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Abstract

Birdsong is a complex vocal communication signal, and like humans, birds need to discrimi-

nate between similar sequences of sound with different meanings. The caudal mesopallium

(CM) is a cortical-level auditory area implicated in song discrimination. CM neurons respond

sparsely to conspecific song and are tolerant of production variability. Intracellular record-

ings in CM have identified a diversity of intrinsic membrane dynamics, which could contrib-

ute to the emergence of these higher-order functional properties. We investigated this

hypothesis using a novel linear-dynamical cascade model that incorporated detailed bio-

physical dynamics to simulate auditory responses to birdsong. Neuron models that included

a low-threshold potassium current present in a subset of CM neurons showed increased

selectivity and coding efficiency relative to models without this current. These results dem-

onstrate the impact of intrinsic dynamics on sensory coding and the importance of including

the biophysical characteristics of neural populations in simulation studies.

Author summary

Maintaining a stable mental representation of an object is an important task for sensory

systems, requiring both recognizing the features required for identification and ignoring

incidental changes in its presentation. The prevailing explanation for these processes

emphasizes precise sets of connections between neurons that capture only the essential

features of an object. However, the intrinsic dynamics of the neurons themselves, which

determine how these inputs are transformed into spiking outputs, may also contribute to

the neural computations underlying object recognition. To understand how intrinsic

dynamics contribute to sensory coding, we constructed a computational model capable of

simulating a neural response to an auditory stimulus using a detailed description of differ-

ent intrinsic dynamics in a higher-order avian auditory area. The results of our simulation

showed that intrinsic dynamics can have a profound effect on processes underlying object

recognition. These findings challenge the view that patterns of connectivity alone account

for the emergence of stable object representations and encourage greater consideration of

the functional implications of the diversity of neurons in the brain.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006723 January 28, 2019 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Bjoring MC, Meliza CD (2019) A low-

threshold potassium current enhances sparseness

and reliability in a model of avian auditory cortex.

PLoS Comput Biol 15(1): e1006723. https://doi.

org/10.1371/journal.pcbi.1006723

Editor: Arthur Leblois, Centre National de la

Recherche Scientifique, FRANCE

Received: August 15, 2018

Accepted: December 17, 2018

Published: January 28, 2019

Copyright: © 2019 Bjoring, Meliza. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All stimuli and data

files have been deposited in Data Dryad (doi:10.

5061/dryad.js11601) and are publically available.

Funding: This work received funding from the

Thomas F. and Kate Miller Jeffress Memorial Trust,

Bank of America, N.A., Trustee (CDM; https://hria.

org/tmf/jeffress/) and the National Science

Foundation Graduate Research Fellowship

Program (MCB; https://www.nsfgrfp.org/). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

http://orcid.org/0000-0002-8868-1714
http://orcid.org/0000-0002-9395-4369
https://doi.org/10.1371/journal.pcbi.1006723
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006723&domain=pdf&date_stamp=2019-02-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006723&domain=pdf&date_stamp=2019-02-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006723&domain=pdf&date_stamp=2019-02-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006723&domain=pdf&date_stamp=2019-02-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006723&domain=pdf&date_stamp=2019-02-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006723&domain=pdf&date_stamp=2019-02-07
https://doi.org/10.1371/journal.pcbi.1006723
https://doi.org/10.1371/journal.pcbi.1006723
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5061/dryad.js11601
https://doi.org/10.5061/dryad.js11601
https://hria.org/tmf/jeffress/
https://hria.org/tmf/jeffress/
https://www.nsfgrfp.org/


Introduction

Vocal communication requires an auditory system that can reliably classify signals. For exam-

ple, in human speech, phonemes produced by different speakers and in different contexts vary

broadly in acoustic structure. Despite this, they are perceived as discrete, invariant categories

[1], even when boundaries between phonemes are exceptionally sharp, as with the approxi-

mately 10 ms difference in voice-onset time that separates the English phonemes /d/ and /t/

[2]. Categorization of vocal signals is not limited to human speech perception; many other spe-

cies that communicate vocally show similar abilities [3–6].

As in other sensory systems, categorical responses to auditory objects emerge in higher-

order areas of the cortex [7–12]. Neurons in these areas are characterized by a high degree of

selectivity, or sparseness, in their responses to exemplars from different categories [13, 14], as

well as tolerance, or invariance, in their responses to exemplars of the same category [15]. Sim-

ilar properties are observed in the responses of secondary auditory areas in humans to pho-

nemes [16–18]. However, in spite of a substantial body of theoretical work [19–21], the circuit

and cellular mechanisms underlying the emergence of categorical responses remains poorly

understood.

Songbirds communicate with acoustically complex vocalizations, which requires them to

perform many of the same kinds of auditory discrimination tasks as humans [22]. In the avian

auditory system, the caudal mesopallium (CM) is a cortical-level area that contains a popula-

tion of neurons highly selective for particular song elements, yet tolerant of low-level acoustic

differences between renditions [8, 10]. In contrast, the neurons in Field L, immediately

upstream of CM, show low selectivity and tolerance [23]. In the classical model of selectivity,

complex feature representations emerge through feedforward synaptic connections that pool

sparsely from upstream sources [24]. This model does not match experimental evidence from

CM, however, which shows that selective neurons receive a more distributed pool of inputs

than the sparse model would predict [25]. A distributed scheme of selectivity could arise from

nonlinear dynamics within the neurons themselves, but the mechanisms of this have not been

explored.

