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Abstract Mutations frequently have outcomes that differ across individuals, even when these

individuals are genetically identical and share a common environment. Moreover, individual

microbial and mammalian cells can vary substantially in their proliferation rates, stress tolerance,

and drug resistance, with important implications for the treatment of infections and cancer. To

investigate the causes of cell-to-cell variation in proliferation, we used a high-throughput

automated microscopy assay to quantify the impact of deleting >1500 genes in yeast. Mutations

affecting mitochondria were particularly variable in their outcome. In both mutant and wild-type

cells mitochondrial membrane potential – but not amount – varied substantially across individual

cells and predicted cell-to-cell variation in proliferation, mutation outcome, stress tolerance, and

resistance to a clinically used anti-fungal drug. These results suggest an important role for cell-to-

cell variation in the state of an organelle in single cell phenotypic variation.

DOI: https://doi.org/10.7554/eLife.38904.001

Introduction
Isogenic populations often exhibit considerable phenotypic heterogeneity even in an identical envi-

ronment. One common phenotypic variation that has been observed in isogenic populations of

microbial and mammalian cells, including cancer cells is variation in proliferation rate (Sandler et al.,

2015; Fridman et al., 2014; Levy et al., 2012; Yaakov et al., 2017; Ferrezuelo et al., 2012;

Polymenis and Schmidt, 1999; Gupta et al., 2011; Kiviet et al., 2014; Roesch et al., 2010). Phe-

notypic variations that are often coupled with variation in proliferation rate are the abilities of an

individual cell to survive stress and drug treatment (Levy et al., 2012; Yaakov et al., 2017). In this

regard, the existence of ‘persister’ cells in microbial populations is well known and poses a signifi-

cant challenge for antibiotic treatment (Fridman et al., 2014; Balaban et al., 2004; Kussell et al.,

2005; Wakamoto et al., 2013; LaFleur et al., 2006; Bojsen et al., 2017). Similarly, individual cells

in tumors have been shown to vary in their ability to survive anticancer drugs and can lead to drug-

resistant populations (Shaffer et al., 2017; Sharma et al., 2010; Ramirez et al., 2016; Hata et al.,

2016; Rego et al., 2017; Márquez-Jurado et al., 2018). Recent advances in single-cell techniques

are revealing the extent of transcriptomic and metabolic differences among isogenic cells

(Dey et al., 2015; Trapnell, 2015). The existence of such heterogeneity in gene expression in iso-

genic microbial and animal populations has been shown – to some extent – to underlie the variable

outcome of mutations (Dickinson et al., 2016; Burga et al., 2011; Raj et al., 2010; Eldar et al.,

2009; Horvitz and Sulston, 1980). Incomplete mutation penetrance and variable expressivity is also
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common in human disease (Cooper et al., 2013; Zlotogora, 2003; Giudicessi and Ackerman,

2013; Otterson et al., 1999).

Heterogeneity can arise due to stochastic fluctuations in biological processes taking place inside

cells. This can happen due to the small numbers of molecules involved in processes such as transcrip-

tion (Berg, 1978; Rigney, 1979; Cookson et al., 2010) or during stochastic partitioning of cellular

components during cell division (Birky and Skavaril, 1984; Huh and Paulsson, 2011). Although

genetic variation has been shown to influence proliferation heterogeneity (Ziv et al., 2013) and cell-

to-cell variation in the expression level of single genes and levels of metabolite has been correlated

with variation in proliferation rate and stress and drug resistance (Levy et al., 2012; Yaakov et al.,

2017; Shaffer et al., 2017; Burga et al., 2011; Raj et al., 2010; Eldar et al., 2009; Li et al., 2018;

Rotem et al., 2010; Battich et al., 2015), the true underlying causes of such phenotypic heteroge-

neity are poorly understood.

To identify genes and cellular processes involved in the generation of phenotypic heterogeneity

we set up a high-throughput microscopy assay to quantify proliferation heterogeneity in a yeast pop-

ulation. Using this assay, we quantify the impact of deletion of >1500 genes on proliferation hetero-

geneity. We present evidence that the variation in mitochondrial membrane potential is an

important determinant of phenotypic heterogeneity in individual cells. We also show that mitochon-

drial membrane potential impacts gene expression and stress tolerance and drug resistance in indi-

vidual cells. Taken together, our work suggests an important role for an organelle in generating

phenotypic heterogeneity across individual cells in a homogenous environment.

Results

Natural and lab yeast populations show proliferation heterogeneity
To investigate cell-to-cell variation in proliferation rates, we set up a high-throughput automated

time-lapse microscopy assay that measures the proliferation rates of thousands of single-cells per

plate as they grow into micro-colonies. The assay uses a microscope with laser-based autofocus for

image acquisition and a liquid handling robot to minimize density-dependent effects on prolifera-

tion. The data obtained are highly reproducible with mode proliferation rate of a lab strain being

0.407 ± 0.011 h�1, (mean ±sd) during >2 years of data collection (n = 44 batches; Figure 1A).

