 

the discovery that his-TRAIL and FLAG-TRAIL exhibited toxicity against primary 

hepatocytes [33]. TRAIL with an attached leucine zipper motif (LZ-TRAIL) [7], an attached 

isoleucine zipper motif (iz-TRAIL) [39], and an attached tenascin-C oligomerization domain 

(TNC-TRAIL) [40] effectively trimerize and are non-toxic to hepatocytes [39]. These forms 

of TRAIL have been shown to be more potent and have longer half-lives than rhApo2L.0/

dulanermin, the untagged version of TRAIL used in clinical trials. Permutation of the 

TRAIL amino acid sequence has been undertaken to improve pharmacokinetic properties 

and increase potency of killing. The single chain TRAIL trimer (scTRAIL) protein is 

expressed as three linker-connected TRAIL extracellular domains [41], eliminating the need 
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for trimerization in vivo. Recombinant mutant human TRAIL (rmhTRAIL), also known as 

circularly permutated TRAIL (CPT) contains a flexible linker connecting the N terminus of 

amino acids 121–135 to the C terminus of amino acids 135–281 [42]. Both novel TRAIL 

forms show increased potency above the wildtype protein [41, 42]. CPT has been tested in a 

phase II study of patients with relapsed and refractory multiple myeloma in combination 

with thalidomide. The protein was shown to be well-tolerated and have an overall response 

rate (ORR) of 22% [43]. An alternative approach to improve the efficacy of TRAIL by 

increasing its stability has involved the covalent linkage of TRAIL to polyethylene glycol 

(PEGylated TRAIL) [44].

3.2: Directly targeting TRAIL to cancer cells

In addition to making alterations to the TRAIL protein itself, researchers have devised 

creative delivery strategies to effectively target TRAIL to cancer cells. Anticancer 

therapeutics can be coupled with components such as lipids or polymers to form 

nanoparticles. Nanoparticle delivery to tumor tissue relies on a phenomenon called the 

enhanced permeability and retention (EPR) effect. Solid tumors possess abnormal blood and 

lymphatic vessels with increased permeability compared to those found in healthy tissues, 

and as a result, macromolecules will leak out of vessels and collect within the tumor [45]. A 

variety of TRAIL-containing nanoparticles are under development. Some groups have 

attached and immobilized TRAIL onto the surface of the nanoparticle and other have 

encapsulated TRAIL within. TRAIL-containing nanoparticles have been reviewed in greater 

detail by de Miguel et. al [46]. Fusion proteins combining the antigen specific single-chain 

variable-region (scFv) of an antibody with the TRAIL protein represent an alternative 

strategy for targeting TRAIL to cancer cells. scFv regions targeting a variety of antigens 

expressed on cancer cells and immune cells have been developed. TRAIL-scFv fusion 

proteins have been reviewed in greater detail by de Bruyn et. al [47].

4. Alternative approaches to TRAIL pathway activation

4.1: TRAIL-inducing (imipridone) compounds

A novel approach for targeting the TRAIL pathway involves small molecules and peptide 

TRAIL pathway activators. ONC201, an anti-cancer compound belonging to the novel 

imipridones class, was originally identified in a luciferase reporter screen as a p53-

independent transcriptional inducer of the TRAIL gene [48]. ONC201 was selected as the 

lead candidate from the screen following its success in preclinical studies, where it exhibited 

a favorable safety profile and showed anti-tumor effects in vivo with a single dose [49]. The 

mechanism by which ONC201 induces transcription of the TRAIL gene involves 

inactivation of pro-survival kinases Akt and ERK, leading to decreased phosphorylation of 

transcription factor FOXO3a. Dephosphorylated FOXO3a is activated and translocates to the 

nucleus to activate its target gene TRAIL [49]. More recently, it was determined that 

ONC201 also induces cell death through activation of a PERK-independent ISR [50, 51]. 

The compound also exerts TRAIL dependent [52] anti-cancer stem cell activity [52, 53]. 

ONC201 has shown efficacy in against a variety of tumor types preclinically including 

breast cancer [54], glioblastoma [55], pancreatic cancer, and prostate cancer. The compound 

has also been shown the recruit NK cells to tumors [56]. The compound has completed its 
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first-in-human clinical trial in advanced solid tumors [57] and is currently being tested in 

multiple phase II trials. Analogs of ONC201 able to upregulate TRAIL with increased 

potency have been synthesized [58] and will hopefully enter the clinic soon.

4.2: TRAIL-R activating atrimers, TRAIL-R activating small molecules

Other unconventional approaches to activating the TRAIL pathway have included small 

DR5 binding peptides [59], DR5 activating small molecules that induce receptor clustering 

and aggregation [60], and trivalent DR4 atrimer complexes [61].