In many of the auditory areas in the hindbrain and midbrain, nonlinear neural dynamics

profoundly affect how a variety of low-level acoustic features are encoded [26–28]. For exam-

ple, neurons that express a low-threshold potassium current (IKLT
) produce highly phasic

responses, responding to rapid increases in excitation but not to slow or steady-state depolari-

zations [29, 30]. These dynamics are critical to temporal precision in sound localization cir-

cuits [28, 31] and can enhance signal detection in noisy conditions [32]. Could intrinsic

dynamics also contribute to sensory processing at cortical levels? In CM, the putatively excit-

atory neurons exhibit diverse intrinsic firing patterns [33]. About 30% exclusively produce

phasic responses that depend on a low-threshold potassium current, whereas the remainder

produce mostly tonic responses. The functional significance of this diversity remains unclear.

The goal of the present study is to understand how IKLT
and the phasic dynamics it produces

could contribute to the emergence of selectivity and tolerance in CM. To investigate how

intrinsic dynamics could interact with sensory-driven inputs, we developed an auditory

response model that combines a spectrotemporal receptive field (RF) with a biophysical spike

generation mechanism. In this linear-dynamical cascade model, the RF component approxi-

mates the integration over multiple spectral channels and time lags performed by the circuits

upstream of the neuron and by the neuron’s dendritic tree. This part of the model is identical

to the linear filter component of the classic linear-nonlinear Poisson (LNP) model [34, 35].

However, instead of using the output of the filter as the conditional intensity of a probabilistic

spiking process, we feed it into a single-compartment, biophysical model that produces spikes
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through Hodgkin-Huxley dynamics. Using this approach, which allows us to integrate our

knowledge about intracellular properties in CM into a model for high-level coding properties,

we found that IKLT
enhances selectivity and robustness to noise.

Results

Fig 1A represents the operation of the linear-dynamical cascade model. The spectrogram of a

zebra finch song stimulus was convolved with the RF to produce a driving current Istim(t),
which was injected into a single-compartment dynamical neuron model containing several

voltage-dependent sodium and potassium currents. The mathematical descriptions of these

currents were derived from an intracellular study of the excitatory neurons in the caudal meso-

pallium (CM) of zebra finches [33], and the RFs are drawn from parameterized features of

zebra finch field L neurons [36]. A key feature of this model is that it can produce phasic or

tonic responses depending on the conductance of a low-threshold potassium current (gKLT
),

which is experimentally known to be present in some CM neurons. Variability in the responses

of the model was generated with the addition of the Inoise(t) current. This current adds random

Fig 1. Simulating auditory responses with biophysical dynamics. (A) Auditory responses were simulated by convolving a spectrotemporal

receptive field (upper left) with the spectrogram (upper right) of an auditory stimulus, in this case a zebra finch song. Black dashed lines indicate

syllable boundaries. The resulting convolution (black line) provided the driving current (Istim(t)) to the single-compartment biophysical model

used in this study (right). Red noise (bright red line) was added in each trial as a stimulus-independent current (Inoise(t)) with SNR of 4. The

model was integrated to produce a simulated voltage trace (lower left). The conductance of a low-threshold potassium channel parameter (gKLT
)

was set to 0 nS for tonic dynamics (blue line) or 50 nS for phasic dynamics (dark red line). Voltage traces are vertically offset for better visibility.

(B) Raster plots of the full simulation for the stimulus-RF pair in A across 10 trials for phasic (red) and tonic (blue) model. The example

demonstrates how the phasic model produces more reliable and temporally precise responses than the tonic model.

https://doi.org/10.1371/journal.pcbi.1006723.g001
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noise with a 1/f2 power spectrum (red noise), which approximates the statistics of spontaneous

synaptic noise in vivo [37], at a signal-to-noise ratio (SNR) of four.

As seen in Fig 1B, the model’s intrinsic dynamics affected its response to zebra finch song.

When gKLT
was high (phasic model), responses were more precise and more reliable than when

gKLT
was absent (tonic model). This effect was consistent across RFs with different spectral and

temporal parameters and across multiple stimuli (Fig 2). It is important to note that although

IKLT
is an outward current with an overall hyperpolarizing influence, increasing it did not sim-

ply reduce excitability. In some cases, the phasic model responded at a much lower rate and to

only a handful of notes across the stimulus set (Fig 2B). In other cases, the firing rates of the

phasic and tonic models were nearly the same (Fig 2A and 2C), and the effects of manipulating

gKLT
were primarily on trial-to-trial variability. Overall, the average difference in firing rate

between tonic and phasic models was significant but small and highly variable (0.36 ± 0.36 Hz;

t59 = 7.74; p< 0.001).