Laboratory strains of the budding yeast Saccharomyces cerevisiae showed substantial cell-to-cell

variation in proliferation, with ~10% of cells forming a slow growing sub-population in defined

growth medium (Figure 1A) (Levy et al., 2012; Ziv et al., 2013). This slow growing sub-fraction is

not unique to laboratory strains but exists in all natural and clinical isolates that we tested

(Figure 1B; Supplementary file 1) (Ziv et al., 2013). Growth of the culture for an additional 20 gen-

erations did not alter the proliferation rate distribution; the mixture of slow and fast proliferating

cells is maintained (Figure 1C). Proliferation is therefore a stable heterogeneous phenotype within a

population, with the amount of heterogeneity depending on the genetic background.

A genome-scale screen to identify genes that alter proliferation
heterogeneity
The effect of individual gene deletions on population-level growth rate has been well studied

(Giaever et al., 2002; Baryshnikova et al., 2010). Many deletions have been shown to reduce pop-

ulation growth rate and can do so in different ways. Deletions can uniformly affect fitness of all the

cells or alternatively, can affect fitness of a sub-population whereas the rest of the population

remains unaffected. Inter-individual variation in the outcome of mutations has been observed before

in multicellular organisms (Dickinson et al., 2016; Burga et al., 2011; Raj et al., 2010) but its rela-

tive occurrence has not been systematically quantified.

We therefore used the automated microscopy assay to quantify proliferation rate heterogeneity

in triplicate for 1600 gene deletion mutants (Supplementary file 2, including 1150 gene deletions

previously reported as affecting growth rates [Giaever et al., 2002; Baryshnikova et al., 2010]). We

obtained reproducible data (where at least two replicate measurements showed good agreement)

for 1520 deletions, with 1112 of these reducing the population proliferation rate in our experiment

(Mann-Whitney U test, FDR < 0.1).
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Figure 1. High-throughput analysis of single cell proliferation rate heterogeneity. (A) High throughput microscopy setup – log phase yeast cells were

diluted onto conA coated microscopy plate using Biomek NX liquid handling system to have similar cell density across wells. Cells were observed using

an ImageXpress Micro system. Images were processed using custom scripts and data for area of microcolony vs. time were obtained. The points in the

area vs. time graph show actual data and the solid lines show lowess fits. Data collected from all fields of view in a well constitute a microcolony

proliferation rate distribution for a strain. The common lab yeast strain BY4741 (WT) has ~10% slow proliferating sub-population. The density shows

mean density and the shaded areas in grey represent ±1 s.d. value at each point. The dotted red line shows the expected proliferation distribution if it

were normally distributed. (B) Natural strains of yeast (Ziv et al., 2013) also have slow proliferating sub-populations. Each point represents data for one

strain. Solid lines show median value. (C) WT strain re-created the original proliferation distribution even after 20 generations of growth. The plot shows

data from two replicate measurements.

Figure 1 continued on next page
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Deletion strains with similar population proliferation rates often showed strikingly different

degrees of intra-population heterogeneity (Fig, 2A-C). At the single cell level,~39% of all mutants

with a significant reduction in population proliferation rate (1112 mutants) showed significantly

higher variation in mutation outcome compared to the WT strain (Mann-Whitney U test, FDR < 0.1,

after correcting for change in mode growth rate). Among these mutants,~13% had the same mode

growth rate as the WT strain while showing higher variability (Mann-Whitney U test, FDR < 0.1).

However, almost all mutants (1111 of 1112 mutants) had a subset of cells proliferating at the same

rate as the bulk of the wild-type (WT) population (one sample Wilcoxon rank-sum test for overlap

with bulk WT distribution differing from zero, FDR < 0.1; Figure 2D, Figure 2—figure supplement

1). Thus, a highly variable outcome is actually the normal outcome for proliferation rate at the single

cell level when a non-essential gene is inactivated (Figure 2D, Figure 2—figure supplement 2A).

Deletion of genes involved in mitochondrial function alter
heterogeneity
To identify the determinants of this cell-to-cell variation in growth-rate and mutational impact we

classified each of the deletions by how it affected both the mode and distribution of cellular prolifer-

ation rates (Supplementary file 2, Figure 2A,B). Approximately, 17% of the mutants showed no

change in either mode proliferation rate or percentage of slow sub-population (in grey),

whereas ~43% exhibited a change in mode proliferation rate but no change in slow fraction (in light

blue). Interestingly, 48 mutants reduced the slow fraction without any change in mode proliferation

rate (in red) and 97 mutants increased the slow fraction without altering the mode proliferation rate

(in blue). In addition, there were 78 mutants that reduced both the slow fraction and the mode pro-

liferation rate (in orange). Finally, 370 mutants reduced the mode growth rate but increased the

slow sub-population (in magenta, Figure 2A). Across mutants, we observed a strong inverse rela-

tionship between mean growth rate and noise (co-efficient of variation) (Figure 2C), as has been

observed for gene expression (Newman et al., 2006; Bar-Even et al., 2006).