5. TRAIL resistance and the use of combination therapy to overcome it

5.1: TRAIL resistance is common in tumor cells

While the use of TRAs with increased potency and ability to target to cancer cells is a valid 

approach, it does not address the problem of TRAIL resistance. Resistance mechanisms have 

been identified at multiple points in the TRAIL pathway, from cell surface ligand binding to 

intracellular caspase cleavage. The pathway became of interest as a therapeutic target due to 

its ability to induce cell death in cancer cell while sparing normal cells [7]. Different 

mechanisms of resistance to TRAIL have been identified in normal cells, including post-

translational modification of caspase-8 [62], high levels of c-FLIP [63, 64] and cell surface 

decoy receptors [64].

5.2: Resistance at the level of the death receptors

In cancer cells, low surface expression of TRAIL receptors DR4 and DR5 correlates with 

decreased sensitivity to TRAIL. Specific genetic and epigenetic changes responsible for 

decreased DR4 and DR5 expression have been identified and include promoter 

hypermethylation [65, 66], loss-of-function mutations [67, 68], gene deletion [69]. Impaired 

death receptor transport to [70] and constitutive receptor endocytosis from the cell surface 

[71] also modulate cell surface expression and thus TRAIL sensitivity. Therapies that induce 

DNA damage and activate p53, such as chemotherapy and radiation, can upregulate DR4 

[72] and DR5 [73] and have been tested in combination with TRAIL. Strategies to overcome 

TRAIL resistance associated with low cell surface death receptor levels have also included 

combinations with histone deacetylase (HDAC) inhibitors [74, 75], proteasome inhibitors 

[76], and ER stress inducer tunicamycin [77]. Interestingly, post-translational modifications 

of death receptors can also modulate TRAIL sensitivity. O-glycosylation of DR4 and DR5 

enhances ligand-mediated receptor clustering, DISC formation, and caspase activation. 

Genes encoding o-glycosylating enzymes are overexpressed in TRAIL-sensitive cells, and 

their inhibition causes resistance [78].

5.3: Resistance at the level of the caspase-8 and c-FLIP

Resistance can also occur at the level of caspase-8. Deletion and hypermethlyation of the 

caspase-8 gene has been observed in childhood neuroblastomas [79] and small cell lung 

carcinomas [66]. An endogenous mediator of TRAIL resistance is cellular flice inhibitory 

protein (c-FLIP). Like caspase-8, FLIP contains a death-effector domain (DED) that allows 

it to bind to FADD. Unlike caspase-8, c-FLIP lacks the protease activity that is required for 

proper cleavage of effector caspases and thus apoptosis induction [80]. The short splice 
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variant of c-FLIP, c-FLIPs, prevents caspase-8 cleavage at the DISC [81]. High c-FLIP 

expression is associated with resistance to TRAIL in cancer cells, as reviewed by Newsom-

Davis [82]. Interestingly, c-myc has been shown to modulate TRAIL sensitivity through 

negative regulation of c-FLIP transcription [83]. Reduction of c-FLIP expression by a 

variety of compounds, including HDAC inhibitor LBH589 [84] and multiple PPARγ ligands 

[85], sensitizes to TRAIL-mediated apoptosis.

5.4: Resistance mediated by B-cell lymphoma-2 (Bcl-2) family proteins

Pro-apoptotic Bcl-2 family protein Bid is highly relevant to TRAIL-induced apoptosis, as 

discussed previously. In type II cells, caspase-8 mediated Bid cleavage and activation is 

required for induction of the intrinsic apoptosis pathway and cell death [18]. Type II cancer 

cells can develop resistance to TRAIL following overexpression of anti-apoptotic Bcl-2 

family proteins Mcl-1 [86] and Bcl-2 [87] or loss of pro-apoptotic Bcl-2 family protein Bax 

[88]. BH3-mimetics designed to antagonize anti-apoptotic proteins are being tested 

clinically and can sensitize cancer cells to TRAIL [89, 90].

5.5: Resistance mediated by Inhibitor of apoptosis (IAP) family proteins

A class of caspase inhibitors known as the inhibitor of apoptosis (IAP) family proteins can 

also regulate TRAIL-mediated cell death. IAP proteins such as XIAP contain baculovirus 

IAP repeat domains, essential for direct binding to and inhibition of caspases 3,7, and 9 [91]. 

Smac/DIABLO, an endogenous XIAP inhibitor, is released following MOMP, binds to 

XIAP, and inhibits its function [92, 93]. Small molecule Smac mimetics with the capability 

to antagonize IAPs are being tested in the clinic. These compounds sensitize cancer cells to 

TRAIL-mediated apoptosis in preclinical models [94, 95]. Other IAP proteins, including 

cellular-IAP1 (c-IAP1) and cellular-IAP2 (c-IAP2) are able to ubiquitinate protein targets, 

including caspase-3 and caspase-7, and target them for degradation [96] through an E3-

ligase Really Interesting New Gene (RING) domain [97]. Interestingly, multikinase inhibitor 

sorafenib has been shown to sensitize resistant cells to TRAIL through downregulation of 

Mcl-1, c-IAP2, and c-FLIP [98, 99] through inhibition of the JAK/STAT3 signaling pathway 

[100].

