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Abstract

It has long been appreciated that tumors are diverse, varying in mutational status, composition of 

cellular infiltrate, and organizational architecture. For the most part, the information embedded in 

this diversity has gone untapped due to the limited resolution and dimensionality of assays for 

analyzing nucleic acid expression in cells. The advent of high-throughput, next-generation 

sequencing (NGS) technologies that measure nucleic acids, particularly at the single-cell level, is 

fueling the characterization of the many components that comprise the tumor microenvironment 

(TME), with a strong focus on immune composition. Understanding the immune and nonimmune 

components of the TME, how they interact, and how this shapes their functional properties 

requires the development of novel computational methods and, eventually, the application of 

systems-based approaches. The continued development and application of NGS technologies holds 

great promise for accelerating discovery in the cancer immunology field.
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Introduction

The field of cancer immunology was born in the late 19th century, with the recognition by 

William B. Coley that acute bacterial infections were often associated with remissions in 

cancer patients. This led him to create “Coley’s toxins”, a mixture of bacteria that was 

administered to patients with the goal of activating the immune system to eradicate tumors 

[1]. Coley’s toxins constituted the first cancer immunotherapy and were variably used 

around the world until the mid-1900’s when nonimmune-based treatments, such as radiation 
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and chemotherapy, became the prevailing anticancer therapies. Consequently, interest in 

cancer immunotherapy and, by extension, cancer immunology, diminished.

Cancer immunology has experienced a renaissance due to the advancements in therapies that 

realize the potential of the immune system to fight cancer. These include blockade of 

inhibitory or immune checkpoint receptors, adoptive cell therapies, and personalized cancer 

vaccines. Alongside these advancements, improvements in microfluidics and high-

throughput sequencing technologies have increased the speed, efficiency, and resolution with 

which the nucleic acid content of cells can be read. This, coupled with advances in 

computational methods for data normalization and analysis, is enabling the deconvolution of 

the complex tumor microenvironment (TME), the discovery of tumor antigens, and the 

annotation of novel therapeutic targets. This article will review the state-of-the-art of next-

generation sequencing (NGS) technologies, with a focus on applications of single-cell 

transcriptomics in cancer immunology and the challenges raised by the growing complexity 

of the data being generated.

Application of NGS in cancer immunology

NGS, which employs massively parallel sequencing of DNA fragments, introduced high-

throughput and low-cost discrete measurement of nucleic acid profiles to the field of 

molecular biology, and has, for the most part, replaced microarrays. NGS technology has 

formed the foundation of several technologies, including whole-exome sequencing, RNA-

seq, single-cell RNA-seq, and ATAC-seq. Specific examples of how some of these 

technologies have been applied in the cancer immunology field are discussed in Hu et al. [2]. 

In this review, we focus primarily on single-cell RNA-seq.

Single-cell RNA sequencing: methods overview—Single cells are captured for 

measurement of their transcriptional landscape using either plate-based or microfluidics-

based methods. Plate-based methods involve sorting of cells into separate wells (e.g. in a 96-

well plate) via fluorescence-activated cell sorting (FACS), followed by RNA-seq protocols 

applied to each of the wells and pooling of samples following cell barcoding (different 

methods pool at different steps) (Table 1). This approach enables freedom with respect to the 

RNA-seq protocol used and allows for index-sorting (quantification of protein expression in 

the cells sorted into individual wells) but is limited with respect to the number of cells that 

can be processed due to its time-consuming nature. Initially, microfluidics-based methods 

used microfluidic chips to capture single-cells into individual chambers (e.g. Fluidigm) 

followed by lysis, reverse transcription, and amplification for library generation. 

Microfluidics have been used to pair within droplets single-cells with beads carrying cell-

identifying barcodes [3]. Microfluidic-based capture of single-cells and beads carrying cell-

identifying barcodes into chambers has been implemented in Seq-well, which is a portable 

and low-cost alternative to droplet-based methods [4]. Droplet-based methods are of higher 

throughput than microfluidic chip-based and plate-based methods, generating thousands of 

single-cell transcripts at relatively low cost, but are restricted to either 3’ or 5’ end 

sequencing protocols.
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Two methodologies (SPLiT-seq, Sci-RNA-seq) bypass the need for physical isolation of 

single cells by using combinatorial barcoding to perform single-cell RNA sequencing 

(scRNA-seq) [5,6]. Although these methods have not been applied yet in the cancer 

immunology field, they hold great promise for accelerating discovery, given that they can be 

used with fixed cells. This allows for the contemporaneous processing of samples that are 

collected longitudinally and mitigates batch effects stemming from serial processing of 

samples. This feature makes these two methods attractive for the analyses of patient 

samples.