To investigate how phasic excitability affects functional response properties, in this study

we focused on rate-based theories of sensory coding. The fundamental idea of rate coding is

that neurons convey information about sensory inputs by modulating their average firing rate

over relatively long intervals. Following previous studies [10, 38], we defined these intervals by

dividing the responses into segments corresponding to song syllables (as in Fig 1), which are

well-defined units of zebra finch song that convey information about individual identity [39].

We then calculated metrics based on how the average rates within those intervals were distrib-

uted across syllables and trials (Fig 3A).

We first examined whether phasic dynamics made neurons more selective. Selectivity, also

known as lifetime sparseness, is a well-established rate-coding metric defined as the tendency

of a neuron to respond strongly to only a small subset of stimuli [13]. A selective neuron has a

Fig 2. Responses of simulated neurons. Raster plots for models with three different RFs (rows, A—C) in response to three different stimuli

(columns). As in Fig 1, raster plots show 10 simulated responses of models with phasic (red) or tonic (blue) dynamics. Different RFs produce

different levels of sparseness, selectivity, and precision in the spiking responses, but tonic models are consistently less precise and less selective

than phasic models.

https://doi.org/10.1371/journal.pcbi.1006723.g002
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skewed, heavy-tailed response distribution in which a few stimuli account for the strongest

responses, and the remainder produce only weak excitation. In contrast, a less selective neuron

has a small-tailed, Gaussian response distribution, with most of the responses concentrated

around the mean. For the examples shown in Fig 3A, the models with phasic dynamics tended

to be significantly more selective than the corresponding models with tonic dynamics. This

effect was not uniform, but appeared to be stronger in the models with higher temporal-modu-

lation frequencies in their RFs.

The effects highlighted in these examples were also seen in a larger set of simulations with

60 different RFs, which were matched to the distribution of spectral and temporal parameters

seen in the zebra finch auditory cortex [36]. Each RF was combined with phasic and tonic

dynamics for a total of 120 models. Across this population, phasic models were consistently

more selective than tonic models with the same RFs (Fig 3B and 3C), and the effects of intrin-

sic dynamics were larger for models with higher temporal modulation (Fig 3D).

We also observed that phasic models were more reliable across trials, indicating that they

were less affected by the noise current Inoise. To quantify this effect in the context of rate cod-

ing, we calculated the mutual information (MI) between the response rate and syllable identity.

MI is defined as the difference between the response (total) entropy, which represents how

much information the neuron can carry based on its range of firing rates, and noise (or condi-

tional) entropy, which represents how much information is lost due to the variability of a

Fig 3. Phasic dynamics increase selectivity. (A) Normalized cumulative distribution of response rates for nine example RFs with phasic (red) and tonic (blue)

dynamics. High selectivity is indicated by a response distribution with a heavy tail on the left side of the plot, indicating that only a few stimuli account for the

strongest responses. Asterisks indicate a significant difference in the distribution of response rates (p< 0.05, Komolgorov-Smirnov test). Receptive fields are

arranged by increasing spectral and temporal modulation frequency. (B) Selectivity of paired phasic and tonic models. Selectivity is quantified using activity fraction

(see Methods). Each point corresponds to one RF. The dashed reference line indicates the line of equal selectivity. Models with phasic dynamics are consistently

more selective than their tonic counterparts (t59 = −7.18; p< 0.001). (C) Histogram of the difference in selectivity between phasic and tonic models. Negative values

indicate the phasic model has higher selectivity than the tonic model. The black arrow shows the mean difference. (D) Selectivity and the effects of intrinsic

dynamics increase with the temporal modulation frequency of the RFs (red; F1,116 = 27; p< 0.001). (E) In contrast, there is not a significant interaction between

spectral modulation frequency and intrinsic dynamics (F1,116 = 0.001; p = 0.97), and the main effect of spectral modulation frequency on selectivity is not clear.

https://doi.org/10.1371/journal.pcbi.1006723.g003
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neuron’s response to the same stimulus. A neuron that responds more similarly across trials

will have a low noise entropy, bringing its MI closer to its total entropy.

Fig 4 illustrates how intrinsic dynamics affected the distribution of response rates across tri-

als for the same nine example RFs shown previously. The tonic models tended to have a higher

total entropy across these examples, although in several cases, the phasic models are slightly

higher. However, for all of these examples, the response rates of the phasic models cluster

more closely around the mean response, resulting in lower noise entropy compared to the

tonic models.

Across all 60 RF pairs, the total entropy was slightly higher for tonic neurons (Fig 5A and

5B). That advantage was more than canceled out by a much larger increase in noise entropy

(Fig 5C and 5D). Every phasic simulation had lower noise entropy than its tonic pair. The

net effect was that phasic models had higher MI than the corresponding tonic models (Fig 5E

and 5F).