5.6: Resistance mediated by PI3K-Akt signaling

Phosphatidylinositol 3-phosphate kinase (PI3K) is a well-studied regulator of cellular 

proliferation, growth, and survival. Paradoxically, treatment with TRAIL can activate this 

prosurvival pathway [101]. Binding of growth factors to cell surface PI3K receptors leads to 

the generation of second messenger phosphotidylinositol-3,4,5-triphosphate (PIP3). PIP3 

binds to kinase Akt, which regulates many downstream targets such as mammalian target of 

rapamycin (mTOR) complex 1 and 2 through phosphorylation. Activating mutations of 

PIK3CA, the gene that encodes the p110alpha catalytic subunit of PI3K, may confer 

resistance to TRAIL [102]. Similary, loss of expression of PI3K negative regulator PTEN or 

overexpression of its downstream target Akt lead to decreased TRAIL sensitivity [103]. 

Combination of TRAIL with PI3K [104], Akt [105], and mTORC1 inhibitors [106] 

enhances apoptosis.
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6. Conclusion

Interest in the TRAIL pathway developed following the observation that TRAIL could 

induce cell death in transformed cells but showed no toxicity towards normal cells [7]. 

TRAIL receptor agonists have been developed for use in the clinic and include recombinant 

human soluble TRAIL and death receptor agonistic antibodies. Unfortunately, these 

approaches have yet to show efficacy in a clinical trial. Multiple strategies have been used to 

improve the efficacy of these agonists. Forms of TRAIL with increased stability have been 

developed, and multiple systems for improved TRAIL delivery have been identified. A novel 

approach for TRAIL pathway activation involves small molecule and peptide TRAIL 

pathway activators. ONC201, originally called TRAIL inducing compound 10 (TIC10) is 

one such small molecule that is currently being tested in clinical trials. TRAIL resistance in 

cancer cells is a significant problem, and combination therapies with existing drugs have 

been explored as a method for combating it. In conclusion, although early TRA therapies 

showed limited clinical efficacy, novel and innovative approaches have potential and merit 

further clinical testing.

7. Expert Commentary

The TRAIL pathway holds enormous potential among the therapeutic strategies currently 

employed to treat cancer. The field has evolved significantly since the 1980’s when 

significant toxicities with TNF were being observed in clinical trials. There have been 

hurdles in the development of TRAIL as a therapeutic and the field has shifted towards 

TRAIL receptor agonists or other TRAIL pathway activating small molecules. Activation of 

the TRAIL pathway which is part of the innate immune system for cancer and metastasis 

suppression offers hope and a bright future given that tumors with various oncogenic drivers 

can be targeted. Unlike TNF, the TRAIL ligand as well as TRAIL receptor agonists have 

generally proven to not be limited by toxicity in the clinic. There was some concern early on 

that hepatic expression of DR5 might result in more toxicity from therapeutic targeting of 

TRAIL-R2 versus TRAIL-R1 in the clinic. However, this did not materialize in the clinical 

trials. Of course, neither ant-DR5 or anti-DR4 alone is equivalent to TRAIL and it is 

complicated to combine 2 unapproved therapeutics in early phase trials. Thus, the answers 

are unfortunately not there at present to address the issue of whether targeting TRAIL-R1 

(DR4) or TRAIL-R2 (DR5) or both in the path forward in the clinic.

The TRAIL pathway is active in cancer suppression despite p53 tumor suppressor gene 

mutations or common oncogene mutations such as KRAS, BRAF, EGFR, among others. 

While there are numerous TRAIL pathway resistance mechanisms in cancer including 

TRAIL decoys, TRAIL receptor glycosylation and translocation to the cell membrane, 

NFkB, Bcl-XL, Mcl-1, the IAP family, Akt, FLIP, mutation or loss of caspase 8 expression, 

there are also promising combinatorial therapeutics that can address resistance. There are 

effects of TRAIL on the tumor microenvironment that need to be further examined in treated 

human tumors in the clinic with regard to a potential immune suppressive milieu. The 

development of predictive biomarkers for specific TRAIL pathway therapeutics or 

combinations would help advance the field and translation to the clinic. Unfortunately, no 

reliable predictive biomarkers have emerged in the clinical trials to help with our 
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understanding of response or resistance of specific patients to TRIAL receptor targeted 

therapeutics, despite available preclinical data. This includes M3, glycosylated receptors, 

TRAIL-R expression, or a variety of intracellular biomarkers. There is opportunity for a 

more integrated genomic and proteomic approach to address this unmet need in the future.