In addition to the single-cell RNA-seq methods described above, single-nucleus RNA-seq 

methods have been introduced to overcome technical challenges associated with dissociation 

of single-cells from tissue. Single-nucleus methods profile the mRNA landscape within each 

nucleus separately and can be performed using both plate-based and droplet microfluidic-

based technologies [7–9]. Single- nucleus sequencing methods have been repeatedly shown 

to accurately capture heterogeneity across cells and dynamic cell states, despite profiling the 

RNA in the nucleus only [10,11]. To date, single-nucleus RNA-seq methods have been used 

primarily for study of the brain but have also been used to profile tumor cells [11]. Although 

immune cells are difficult to profile with single-nucleus RNA-seq due to their low RNA 

content, future technical advances could make such methods useful given their applicability 

to frozen archived samples.

Single-cell RNA sequencing: deconvolving the tumor immune 
microenvironment—The ability to read and annotate transcriptomes at single-cell 

resolution, coupled with the development of computational methodologies for data analysis 

(see Box 1 and Fig. 1), has enabled the profiling of the different components of the TME at 

unprecedented depth: many cells and many transcripts. Naturally, scRNA-seq was quickly 

leveraged to advance our understanding of the immune component of tumors.

In breast carcinoma, a large-scale scRNA-seq study of over 45,000 cells identified increased 

heterogeneity of gene expression in intratumoral lymphoid and myeloid cells compared to 

cells in normal breast tissue, likely reflecting the responses of intratumoral immune cells to 

the diverse environmental signals present in tumor tissue [12]. Other scRNA-seq studies 

have uncovered previously unappreciated predictive properties of the immune component 

within the TME. In malignant glioma, scRNA-seq revealed that pre-established ways of 

distinguishing across glioma subtypes (IDH-A and IDH-O) are mainly accounted for by 

differences in the TME rather than the malignant cells themselves and that increased tumor 

grade was associated with differential expression of macrophage over microglia gene 

programs [13]. In metastatic melanoma, Nirschl et al. [14] identified a homeostatic IFNγ-

dependent program that is enriched in monocytes and dendritic cells and stratifies survival. 

Future scRNA-seq studies of the TME will continue to advance our knowledge of the 

immune component of different tumors and its relationship to disease state.

Single-cell RNA sequencing: understanding T cell states in cancer—ScRNA-

seq has led to important insights regarding checkpoint receptor expression in tumor-

infiltrating lymphocytes (TILs) and the functional states observed in T cells in different 

cancers. A scRNA-seq study of human breast tumors revealed that the checkpoint receptors 
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TIGIT and Lag-3 were present at a higher frequency on T cells than PD-1, suggesting that 

the former molecules may be better targets in breast tumors [15]. In a melanoma mouse 

model, Chihara et al. used scRNA-seq and mass spectrometry (CyTOF) to identify a 

coinhibitory gene module in TILs that contains novel checkpoint receptors and is 

cooperatively regulated by PRDM1 and c-MAF [16]. Also, in a melanoma mouse model, 

Singer et al. [17] showed that checkpoint receptor expression can be uncoupled from 

dysfunctional CD8+ T-cell phenotypes and identified distinct dysfunction and activation 

gene programs that separated cell populations identified with scRNA-seq. In human 

melanoma, scRNA-seq was used to identify a gene signature for T-cell dysfunction and 

inferred cell-to-cell interactions between T cells and cancer-associated fibroblasts (CAFs) 

[18]. Lastly, in non-small-cell lung cancer, scRNA-seq of T cells identified “exhausted” and 

“pre-exhausted” CD8+ T-cell populations and showed that a high ratio of pre-exhausted to 

exhausted cells was associated with better prognosis [19].

Analysis of TCR sequences in single cells is further shedding light on T-cell behavior in 

tumors. Paired scRNA-seq and TCR sequencing in breast carcinoma showed that different T-

cell clones vary in their extent of activation, suggesting the presence of a continuous 

spectrum of T-cell activation states that is shaped by TCR usage [12]. ScRNA-seq and TCR 

sequence analysis of peripheral blood, tumor, and normal tissue from hepatocellular 

carcinoma (HCC) patients identified that exhausted CD8+ T cells and regulatory T cells 

(Tregs) are enriched and clonally expanded in HCC compared to normal tissues [19]. The 

development of TCR sequencing protocols compatible with droplet technology will further 

accelerate the current understanding of the relationship of T-cell clonality to functional T-

cell states across different tumor types.