To identify biological processes associated with changes in the slow growing sub-population, we

performed a GO functional enrichment analysis on genes in these categories (FDR < 0.1). Deletions

causing the largest increase in the fraction of slow proliferating cells were highly enriched for nuclear

genes encoding mitochondrial proteins (Figure 2C,E). Among the mutants that increased the slow

fraction but also reduced mode growth rate (Figure 2E, magenta), ~30% localized to mitochondria

(~1.2 fold enrichment),~13% localized to the mitochondrial envelope (>1.6 fold enrichment)

and ~4.6% were involved in cellular respiration (~2-fold enrichment). In particular, deletion of genes

that localized to the mitochondrial envelope resulted in a large increase in slow fraction and noise

(Figure 2E, Figure 2—figure supplement 2B, Supplementary file 2). Mutations that affect mito-

chondria, and in particular the mitochondria membrane, increase heterogeneity, suggesting that het-

erogeneity in proliferation might be associated with cell-to-cell variation in mitochondria. Among

genes with other functional associations, deletion of genes with kinase activity (STE11, SNF1, NPR1,

ATG1, HXK2), genes with cytoskeletal protein binding capability (HOF1, SRV2, SHE1) and genes

associated with carbohydrate transport (SNF3, HXK2) reduced percentage of slow growing cells but

did not alter the mode growth rate.

Mitochondrial membrane potential but not amount predicts slow
growth
To further investigate the role of mitochondria in proliferation heterogeneity, we used the Mito-

Tracker dye to quantify mitochondrial amount in WT cells and five deletion strains with very different

proliferation distributions. Total mitochondria amount varied little across the strains (Figure 2—fig-

ure supplement 2C), ruling out cell-to-cell variation in segregation of the organelle as a driver of

Figure 1 continued

DOI: https://doi.org/10.7554/eLife.38904.002

The following source data is available for figure 1:

Source data 1. Percentage of slow-growing cells in natural yeast strains.

DOI: https://doi.org/10.7554/eLife.38904.003
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Figure 2. Single cell proliferation rate distributions for 1500 gene deletions. (A) Mode growth rate (h�1) and % slow fraction for 1520 deletion strains.

The points represent average values across replicates and the bars represent ±1 s.d. values. The colours show classification of mutants into different

categories according to change in mode growth rate (see Materials and methods, FDR < 0.1) and change in % slow fraction (FDR < 0.1) compared to

the wild-type (WT) strain. The table and pie chart show the number and proportion of strains in each group (colour coded). Replicate data for WT strain

Figure 2 continued on next page
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heterogeneity. However, signal from the mitochondria membrane potential dye TMRE varied sub-

stantially across WT, mutants and natural strains (Figure 3A,B). This suggested that the mitochondria

membrane potential – but not their amount – might be driving proliferation heterogeneity.

To determine if mitochondrial membrane potential is correlated with variation in growth rate

within a population, we sorted wild-type cells according to their TMRE staining and measured the

fraction of slow proliferating cells. The population with high TMRE was highly enriched for slowly

proliferating cells (Figure 3C). This same fraction was also strongly enriched for respiration deficient

cells (Figure 3D). This strong enrichment for slow proliferation and respiration deficiency was also

observed for the cells with high TMRE in gene deletion strains and in natural isolates (Figure 3—fig-

ure supplement 1A–D).

We further quantified the TMRE signal and proliferation distribution in a set of twelve strains that

differ only by naturally occurring polymorphisms known to affect mitochondrial function by altering

mtDNA inheritance (Dimitrov et al., 2009). Across all datasets, the percentage of slowly proliferat-

ing cells showed a high correlation with the percentage of respiration-deficient cells (Figure 3E,F) as

well as with the percentage of high TMRE cells (Figure 3—figure supplement 2A).

Although cell-to-cell variation in mitochondrial amount did not predict proliferation rate variation

(Figure 3—figure supplement 2B), mtDNA copy number was substantially lower in the cells with

high TMRE (Figure 4A; Figure 4—figure supplement 1A,B), suggesting a likely role of mtDNA

copy number in defining mitochondrial membrane potential and ultimately, in generation of growth

rate heterogeneity.

To establish a causal relationship between mtDNA copy number and slow growth, we introduced

an extra copy of the mitochondrial DNA polymerase Mip1 (Genga et al., 1986), which increased

mtDNA copy number 3-fold (Figure 4B). This reduced both the fraction of slow proliferating and

respiration-deficient cells and the fraction of cells with high TMRE signal (Figure 4C,D), suggesting

that variation in mtDNA copy number can be causal for variation in both mitochondrial membrane

potential and proliferation. Consistent with an effect of mtDNA copy number on growth, knocking

out of Mip1 gene led to complete loss of mtDNA and resulted in completely slow growing yeast

population compared to WT (Figure 4—figure supplement 1C,D) (Genga et al., 1986). Further-

more, mtDNA copy number showed a strong negative correlation with the percentage of slow prolif-

erating cells across mutants (Figure 4E, Figure 4—figure supplement 1E). Finally, forcing cells to

respire by pre-growing them on ethanol as the sole carbon source prior to growth in glucose

decreased the fraction of slowly proliferating cells (Figure 4F). Taken together, these results suggest

that alterations in mitochondrial membrane potential, which can be caused by mtDNA copy number

reduction below a threshold and other mechanisms is the underlying cause of slow growth in individ-

ual cells.