In the data described above, the noise current had a 1/f2 spectral distribution (red noise),

which is thought to approximate how spontaneous synaptic currents are dominated by low-

frequency fluctuations [37]. The total amplitude of the noise was set so that the inter-trial vari-

ations in firing patterns resembled what has been reported in extracellular recordings [23, 36,

40]. To test whether the results were robust to these assumptions, we varied the amplitude and

spectral distribution of the noise current. As would be expected, selectivity and mutual infor-

mation decreased overall as signal-to-noise ratio (SNR) decreased (Fig 6A–6D). However, at

each SNR value tested, the phasic models consistently had lower noise entropy and higher MI

and selectivity. We also found that the same pattern of results was seen when the noise current

had a 1/f distribution, which is less dominated by low-frequency fluctuations but is also con-

sidered to be biologically valid [41]. In contrast, when the noise had a flat frequency distribu-

tion (white noise), the effects of intrinsic dynamics were not significant (Fig 6E–6H).

As a further test of parameter sensitivity, we compared results across a wide range of values

for gKLT
, which determines the magnitude of the low-threshold potassium current that causes

phasic firing. As shown previously [33, 42], increasing gKLT
over a narrow range leads to a dra-

matic change in firing patterns: once the low-threshold current is strong enough to counteract

voltage-gated sodium currents, it becomes nearly impossible for the neuron to fire more than

one action potential in response to a step current. This may explain the bimodal distribution

of firing properties in CM [33]. The phasic and tonic dynamical models examined here repre-

sent these two modes, but it is likely that the distribution of gKLT
varies more broadly. Interest-

ingly, we did not see any evidence of a switch-like change in encoding properties as we varied

gKLT
over the range encompassed by the two exemplar models (Fig 6I–6L). Increasing gKLT

instead produced nearly linear increases in selectivity and mutual information, and linear

decreases in total and noise entropy.

How are selectivity and MI related? In these simulations, total entropy and selectivity were

negatively correlated (Fig 7A). This effect is unsurprising given that selective neurons respond

similarly to a large proportion of stimuli. They encode more information about a few stimuli

at the expense of encoding less information about the entire stimulus set. However, when we

consider coding efficiency, which quantifies how much of this potential bandwidth is actually

used instead of being lost to noise (Fig 7C), two trends emerge. First, tonic models have lower

coding efficiency than phasic models, consistent with the observation that they have higher

noise entropy and lower MI. Second, only phasic neurons are able to achieve both high selec-

tivity and high coding efficiency.

As an independent test of the validity of this model, we applied the same selectivity and MI

analyses to a public corpus of recordings from zebra finch CM [43]. The relationships between
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Fig 4. Phasic dynamics reduce trial-to-trial variability in spike rates. Full response distributions for the nine example neurons shown previously.

Response rates are calculated for each syllable and trial and discretized into 15 bins. The black lines indicate the average across trials; the spread of response

rate bins around those lines show the trial-to-trial variability of the response rates. Darker colors indicate that response rates to the given syllable fall within

that bin more frequently. Response distributions where the bins close to the mean line are dark and the bins further away are light, e.g. the phasic example

in the top row, middle column, have low trial-to-trial variability. Distributions with darker scatter further away from the mean, such as the paired tonic

example, have higher trial-to-trial variability. Overall, the phasic examples were less variable than their paired tonic models. Total entropy (HT) and noise

entropy (HN) values are shown above each plot (phasic: red; tonic: blue).

https://doi.org/10.1371/journal.pcbi.1006723.g004
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selectivity and MI predicted by the model were largely borne out in the experimental data. We

observed a similar tradeoff between selectivity and total entropy (Fig 7B), and an even stronger

positive correlation between selectivity and coding efficiency (Fig 7D). The average coding effi-

ciency was lower in the experimental data, which likely reflects additional sources of variability

in vivo. Selectivity was somewhat higher in vivo, perhaps because of additional nonlinearities

in the actual CM receptive fields. Interestingly, the cluster of models with high coding effi-

ciency and low selectivity seen in the simulated data is not present in the experimental data.

Why are models with phasic dynamics consistently more reliable and selective than models

with tonic dynamics? Low-threshold potassium currents counteract the regenerative sodium

current produced during spike initiation. As a result, cells expressing these currents only spike

in response to a rapid increase in excitation. These dynamics enable phasic neurons in the

auditory hindbrain and midbrain to detect coherent excitation with high temporal precision,

even in noisy conditions [32, 44, 45]. Consistent with this idea, we observed in our sensory

model that moments of high concordance between the RF and the stimulus created peaks in

the driving current Istim(t). The phasic models spiked almost exclusively at these moments

Fig 5. Phasic dynamics confer increased mutual information about syllable identity by increasing reliability. (A) Comparison of total (response) entropy,

which represents the maximum information capacity of the model. Phasic and tonic models had similar total entropy, though tonic models had a slight

advantage (t59 = 4.70; p< 0.001). (B) Histogram of the difference in total entropy between phasic and tonic models. Positive values indicate the tonic model had

higher total entropy than the phasic model. (C) Comparison of noise entropy, which represents variation in responses to the same stimulus across trials. Noise

entropy decreases the amount of information conveyed from the theoretical maximum. All of the phasic models had lower noise entropy than tonic models

(t59 = 18.10; p< 0.001). (D) Histogram of the difference in noise entropy between phasic and tonic models. (E) Mutual information of paired phasic and tonic

models. On average, models with phasic dynamics had higher mutual information than the corresponding tonic models (t59 = −7.40; p = 0.02). (F) Histogram of

the difference in mutual information between phasic and tonic models.