Epigenetics: understanding the chromatin landscape of CD8+ T cells in 
cancer—Coupling NGS with chromatin accessibility assays enables determination of the 

epigenetic and regulatory landscape of cells. Methods such as DNase-seq, Mnase-seq, and 

FAIRE-seq enable a genome-wide view of the epigenetic landscape but require laborious 

protocols and large cells counts (100K-1M cells), thus, limiting their application in cancer 

immunology. The introduction of ATAC-seq [20], a method that detects open chromatin by 

sequencing transposase-accessible regions and enables mapping of transcription factor 

occupancy for small cell counts and even single cells, has opened the door to the study of 

TILs from the epigenetic perspective.

Gaining an understanding of the epigenetic landscape of TILs that exhibit different 

functional states is important for understanding the underlying mechanisms that govern 

transition between cellular states and the reprogramming potential of TILs. Philip et al. [21] 

used ATAC-seq to study the epigenetic landscape of CD8+ TILs and identified two distinct 

CD8+ T-cell states in a murine tumor model – one that can be reversed upon in vitro 
activation and one that cannot. Coupling such analyses with TCR sequence data will assist in 

determining T-cell differentiation trajectories in the TME and how these may change upon 

therapeutic modulation.

NGS has been applied to analyze the spatial organization of chromatin using methods such 

as Hi-C. Hi-C has been used to determine the chromosomal abnormalities present in tumor 

Singer and Anderson Page 4

Cancer Immunol Res. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cells [22,23]. This method can also be applied to study long-range DNA-DNA interactions. 

Chen et al. used Hi-C to identify and validate an enhancer 140kb downstream of PD-L1, 

which is active in tumor cells [24]. Future studies will likely apply Hi-C to study DNA 

organization and gene regulation in TILs.

Protein and space: The next frontiers—Two novel technologies leverage NGS to 

expand the dimensions of data obtained. Cellular indexing of transcriptomes and epitopes 

(CITE-seq) and RNA expression and protein sequencing (REAP-seq) integrate single-cell 

transcriptomics with limited scale proteomics [25,26]. Both of these utilize droplet 

microfluidics and DNA oligo-tagged antibodies to read out protein and RNA expression 

profiles in a single workflow. These technologies are useful for assessing transcript to 

protein relationships but are limited to the examination of surface protein expression only. 

These technologies are anticipated to be integrated into the cancer immunology field in 

coming years.

Technologies that allow for high-throughput transcriptomic measurements, while observing 

the cells’ spatial location within tissue, have also been developed. Spatial transcriptomics 

(ST) [27] allows for the measurement of transcriptomes within spatially resolved areas in 

tissue sections. This is achieved by positioning frozen tissue sections on a glass slide 

containing a grid with unique positional barcodes. ST can be paired with multiplex imaging 

and RNA-seq to map cell types and their niches in situ. Although ST does not measure 

transcriptomes at the single-cell level, paired scRNA-seq data from the same tissue can be 

used to computationally deconvolve the composition of each ST location [28]. In pancreatic 

cancer, ST revealed that cancer cells and stromal cells colocalize in regions disparate from 

pancreatic ductal and acinar cells [28]. Although this study did not map TILs, we expect ST 

to be used for such purposes in the future.

NICHE-seq is a different technology for adding spatial context to transcriptomic data. This 

technique combines two-photon microscopy, photoactivatable fluorescence, and RNA-seq to 

annotate single-cell transcriptomes in discrete tissue locations [29]. An attractive feature of 

NICHE-seq is the ability to control the timing of fluorescence photo-activation, which 

allows for kinetic analyses. However, a limitation of this technique is that it can only be 

applied to tumors that are engineered to express photoactivatable green-fluorescent protein 

(PA-GFP).

Perspective and concluding remarks

High-throughput data generation methods are transforming the cancer immunology field but 

also pose several challenges. First, they require the researcher to achieve an understanding of 

the data generation methods and their limitations. Second, they require the researcher to 

achieve a solid understanding of the analytical methods and what can be inferred from them. 

Third, as more hypothesis generating data is created, experimental systems suitable for 

validating and testing predictions made from the data will become critical. Lastly, the 

increasing complexity of data generated from large-scale scRNA-seq efforts, such as the 

human cell atlas (HCA), the immune cell atlas (ICA), and the tumor cell atlas (TCA) [38] 

together with the rapid increase in the dimensions that can be measured (e.g. protein and 
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spatial variables), requires cross-disciplinary partnerships that can leverage advanced 

computational and systems biology approaches to discover and characterize connections 

between genes and cells within the TME. The continued development of NGS-based 

technologies and companion analytical methods are expected to rapidly propel our 

understanding of the immune composition of tumors through the lens of high-throughput 

data.
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Box 1: Single-Cell Transcriptomics Analysis: Basic concepts

Computational tools and packages are now available to efficiently perform a variety of 

analyses and produce visualizations of single-cell transcriptomics data [30]. Software 

packages (such as Seurat [31] (R-package), Scanpy [32] (python toolkit), R Bioconductor 

[33] and Biscuit [12]) are used for initial data normalization and batch correction 

followed by general landscape characterization of the cell population (e.g. via 

visualizations, clustering, and the detection of highly variable genes).