Figure 2 continued

are shown by multiple black points. (B) Examples of growth distributions of mutants classified into different groups which are colour coded as in A. The

distribution in dark grey shows WT growth distribution. (C) Coefficient of variation (CV) vs. mean growth rate for all strains. WT values are shown in

black; mutants of genes that localize to mitochondrial envelope in red. The points represent average values across replicates and the bars represent ±1

s.d. values. (D) % of WT-like cells in all mutants showing variable mutation outcome. It was calculated for all mutants showing significant reduction in

mean proliferation rate and had significant proportion of cells growing as fast as the bulk of the WT proliferation distribution (Wilcoxon rank-sum test).

(E) Functional class enrichment (GOslim) analysis for different classification groups show significantly enriched functional classes (hypergeometric test,

FDR < 0.1). P – Biological Process, F – Molecular Function, C- Cellular Component. Bars show % of genes in a particular group (colour coded) being

present in that particular functional class.

DOI: https://doi.org/10.7554/eLife.38904.004

The following source data and figure supplements are available for figure 2:

Source data 1. Percentage of slow-growing cells in WT and mutant strains.

DOI: https://doi.org/10.7554/eLife.38904.007

Figure supplement 1. Schematic diagram showing calculation of %WT like cells from mutant proliferation distributions.

DOI: https://doi.org/10.7554/eLife.38904.005

Figure supplement 2. Calculation of slow-growing sub-population and functional enrichment analysis.

DOI: https://doi.org/10.7554/eLife.38904.006
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Variation in mitochondrial membrane potential predicts additional
phenotypic heterogeneity including drug resistance
To systematically understand the physiological differences between sub-populations that vary by

mitochondrial membrane potential, we analyzed the transcriptome by RNA sequencing. Cells with

high TMRE have low expression of respiratory and proliferation-associated genes (Figure 5A, Fig-

ure 5—figure supplement 1A,B). Consistent with previous analyses of slow proliferating cells

(Yaakov et al., 2017; van Dijk et al., 2015), they also exhibit a DNA damage response (Figure 5B)

and signs of iron starvation (Figure 5C), which has previously been reported for respiration deficient

cells (Veatch et al., 2009; Puig et al., 2005). Cells with intermediate TMRE have very similar prolifer-

ation distributions to cells with low potential (Figure 3C). However, their gene expression was

Figure 3. Variation in mitochondria potential across single cells underlies proliferation heterogeneity. (A) TMRE stain intensity (log transformed)

measured by flow cytometry in WT and deletion mutants. (B) TMRE intensity in WT and natural isolates of S. cerevisiae strains. (C) WT cells were sorted

by TMRE signal intensity into four bins HI, M1, M2 and LO with gates as shown (~5% of the population sorted in each bin) and growth rate distributions

were measured using high throughput microscopy setup. HI bin was enriched for slow growing cells. (D) % of respiration deficient cells in each bin from

WT strain. The columns represent the average values from 12 independent experiments and the bars show ±1 s.d. values. (E) Percentage of respiration

deficient cells in WT and mutant strains is positively correlated with the percentage of slow growing cells. The blue dotted line represents y = x line.

The error bars represent ±1 s.d. measured from at least two biological replicates for each strain. (F) Percentage of respiration deficient cells in UCC

strains (Dimitrov et al., 2009) is strongly positively correlated with the percentage of slow growing cells. The blue dotted line represents y = x line. The

error bars represent ±1 s.d. measured from at least two biological replicates for each strain.

DOI: https://doi.org/10.7554/eLife.38904.008

The following source data and figure supplements are available for figure 3:

Source data 1. TMRE intensity distribution in WT and mutant strains.

DOI: https://doi.org/10.7554/eLife.38904.011

Figure supplement 1. Cells with high mitochondrial membrane potential in mutant yeast strains, natural yeast isolates and diploid strain BY4743 show

enrichment for slow-growing and respiration deficient cells.

DOI: https://doi.org/10.7554/eLife.38904.009

Figure supplement 2. High TMRE signal but not mitotracker green signal predicts slow-growing subpopulation

DOI: https://doi.org/10.7554/eLife.38904.010
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Figure 4. Reduction in mtDNA copy number causes slow growth. (A) mitochondrial DNA (mtDNA) copy number in the sorted bins HI-LO from WT

strain measured through quantitative PCR. Two columns show results from two independent experiments. The column represents average mtDNA copy

number calculated based on five pairs of primers binding mtDNA and five pairs of primers binding nuDNA and three technical replicates for each of

these primers. The bars show ±1 s.d. values. (B) Overexpression of Mip1 gene in WT strain led to significant increase in mtDNA copy number (C)

Overexpression of Mip1 gene led to significant reduction in percentage of respiration deficient cells and in slow growing subpopulation in WT strain

and tim11D mutant. Data are from at least four biological replicates. (D) Overexpression of MIP1 gene in WT strain reduced percentage of cells with

high TMRE signal. (E) Percentage of slow growing sub-population was strongly correlated with mtDNA copy number in mutant strains. The dotted lines

represent values for WT strain. The error bars represent ±1 s.d. values. (F) Pre-growing WT strain overnight in medium containing ethanol as sole

carbon source (that required respiration) reduced percentage of slow growing sub-population by ~50% compared to pre-growth in medium containing

glucose as the sole carbon source. Data are from six biological replicates.