https://doi.org/10.1371/journal.pcbi.1006723.g005
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Fig 6. The effect of phasic dynamics are robust to noise statistics and linearly related to gKLT
expression. (A—D) The effect of varying signal-

to-noise ratios (SNR) on the outcome of the total entropy (A), noise entropy (B), MI (C), and selectivity (D) analyses. As the amplitude of the

noise current increases relative to the amplitude of the stimulus-driven current (decreasing SNR), noise increases and MI and selectivity decrease,

but phasic models continue to outperform tonic models. The red lines shows the means of phasic models, and the blue line shows the means of

tonic models. Bars show standard error. The gray boxes indicate the parameter values used in this study. (E—H) The effect of noise shapes on

total entropy (E), noise entropy (F), MI (G), and selectivity (H). Adding white noise erases the advantage of phasic neurons, but white noise is

biologically unrealistic and ineffective at driving significant amounts of variability (F). More biologically realistic noise shapes with greater power

at low frequencies, such as pink (1/f) and red (1/f2), produce comparable results when SNR is adjusted to match variability. Mean and standard

Intrinsic dynamics enhance cortical-level auditory coding
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(Fig 8A). In contrast, the tonic models were more sensitive to the absolute level of V(t) and

increased their firing rate as the integral of Istim(t) became more positive (Fig 8B).

Based on this observation and the positive correlation between selectivity and temporal

modulation frequency (Fig 3D), we hypothesized that the effect of phasic excitability on selec-

tivity would be stronger when the RF produced a driving current with sparse peaks of excita-

tion. In the spectral domain, this corresponds to convolutions that have more power at higher

frequencies and RFs that have higher temporal modulation frequencies. To test this effect spe-

cifically, we simulated another set of data with eight RFs, holding all RF parameters constant

except temporal modulation (Ot), which we varied between 10 and 80 Hz.

error shown. White noise shown at SNR 0.5, pink noise at SNR 2, and red noise at SNR 4. (I–L) The effect of gKLT
conductance on total entropy

(I), noise entropy (J), MI (K), and selectivity (L) for the phasic models.

https://doi.org/10.1371/journal.pcbi.1006723.g006

Fig 7. The model predicts a relationship between coding efficiency and selectivity. (A) Total entropy and selectivity

are negatively correlated for both phasic and tonic models, showing the inherent trade-off between selectivity and

entropy (Pearson r = −0.84; p< 0.001). (B) CM neurons in zebra finches exhibit the same trade-off (Pearson r = −0.76;

p< 0.001). Data from Theunissen et al. [43]. (C) Coding efficiency, calculated as the percentage of total entropy not

lost to noise, is enhanced by phasic dynamics. Tonic models (blue points) cluster around lower values of coding

efficiency and also lack the population of high selectivity neurons that the phasic models (red points) exhibit. The

population of models show a moderate positive correlation between coding efficiency and selectivity (Pearson r = 0.48;

p< 0.001). (D) CM neurons in zebra finches show a strong positive correlation between selectivity and coding

efficiency (Pearson r = 0.58; p< 0.001), as they lack the population of low-selectivity, high-reliability neurons seen in

the model (C). Data from Theunissen et al. [43].

https://doi.org/10.1371/journal.pcbi.1006723.g007
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At low values of Ot, convolutions of the RF and a stimulus produced mostly slow modula-

tions, and the response of phasic and tonic models were similar, as the example in Fig 9A

shows. As the modulations in the convolution became faster and large deflections became

sparser (Fig 9A, 80 Hz), the response of the phasic model became more selective, while the

tonic model, responding to the shape of the slow modulation still present in the signal, showed

no inclination toward selectivity. Fig 9B presents the full set of simulations, showing a strong

interaction between the temporal modulation of the RF and selectivity. Phasic models showed

a strong increase in selectivity as Ot of the RF increased, but tonic models were unaffected.

Discussion

This study investigated how intrinsic dynamics could contribute to the emergence of selectiv-

ity and tolerance in CM, a cortical-level auditory area. We used a novel linear-dynamical cas-

cade model that combines a spectrotemporal receptive field with a biophysical description of

intrinsic membrane dynamics. We found that a low-threshold potassium current (IKLT
)

strongly affected how the model neurons encoded information about song stimuli in firing

rates. Phasic models (with high IKLT
) were more selective and more tolerant of noise than mod-

els with identical RFs and tonic dynamics. Furthermore, a population of phasic and tonic

Fig 8. Phasic selectivity is driven by slope detection. (A) Tonic models responded to the level of excitation in the

driving current. Spiking activity aligned well to the moments when net excitation was greater than zero, and the

model produced jittery, unreliable responses to broad peaks of excitation. Blue segments of the trace mark when the

convolution is positive. (B) Phasic models responded primarily when driving current contained a positive slope with a

high rate of change. Spike times aligned well to these slopes. The red segments of the convolution mark the times at

which the difference of the smoothed convolution was 1.5 standard deviations above the mean difference. Because

such slopes were relatively scarce and brief, the spikes predicted by the phasic model were selective and had little

temporal variation.

https://doi.org/10.1371/journal.pcbi.1006723.g008
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models reproduced the distribution of selectivity and coding efficiency seen in vivo (Fig 7).