It remains to be seen in the clinic what resistance mechanisms ultimately will prove to be 

insurmountable by TRAIL pathway-directed monotherapy and which mechanisms may be 

overcome by combination therapy including immunotherapy. The major limitation to 

combination therapeutics revolves around which TRAIL receptor or TRAIL pathway 

targeting therapeutic will ultimately serve as the anchor for a combination regimen. It 

remains for future development to establish specific therapy combinations targeting specific 

tumor types. Certainly, the combination of a TRAIL-R2 agonist antibody plus docetaxel for 

triple negative breast cancer holds promise. The combination of TRAIL or TRAIL receptor 

agonistic targeting plus sorafenib has much support mostly from preclinical data. While anti-

DR4 plus sorafenib was disappointing in hepatocellular cancer, the reason for failure has 

remained unclear, and it is possible that with better patient selection such a combination 

could be more effective. A number of other combinations are emerging from preclinical 

studies, e.g. with ONC201 such as combination with anti-VEGF targeting, anti-PD-1 

targeting, sorafenib, or everolimus, among others. Clinical trials with specific combinations 

in specific indications will ultimately direct the most promising agent combinations towards 

further development. The TRAIL pathway remains a powerful host mechanism for cancer 

suppression and one that has not yet been adequately exploited for patient benefit in 

oncology.

8. Five-year view

There are currently no FDA-approved agents specifically targeting activation of the TRAIL 

pathway. The TRAIL pathway is a powerful innate immune tumor suppressive mechanism 

that has yet to be harnessed in cancer therapy. The availability of TRAIL receptor agonist 

antibodies or TRAIL pathway stimulating/activating small molecules such as ONC201 in 

multiple clinical trials points towards the future. It is expected that while the agents have 

single agent anti-tumor effects, the combinations for specific tumor types is likely the path 

forward. Moreover, in the era of precision medicine and careful patient selection, there is 

expectation that the patients most likely to respond would be the ones who are selected for 

specific therapy combinations. In the case of ONC201, preliminary indications for H3K27M 

mutated gliomas such as DIPG, with altered dopamine receptor DRD2 expression appear 

promising. How the dopamine receptor expression plays out in predicting efficacy of 

ONC201 or analogues for other tumor types is expected to be unraveled from ongoing or yet 

to be initiated clinical trials.
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Key issues

• Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is 

capable of inducing cell death selectively in cancer cells while sparing normal 

cells. Targeting the TRAIL pathway has been of interest in oncology since the 

1990’s.

• Limited clinical efficacy has been observed in trials of recombinant human 

TRAIL (rhTRAIL) or death receptor agonistic antibodies.

• Novel approaches for targeting the TRAIL pathway involve directly 

upregulating TRAIL and its receptors or using combination therapies to target 

resistance mechanisms.
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Figure 1: Signaling pathways linking the TRAIL ligand to apoptosis.
TRAIL binds to its cell surface receptors DR4 and DR5 as a trimer. Receptor clustering and 

recruitment of FADD to intracellular the death domains starts formation of the DISC. 

Association of pro-caspase-8 finalizes DISC formation. Caspase-8 is cleaved to its active 

form. In type I cells, caspase-8 cleavage will directly cleave effector caspases 3, 6, and 7, 

triggering apoptosis. In type II cells, a secondary signal through the mitochondria is 

required. Caspase-8 will cleave Bcl-2 family protein Bid to its truncated form, tBid. This 

enables permeabilization of the mitochondrial outer membrane and release of cytochrome c 

into the cytosol. Pro-caspase-9 will be activated and go on to cleave effector caspases 3,6, 

and 7, leading to the induction of apoptosis.
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Table 1:

Summary of the therapeutic approaches used to target the TRAIL pathway.

Therapeutic Approach Stage in
Development

TRAIL-receptor agonists

       his-TRAIL/FLAG TRAIL preclinical

       rhApo2L.0/dulanermin discontinued

DR4 agonistic monoclonal antibodies

       mapatumumab Phase II

DR5 agonistic monoclonal antibodies

       drozitumab discontinued

       conatumumab Phase II

       lexatumumab discontinued

       tigatumumab Phase II

       LBY-135 discontinued

Strategies for improving the
efficacy of TRAIL-receptor agonists

       LZ-TRAIL preclinical

       iz-TRAIL preclinical

       TNC-TRAIL preclinical

       scTRAIL preclinical

       CPT discontinued

       PEGylated TRAIL preclinical

       TRAIL containing nanoparticles preclinical

       TRAIL/scFv fusion proteins preclinical

       TRAIL expressing mesenchymal stem cells Phase I/II

TRAIL pathway activation

       TRAIL-inducing (imipridone) compounds Phase I/II

       TRAIL-R activating atrimers preclinical

       TRAIL-R activating small molecules/peptides preclinical
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