DOI: https://doi.org/10.7554/eLife.38904.012

The following source data and figure supplement are available for figure 4:

Source data 1. mtDNA copy number, % slow fraction and % respiration deficient cells in WT and mutant strains.

DOI: https://doi.org/10.7554/eLife.38904.014

Figure supplement 1. Role of mtDNA in generating slow growth and high mitochondrial membrane potential .

DOI: https://doi.org/10.7554/eLife.38904.013
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Figure 5. Cell-to-cell variation in mitochondria potential predicts single cell drug resistance. (A) Heatmap of expression of respiration genes in cells

sorted by their TMRE signal intensity (bins HI-LO). (B) Heatmap of expression of DNA damage response and DNA repair genes. (C) Heatmap of

expression of genes associated with iron deficiency (Puig et al., 2005; Veatch et al., 2009). Data are from four independent experiments. (D) Sorted

bins from WT cells were grown in a commonly used antifungal drug fluconazole and were observed under microscope for growth over 7 days. The

images show growth of cells in bins HI, M1, M2 and LO in 50 mg/ml of fluconazole after 7 days. (E) Cells of HI bin showed significantly higher survival

compared to other bins in both 50 mg/ml (three independent experiments) and 60 mg/ml fluconazole (four independent experiments). Cells were grown

in liquid medium supplemented with fluconazole on microscopy plates and viability was calculated from microscopic observations over 7 days. Colonies

showing growth rate above 0.02 h�1 after first time point were considered to be survivors. Error bars show ±1 s.d. values. (F) Percentage survival of high

and low TMRE cells on fluconazole plates. High TMRE cells showed higher survival than low TMRE cells (Mann-Whitney U test). A substantial fraction of

surviving high TMRE cells were respiration competent. The error bars represent ±1 s.d. values from six technical replicates for each bin. X-axis shows

fluconazole concentrations used from three independent experiments. (G) From RNA sequencing data, cells from HI bin showed significantly higher

expression of multidrug transporter PDR5 gene and its transcriptional activator PDR3 compared to cells from bins M1, M2 and LO. Results are from four

independent experiments.

DOI: https://doi.org/10.7554/eLife.38904.015

The following source data and figure supplements are available for figure 5:

Source data 1. Transcriptomic changes and increased antifungal resistance in high TMRE cells.

DOI: https://doi.org/10.7554/eLife.38904.028

Figure supplement 1. Expression patterns of diverse gene functional classes in cells with low, medium and high mitochondrial membrane potential.

DOI: https://doi.org/10.7554/eLife.38904.016

Figure supplement 2. Stress survival and expression of stress response genes in cells with different levels of mitochondrial membrane potential.

Figure 5 continued on next page
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substantially different (Figure 5—figure supplement 1C,D), including reduced expression of respira-

tory genes in cells with intermediate TMRE (Figure 5—figure supplement 1D).

In bacteria (Ihssen and Egli, 2004) and yeast (Levy et al., 2012; Brauer et al., 2008; Lu et al.,

2009), slow growing cells can have increased stress resistance. We therefore tested whether the

cells with high TMRE in a population are more resistant to acute heat stress. However, cells with

high TMRE were more sensitive to heat shock as well as to oxidative stress (Figure 5—figure sup-

plement 2A,B) and expressed some stress-response genes at lower levels (Figure 5—figure supple-

ment 2C).

Slow growing microbes and cancer cells often have increased drug resistance (Fridman et al.,

2014; Yaakov et al., 2017; Wakamoto et al., 2013; Ramirez et al., 2016; Levin-Reisman et al.,

2017; Moore et al., 2012). Moreover, in several species of fungi, complete loss of mitochondria is

associated with elevated tolerance to some antifungal drugs (Hallstrom and Moye-Rowley, 2000;

Brun et al., 2004; Zhang and Moye-Rowley, 2001) and respiration deficient strains are often iso-

lated from drug-treated patients (Bouchara et al., 2000; Ferrari et al., 2011; Peng et al., 2012).

We tested therefore whether the high TMRE cells differed in their sensitivity to a clinically used

antifungal drug, fluconazole. We found that cells with high TMRE were ~5–7 fold more resistant to

high concentrations of fluconazole (Figure 5D,E; Figure 5—figure supplement 3A). The cells surviv-

ing fluconazole treatment included a sub-fraction able to respire (Figure 5F). Cell-to-cell variation in

mitochondrial membrane potential is therefore also an important predictor of cell-to-cell variation in

drug resistance.