These results suggest that a diversity of intrinsic intracellular properties contributes to the

higher-order functional properties seen in CM.

The model we developed for this analysis is a special case of the linear-nonlinear (LN) cas-

cade model used in many studies of sensory coding [46–48]. In the standard LN model, the

nonlinearity is a history-independent function that transforms the output of the linear stage

into an instantaneous spiking probability. More recent LN models incorporate history depen-

dence through a linear kernel convolved with past spike times, as in the generalized linear

model [35, 49], or through non-biological, dynamical state variables, as in the spike response

and generalized integrate-and-fire models [50–52]. The present study required a more biologi-

cally realistic representation of the dynamics so that we could manipulate a specific current of

interest, IKLT
. We therefore used a conductance-based biophysical model to generate spikes.

This model lacks many of the morphological and physiological properties of CM neurons and

omits any circuit-level organization, but it is capable of reproducing the tonic and phasic firing

patterns observed in CM slices [33].

For the linear stage of the model, we used simplified STRFs from a previous study of Field L

[36], which is the primary source of ascending auditory input to CM [53]. The reason we did

not use STRFs from CM is that linear RF estimates from this area have poor predictive power

[40] and are therefore unlikely to be representative of the true synaptic tuning. As seen in

another secondary auditory area, the caudomedial nidopallium [54], RFs in CM may involve

nonlinear combinations of multiple feature vectors. These nonlinearities may reflect local

excitatory and inhibitory circuitry, and as methods for estimating parameters in these more

complex models improve [55], it will be important to also consider the contributions of intrin-

sic dynamics. Here, we chose to use a simplified, parametric RF model so that we could sys-

tematically investigate how different RF features interacted with nonlinear dynamics. The

clear effects seen here with simplified RFs argue that intrinsic dynamics have the potential to

facilitate categorical responses even in the absence of complex circuitry.

Fig 9. Selectivity depends on an interaction between phasicness and RF shape. (A) Example convolutions of an RF

withOt = 10, 40, and 80 Hz. Rasters of phasic (red) and tonic (blue) responses for 5 of 10 trials are shown below. At 10

Hz, slow modulations predominate. At 40 Hz, the convolution contains more sharp peaks. At 80 Hz, the peaks become

sparser, but only the response of the phasic example becomes more selective. (B) The selectivity of neural simulations

increases as the temporal modulation of the RF (Ot) increases, but only for phasic models. The selectivity of tonic

simulations shows little effect. The interaction between model type andOt is significant (F1,124 = 93; p< 0.001).

https://doi.org/10.1371/journal.pcbi.1006723.g009
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Our main finding is that increased IKLT
caused responses to conspecific song to become

sparser, more precise, and more reliable (Fig 2). We focused here on quantifying these effects

using several well-established rate-based encoding metrics [10, 38], though the effects on

temporal precision are worthy of future consideration. Selectivity, which is also called

activity fraction or lifetime sparseness [13, 14], was strongly enhanced by IKLT
(Fig 3).

Syllables that produced strong responses remained strong, but weak responses became

weaker, causing response rate distributions to become more heavy-tailed. This led to a

reduction in the total entropy of the distributions (Fig 5), which reflects the fact that a more

selective neuron responds similarly to all the weak stimuli and therefore encodes little infor-

mation about the majority of the stimulus set. At the same time, the phasic models lost much

less of their bandwidth to noise, which led to a net increase in mutual information and

coding efficiency. Thus, IKLT
can increase both the sparseness of the neural code and its

reliability.

The effects of IKLT
were not simply a product of reduced excitability. Rather, they arose from

complex interactions between the RF, the stimulus, and the nonlinear dynamics of the mem-

brane. Phasic dynamics resulted in larger increases in selectivity when RFs were tuned to rapid

temporal modulations. Because zebra finch song has strong, broadband rhythmic structure,

these RFs produced convolutions with brief peaks of excitation (Figs 8 and 9) [36]. Phasic

dynamics also had stronger effects for realistic noise currents that were dominated by low-fre-

quency fluctuations (Fig 6E–6H) [37, 41]. Together, these results indicate that IKLT
enables neu-

rons to reliably pick out brief moments of strong excitation against a background of low-

frequency noise. This is consistent with extensive theoretical and experimental studies of IKLT

in the auditory hindbrain and midbrain [29, 56–59].

Although these results provide strong support for the possibility that intrinsic dynamics are

relevant to neural encoding in zebra finch CM, they do not rule out the contribution of synap-

tic mechanisms. Indeed, strong feedforward inhibition sharpens selectivity and increases

temporal precision in cortical-level rodent and avian auditory areas [60–63] in a manner simi-

lar to the effects produced by IKLT
in this study. Further work is needed to determine if the cell-

intrinsic effects of IKLT
are replicating the effects of feedforward inhibition, albeit in a more

compact way, or if there are more consequential differences between these mechanisms.