The characterization of the populations profiled by scRNA-seq includes several steps, 

with the goal of inferring a cell’s identity with respect to different factors of interest and 

gaining an understanding of the extent of diversity in the given dataset [34,35]. Due to the 

high dimensionality of scRNA-seq data, linear (e.g. principle components analysis 

(PCA)) and non-linear (e.g. diffusion components and t-distributed stochastic 

neighborhood embedding (tSNE)) projections are frequently used to reduce the 

dimensionality of the input data for subsequent analyses (Figure 1A). These techniques 

are useful for visualization, cell clustering, and the annotation of sets of genes that co-

vary across the data. Genes that are specific to each of the identified cell clusters can be 

annotated using statistical models that vary in their efficiency and the extent to which 

they account for technical aspects of scRNA-seq [36].

Frequently, cells profiled with scRNA-seq are not naturally organized in clusters, but 

rather in continuous trajectories. In such cases it is advised to leverage additional 

methods for the extraction of informative genes and data visualization. Several packages 

that use diffusion maps and force directed layout or similar techniques include Destiny 

(implemented in R Bioconductor) [37], Monocle [38], Scanpy [32], SPRING [39], and 

others [40,41]. An additional approach infers the future state of a cell by leveraging the 

relative ratio of spliced and unspliced mRNA molecules within each cell, enabling the 

discovery of branching events in cell differentiation from scRNA-seq data collected at a 

single timepoint [42] A technique within Scanpy incorporates both clustering and 

trajectory inference for visualization in a unified framework [43].

A prominent component of scRNA-seq analysis involves identifying gene modules of 

interest: sets of genes that co-vary within the given dataset (Fig. 1B). Such gene modules 

can be annotated in multiple ways and are then utilized by the researcher for analyses, 

such as inferring the functionality of cell subsets (clusters) or identifying central 

candidates for perturbation. Gene modules can be identified via annotation of gene sets 

that are cell-cluster-specific, correlated with a dimension of interest (e.g. a specific PC or 

diffusion component) or co-vary across the data (as implemented in PAGODA [44]).

Following initial characterization, additional analyses are used to explore the scRNA-seq 

landscape. For example, gene sets identified as relevant for a cell population (cluster) or 

trajectory of interest can be analyzed with bioinformatics techniques to identify dominant 

pathways and potential regulators (via e.g. ENRICHR [45], GORILLA [46], and 

MSIGDB [47]). Gene sets of special interest to the researcher can be tested for their 

relevance to the cell populations or trajectories of interest (e.g. cell-cycle related genes 

[48], or gene sets associated with annotated function [49](Fig. 1C). Additionally, tailored 
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analyses such as integration of public datasets (e.g. TCGA) or TCR/BCR information 

(Fig. 1C) can elucidate novel insights of the studied system.
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Figure 1: Single-cell data analysis methods
Several analysis steps are taken to generate an initial characterization of single-cell data 

(following or in parallel to normalization of technical noise and artifacts). (A) Various linear 

(e.g. PCA; principle component analysis) and non-linear (e.g. tSNE; t distributed stochastic 

neighborhood embedding and diffusion maps) dimensionality reduction methods can be 

used for identifying the main discriminants of the data of interest and for visualization. 

Clustering of cells by their transcriptomes can identify sets of cells that comprise units 

within the system. (Diffusion component illustration based on [37]) (B) Gene sets that co-

vary across the data identify gene modules of interest with respect to heterogeneity and 

potential functionality of the cell subpopulations within a sample (figure based on [50]). (C) 
Integration of additional data types and sources can enable broader insights into the scRNA-

seq dataset. Shown are two examples. Left: Scoring single-cells for the extent to which they 

express pre-defined gene signatures to infer function and characteristics of populations 

identified. Right: Integration of single-cell TCR information generated in parallel to the 

scRNA-seq data (figure based on [12]).
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Table 1.

Comparison of commonly used RNA sequencing protocols
1

Protocol SMART-Seq2 Cel-Seq2,
MARS-seq,
STRT

10X Chromium, Drop-seq,
Indrop

Capture method Plate-based Plate-based Droplet-based

Transcript Full-length 3’ or 5’ 3’ or 5’

UMI No Yes Yes

Throughput Medium Medium High

TCR/BCR annotation Yes Possible with additional primer amplification Specific to method

Pooling step Late Early/Late Early

1
Some methods are not cited due to space constraints.
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