Fluconazole targets the cytochrome P450 14a-sterol demethylase enzyme (ERG11), resulting in

depletion of ergosterol, a key component of the yeast cell membrane (Hitchcock et al., 1990;

Ghannoum and Rice, 1999). Survival in fluconazole has been previously reported to depend on the

multidrug transporter PDR5 (Brun et al., 2004; Parsons et al., 2004; Miranda et al., 2010). High

TMRE cells had significantly higher level of PDR5 expression (Figure 5G; Figure 5—figure supple-

ment 3B) as well as higher expression of the ergosterol biosynthesis pathway (Figure 5—figure sup-

plement 3D). Consistent with previous work (Katzmann et al., 1994; Delaveau et al., 1994), the

elevated expression of PDR5 in the high membrane potential cells was dependent on the PDR3 tran-

scription factor (Figure 5—figure supplement 3C). Thus, the increased resistance in fluconazole of

Figure 5 continued

DOI: https://doi.org/10.7554/eLife.38904.017

Figure supplement 3. Molecular pathways that underlie increased drug resistance in cells with high mitochondrial membrane potential.

DOI: https://doi.org/10.7554/eLife.38904.018

Figure supplement 4. Growth lag and slowdown in high-throughput microscopy assay.

DOI: https://doi.org/10.7554/eLife.38904.019

Figure supplement 5. Correlation of growth rates of deletion mutants within experimental replicates and with published datasets.

DOI: https://doi.org/10.7554/eLife.38904.020

Figure supplement 6. Test for recovery of growth rate, mtDNA copy number and respiration capability in slow-growing sub-population.

DOI: https://doi.org/10.7554/eLife.38904.021

Figure supplement 7. Slow to fast switching in sorted sub-populations and in gene deletion mutants.

DOI: https://doi.org/10.7554/eLife.38904.022

Figure supplement 8. Percentage of microcolonies showing slow to fast switching and fast to slow switching in the sub-population of cells in TMRE

sorted bins HI, M1, M2 and LO from WT strain using different growth rate cutoffs (0.24 h�1, 0.26 h�1,0.28h�1,0.30h�1,0.32h�1,0.34h�1, and 0.36 h�1).

DOI: https://doi.org/10.7554/eLife.38904.023

Figure supplement 9. Percentage of microcolonies showing slow to fast switching and fast to slow switching in the sub-population of cells in TMRE

sorted bins HI, M1, M2 and LO from WT strain using alternative growth rate cutoffs as shown in the figure.

DOI: https://doi.org/10.7554/eLife.38904.024

Figure supplement 10. Measurement of TMRE in cells of sorted bins HI-LO from WT strain.

DOI: https://doi.org/10.7554/eLife.38904.025

Figure supplement 11. Microcolony growth rate distribution for cells in HI bin from TMRE sorted WT strain for calculation of switching rate from high

to low TMRE state.

DOI: https://doi.org/10.7554/eLife.38904.026

Figure supplement 12. Reproducibility of RNAseq experiments and growth rate measurements.

DOI: https://doi.org/10.7554/eLife.38904.027
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high TMRE cells is likely to be mediated, at least in part, by increased expression of a multidrug

transporter.

Discussion
In summary, we have shown here that mitochondrial membrane potential – but not the amount of

mitochondria – varies substantially across individual yeast cells and that this is associated with cell-

to-cell heterogeneity in proliferation, mutation outcome, and stress and drug resistance. Laboratory

strains of yeast have long been known to generate respiratory deficient ‘petite’ colonies at quite

high frequency (Dimitrov et al., 2009; Nagley and Linnane, 1970; Evans et al., 1985). However, a

slow growing sub-population of cells was observed in all the laboratory, natural, and clinical strains

that we tested (Figure 1A,B).

Although, mitochondrial genes showed the strongest enrichment for an increased slow fraction in

our gene deletion screen, other causes of slow growth will, of course, also exist. For example, dele-

tions of genes associated with chromosome segregation and nucleus organization also affected het-

erogeneity but had no apparent relation to mitochondrial function. Environmental conditions, both

during growth prior to microscopy, and during microscopy, are likely to affect heterogeneity; pre-

growth in ethanol reduces proliferation heterogeneity (Figure 4F), presumably due to selection for

cells with well-functioning mitochondria and high mtDNA copy number.

Previous theoretical studies have proposed that variability in the partitioning of cellular compo-

nents could lead to heterogeneity (Birky and Skavaril, 1984; Huh and Paulsson, 2011). However,

prior experimental work on the fidelity of mitochondria inheritance has shown it to be high, suggest-

ing it is likely to be of little phenotypic consequence for single cells (Jajoo et al., 2016). In contrast,

we have shown here that cell-to-cell variation in the state of the organelle can be high and predicts

phenotypic variation among single cells. Although variation in mitochondrial membrane potential

has been shown to exist in isogenic yeast populations (Fehrmann et al., 2013), here we have linked

such variations to heterogeneity in growth and drug resistance phenotypes. Variation in mitochon-

drial membrane potential was related to variation in mtDNA copy number in individual cells, but we

do not currently know if this is the only – or even the most common – cause of variation in the state

of the organelle across single cells. Future work will be required to track down the upstream, proxi-

mal causes of this cell-to-cell variation in organelle functional state. The list of gene deletions that

alter growth heterogeneity that we have reported here provide a rich resource for this future work.