This study shows that phasic dynamics can enhance selectivity and tolerance for conspecific

song, which raises the question of why CM contains both tonic and phasic neurons. The func-

tional significance of diverse intrinsic dynamics has been examined in a variety of brain areas.

In the olfactory bulb, diverse dynamics in mitral cells help to decorrelate responses across neu-

rons [64]; in the visual thalamus, bursting in neurons that project to the cortex enhances sig-

nal-to-noise ratios [65]; and in the electrosensory lateral line lobe, bursting dynamics provide

a parallel information stream for low-frequency events [66]. In CM, some neurons are strongly

selective and others are not [8, 10, 67], and a similar pattern is also seen in mammalian second-

ary auditory areas [15, 68]. Although we can only speculate at this point as to the behavioral

significance, our data indicate that diversity in the intrinsic dynamics of CM neurons may

contribute substantially to the functional diversity. The models in this study sampled from a

distribution of RFs with a broad range of spectral and temporal statistics, but only when the

population included both phasic and tonic dynamics did we observe the broad, correlated dis-

tribution of selectivity and coding efficiency seen in zebra finch CM (Fig 7). Interestingly, the

model response properties were more diverse than seen in vivo, suggesting that IKLT
may be

selectively expressed in a subset of neurons, such as the ones tuned to rapid temporal

modulations.
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Animals from a broad range of species are able to perform invariant auditory object recog-

nition in challenging conditions [69–72]. In many sensory pathways, there is a hierarchical

increase in selectivity and tolerance for natural objects that is thought to underlie this remark-

able ability. However, the circuit-level implementation of this computation remains largely

theoretical [73]. Although many models have followed Hubel and Wiesel [24] in focusing on

how excitatory and inhibitory connectivity enables neurons to aggregate inputs tuned to sim-

pler features, the nonlinear mechanisms of spike generation, which determine how these

inputs are summed, are also thought to be important [74]. The present study supports this idea

by showing how a single voltage-gated current, IKLT
, has the potential to dramatically shift how

information about stimulus identity is encoded. As we become increasingly aware of the diver-

sity of cell types in the brain [75–77] and the activity-dependent mechanisms that can modu-

late intrinsic electrophysiological properties [78–80], it is important to account for intrinsic

dynamics in models of sensory processing.

Materials and methods

Linear-dynamical cascade model

Biophysical model. The model used in this study is a conductance-based, single-compart-

ment model for CM neurons [33], which was adapted from the ventral cochlear nucleus model

of Rothman and Manis [29]. The currents in the model include four voltage-gated potassium

and sodium currents, a leak current, and a hyperpolarization-activated cation current. A key

component of the model is the low-threshold potassium current (IKLT
), which determines

whether the neuron produces tonic or phasic responses to step depolarization. When gKLT
(the

maximal conductance of IKLT
) is low, the model neuron produces sustained responses to weak

and moderate depolarizations; when gKLT
is high, the model only fires phasically, at the onset of

the current step. The model parameter values follow Rothman and Manis [29], with a few

adjustments to match the resting potential and spike threshold for CM neurons. The calcula-

tions presented here used the consensus model parameters from Chen and Meliza [33] for

tonic and phasic cells (Table 1). S1 Appendix. contains the full model specification. The model

simulation code was generated using spyks (https://github.com/melizalab/spyks; version

0.6.6), and the dynamics were integrated using a 5th-order Runge-Kutta algorithm with an

adaptive error tolerance of 1 × 10−5 and an interpolated step size of 0.025 ms.

Table 1. Parameter values for the tonic and phasic models.

Parameter Tonic Phasic

C 60 pF 40 pF

glk 1.3 nS 1.3 nS

Elk −75 mV −75 mV

gNa 750 nS 750 nS

ENa 55 mV 55 mV

gKA
30 nS 30 nS

gKHT
95 nS 95 nS

gKLT
0 nS 50 nS

EK −82 mV −82 mV

gh 0.5 nS 0.5 nS

Eh −43 mV −43 mV

Bolded values differ between the tonic and phasic models.

https://doi.org/10.1371/journal.pcbi.1006723.t001
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Auditory response simulation. To simulate an auditory response, the model was driven

by a current, Istim(t), which was calculated from the convolution of a spectrotemporal receptive

field (RF) with the spectrogram of an auditory stimulus. In this formulation, the RF approxi-

mated the synaptic drive to the neuron as a weighted sum of linear, time-invariant filters over

different frequency channels. To simulate stimulus-independent variability in the response, a

second driving current, Inoise(t), was added. The noise current was randomly generated red

noise (1/f2 power spectrum) scaled relative to the signal to achieve a set signal-to-noise ratio

(SNR). Red noise was chosen for its power at low frequencies which efficiently drives response

variability in the neuron models and for the biological validity of the power spectrum of the

noise. 1/fα spectra are found in many complex, natural systems including the brain [41], and

the statistics of synaptic noise are well approximated by a 1/f2 spectrum [37]. For all of the

analyses presented in this paper with the exception of the analysis of the effect of the signal-to-

noise ratio, SNR was set at 4.