In addition to the TMRE method we used, three different methods have now been used to iden-

tify slow-proliferating yeast within a population: GFP tagged TSL1, GFP tagged HSP12, and FitFlow,

a direct method (Levy et al., 2012; Li et al., 2018; van Dijk et al., 2015). These methods agree on

some aspects and disagree on others. For example, early work on proliferation heterogeneity in

yeast has correlated expression noise in a stress response gene with proliferation heterogeneity

(Levy et al., 2012) with this ultimately linked to the variation in the activity of the Ras/cAMP/protein

kinase A (PKA) pathway and its target transcription factors MSN2 and MSN4 in individual yeast cells

leading to variation in expression of downstream stress response genes (Li et al., 2018). Some of

our results are identical to that of Li et al. (Li et al., 2018); we also find that pde2 and ira2 cells have

a reduced fraction of slow growing microcolonies. Others differ. Importantly, TSL1 mRNA expression

is lower in the high TMRE sub-population, as are the MSN2/MSN4 targets CTT1, DDR2 and HSP12.

Other studies have suggested a role for the DNA damage response in the generation and or

maintenance of proliferation heterogeneity (Yaakov et al., 2017; van Dijk et al., 2015). Results

from our screen show that the slow growing sub-populations in an isogenic yeast population are pri-

marily driven by loss of mitochondrial function in lab, natural and clinically-isolated yeast strains. Loss

of mitochondrial function leads to a loss of respiration capability and induced DNA damage

response, consistent with previous reports (Yaakov et al., 2017; van Dijk et al., 2015). However,

while it is tempting to speculate that the mitochondria defects in the high TMRE sub-population

cause the DNA damage seen in other studies, the partial conflict in the mRNA-sequencing data sug-

gest that this is not the case.

Taken together, results across all four studies suggest that there are multiple types of slow-prolif-

erating cells. It will be interesting to determine the full extent of the heterogeneity in cell-state and

stress resistance within isogenic populations.
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Prior work on the causes of variation in proliferation rates, stress and drug resistance, and muta-

tion outcome across individuals and individual cells has focused on fluctuations in gene expression

as causative influences (Levy et al., 2012; Yaakov et al., 2017; Shaffer et al., 2017; Burga et al.,

2011; Raj et al., 2010; Eldar et al., 2009; Li et al., 2018; Rotem et al., 2010; Battich et al., 2015).

Here we have shown that, in yeast, variation in an organelle is strongly associated with heterogeneity

in gene expression across single cells. In animals, inherited and somatic genetic variation in the mito-

chondrial genome can act as an important modifier of phenotypic variation (Haag-Liautard et al.,

2008; Kujoth et al., 2007; Tyynismaa and Suomalainen, 2009; Kauppila et al., 2016). Recent work

has also revealed substantial variation in mtDNA copy number across human tumors (Reznik et al.,

2016). Moreover, in mammalian cells, mitochondrial variability has been suggested to be an impor-

tant influence on cell-to-cell variation in gene expression and splicing (Johnston et al., 2012;

Guantes et al., 2015; Guantes et al., 2016) and to influence variability in cell death by modulating

apoptotic gene expression (Márquez-Jurado et al., 2018). Taken together, these results suggest

important roles for cellular organelles, in general, and mitochondria, in particular, in the generation

of heterogeneity among individual cells. In future work, therefore, it will be important to test the

extent to which cell-to-cell variation in the state of mitochondria and other organelles also contrib-

utes to variable phenotypic outcomes, mutation effects, and drug resistance in human cells, includ-

ing in cancer.

Materials and methods

High-throughput microscopy assay
Our high-throughput microscopy assay was inspired by the microcolony growth measurement assay

by Levy et al. (2012). 96 strains were grown from glycerol stocks in a 96-well plate containing Syn-

thetic Complete medium (0.67% Yeast Nitrogen Base without amino acids and 0.079% Complete

Synthetic Supplement (ForMedium, UK)) with 2% glucose (SCD) for 24 hr at 30˚C. The cells were

diluted 1:50 in fresh medium, grown for 20 hr and diluted again 1:50 in fresh medium. Finally, cells

were grown for 4 hr, cell densities were determined by OD at 600 nm in a Tecan plate reader and

then were diluted to another plate containing SCD or appropriate medium required for microscopy

experiment using a Biomek NX (Beckman Coulter) liquid handling robot, capable of pipetting vari-

able volumes of cells across wells in a 96 plate, to a target density of ~17000 cells/ml. This minimized

any possible bias due to variability in cell densities among strains. A final 5-fold dilution was done by

pipetting 80 ml cells onto a pre-coated 96-well microscopy plate containing 320 ml of SCD. The

microscopy plate was then sealed with LightCycler 480 sealing foils (Roche), cells were spun at 450

rpm for 2 min and taken for microscopy observations.

Microscopy plates (96-well glass bottom, MGB096-1-2-LG-L, Brooks Life Science Systems) were

coated with 200 ml sterile solution of 200 mg/ml concanavalin A (type IV, Sigma) at 37˚C for 16–18 hr.