RFs were constructed with a Gabor filter based on Woolley et al. [36]:

RFðt; f Þ ¼ HðtÞ � Gðf Þ;

HðtÞ ¼ e� 0:5½ðt� t0Þ=st �
2

� cosð2p � Otðt � t0Þ þ PtÞ;

Gðf Þ ¼ e� 0:5½ðf � f0Þ=sf �
2

� cosð2p � Of ðf � f0ÞÞ;

where H is the temporal dimension of the RF, G is the spectral dimension of the RF, t0 is the

latency, f0 is the peak frequency, σt and σf are the temporal and spectral bandwidths, Ot and Of

are the temporal and spectral modulation frequencies, and Pt is the temporal phase. Parameter

values were randomly drawn from distributions set to match the modulation transfer function

(MTF) of the RF ensemble to the MTF of zebra finch song [36, 81]. The integral of each RF

was normalized to one.

The models’ responses were simulated using 30 zebra finch songs recorded from our col-

ony. Each recording was comprised of a single song motif repeated twice. Recordings were

normalized to the same RMS amplitude and edited to be 2.025 s long, with 50 ms of micro-

phone noise at the beginning to pad the convolution, and scaled to a consistent RMS ampli-

tude. Start and end times of syllables were identified by visual inspection. Repeated syllables

were grouped in the decoding analyses. Spectrograms of the stimuli were calculated using the

short-time Fourier transform algorithm with a Hanning window of 256 points and then

resampled to give a frequency resolution of 50 channels between 0 and 8 kHz. Successive win-

dows were spaced 1.0 ms apart.

In the context of this simulation, a model neuron was defined as the combination of one RF

and one biophysical parameter set (phasic or tonic). 60 RFs were generated to produce paired

phasic and tonic simulations (n = 120 neurons or 60 pairs). For the analysis of the relationship

between selectivity and temporal modulation, 8 RFs were generated and for each RF Ot was set

to 10, 20, . . ., 80 (n = 128 neurons or 8 sets of pairs). The 30 zebra finch songs were presented

10 times each to each neuron with different values of Inoise(t) producing trial-to-trial variability.

Noise currents in each trial were identical between paired phasic and tonic neurons. The total

amplitude of the convolution was normalized by the bandwidth of the RF on the frequency

axis (σf) to account for the differences in amplitudes between narrowband and broadband RFs.

The output of the model was a simulated voltage trace.

The stimuli and simulated responses have been deposited with Data Dryad (doi:10.5061/

dryad.js11601).

Data analysis. Spike times were extracted from the simulated responses using a simple

window discriminator (https://github.com/melizalab/quickspikes; version 1.3.3). We calcu-

lated spike rate, ri,j, as the number of spikes evoked by syllable i in trial j, divided by the
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duration of the syllable. Selectivity was quantified using activity fraction [10, 13], a nonpara-

metric index defined as:

A ¼
1 � ð

P
ri=NÞ2=

P
r2

i =N
1 � 1=N

where ri is the rate for syllable i averaged across trials, and N is the total number of syllables.

Mutual information (MI), total entropy, and noise entropy were calculated following

Jeanne et al. [38]. Response rates were discretized into 15 bins between the minimum and

maximum rate of the model. Total entropy was calculated as H(R) = −∑p(r)log2 p(r), noise

entropy as H(R|S) = −∑p(s)∑p(r|s)log2 p(r|s), and mutual information as I(R;S) = H(R) −
H(R|S), where r is the rate and s is the syllable. Because of the large number of stimuli and tri-

als, and because we were interested in differences between models presented with exactly the

same stimuli, we did not correct entropy or MI for sample size bias. Coding efficiency was cal-

culated as 1 − (H(R|S)/H(R)).

Stimuli

Thirty male zebra finches provided song recordings that were used as stimuli in the simulation

experiments. All animal use was performed in accordance with the Institutional Animal Care

and Use Committee of the University of Virginia. Adult zebra finches were obtained from the

University of Virginia breeding colony. During recording, zebra finches were housed in a

soundproof auditory isolation box (Eckel Industries, Cambridge, MA) with ad libitum food

and water and were kept on a 16:8h light:dark schedule. A mirror was added to the box to

stimulate singing. Recordings were made with an Audio-Technica Pro 70 microphone, digi-

tized with a Focusrite Scarlett 2i2 at 44.1 kHz, and stored to disk using custom C++ software

(https://github.com/melizalab/jill; version 2.1.4). A typical recording session lasted 2–3 days. A

single representative song was selected from each bird’s recorded corpus and was high-pass fil-

tered at 500Hz with a 4th-order Butterworth filter.

Extracellular data

Analyses based on extracellular data were performed on the publicly available dataset from

Theunissen et al. [43] available at http://crcns.org/data-sets/aa/aa-2. Neural recordings were

collected from adult male zebra finches as described in Gill et al. [82]. Only responses from

CM neurons presented with conspecific song were used for these analyses (n = 37). Selectivity

and MI analyses were performed as described above, except that 10 response bins were used

for MI analysis instead of 15, due to the smaller stimulus set.

Supporting information

S1 Appendix. Model equations.

(PDF)
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