The solutions were then pipetted out and the plates were washed twice with sterile milli-q water.

Plates were dried at 4˚C for at least 24 hr. Imaging was performed using an ImageXpress Micro

(Molecular Devices) microscope, with laser autofocusing, at an interval of 90 min for up to 12 hr. The

microscope chamber was maintained at 30˚C.

Image processing
Images were processed using custom scripts written in perl. Yeast cells were identified by juxtaposi-

tion of bright and dark pixels (10,36). A pixel was considered ‘bright’ if its intensity exceeded

mean +2.2 s.d. value and a pixel was considered ‘dark’ if its intensity was below mean-2.2 s.d. value.

In addition, Sobel’s edge detection algorithm (Sobel and Feldman, 1968) was applied for identify-

ing yeast cell boundaries with sharp changes in pixel intensity. Clustering was used to identify the

microcolonies and the centroid position for each microcolony was calculated. Microcolonies were

tracked through centroid tracking over time. Sudden increase or decrease in centroid number in a

time series indicated a failure in image acquisition or image processing and such images were dis-

carded from the analysis. To differentiate cells from cellular debris, residuals of concanavalin A coat-

ing etc., two filtering steps were used. First, only objects that were bigger than 50 pixels at the start

of observation were considered. Second, the object had to increase its size to greater than 2-fold at

the end of observation. Whether neighbouring colonies touch each other at any point in time during
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microscopy observation was also checked. If they did, they were tracked only up to the time they

touched each other. Similar to the findings of Ziv et al. (Ziv et al., 2013), lag phase during growth

was observed in some microcolonies in our experiments. In addition, growth slowdown near the end

of observation for some microcolonies was also observed, possibly due to nutrient limitation (Fig-

ure 5—figure supplement 4).

To calculate growth rate, linear regression on natural log-transformed area vs. time for three con-

secutive time points was performed and only fits with R2 �0.9 were considered. This was repeated

using a three-point moving window over all time points. Of all these regressions, the maximum value

was chosen as the microcolony growth rate to avoid biases because of slow down of growth during

lag and/or due to possible substrate limitation near the end of observation.

Screening of deletion mutants, classification and functional enrichment
analysis
Growth distributions for deletion mutants were measured in three independent experiments on dif-

ferent days. To calculate reproducibility of growth rate between replicates, mean growth rate was

allowed to vary up to 0.05 h�1 and then Kolmogorov-Smirnov distance (K-S distance) (Justel et al.,

1997) was calculated between all replicates after shifting one of them (through addition/subtraction)

by difference in mean growth rates. Three replicates were considered as three nodes in a graph with

K-S distance between them as the edge weight. If the K-S distance between two replicates

exceeded 0.1, no edge was drawn between those two nodes. The sub-graph where the maximum

number of nodes was connected to each other directly and via shortest possible distance was con-

sidered as reproducible replicates. Only mutants with at least two reproducible replicates were con-

sidered in our analysis. The number of reproducible replicates for each mutant is given in

Supplementary file 2. The proliferation distributions for all mutants are shown in

Supplementary file 4.

To calculate slow fraction from a proliferation distribution, first, a cumulative distribution function

(cdf) was calculated with density being calculated at an interval of 0.01 h�1. The cdf function was

then scanned for maximum slope using a window of 5 points. At the point with maximum slope, a

line with the maximum slope was fitted and the points that deviated from the fitted line by >0.02

h�1 were considered as the edges of the main subpopulation. In the next step, if the left sub-popula-

tion was bigger than the right sub-population, the percentage of slow fraction was calculated as (%

left sub-population-% right sub-population) and the percentage of fast sub-population was set to

zero. If the right sub-population was bigger than the left sub-population, the percentage of fast frac-

tion was calculated as (% right sub-population-% left sub-population) and the percentage of slow

sub-population was set to zero.

If the mode of a growth distribution is reduced (compared to WT) and the growth rate of the

slow fraction is not reduced, the main sub-population growth distribution is likely to overlap with

and mask a slow growing sub-population. To avoid such scenarios, all the reproducible growth distri-

butions for the WT strain were collected and the mode growth rate was computationally reduced in

steps of 0.01 h�1 without changing the growth rate of the slow sub-population. The percentage

slow fraction was calculated at each step. As expected, reduction in mode growth rate without mov-

ing the slow fraction led to a reduction in % of slow fraction (Figure 2—figure supplement 2A).

Mutants with altered mode proliferation rate compared to WT strain were identified through

Mann-Whitney U test (FDR < 0.1). Mutants with altered slow fraction were identified by Mann-Whit-

ney U test (FDR < 0.1) after correcting for any change in mode growth rate (Figure 2—figure sup-

plement 2A). Comparison between replicate measurements of mode growth rate and percentage

of slow fraction was done (Figure 5—figure supplement 5A). The mean proliferation rate of mutant

strains obtained in our assay was comparable with published values (Figure 5—figure supplement

5B).

We used GOslim gene annotation (Gene Ontology Consortium, 2015; Gene Ontology Consor-

tium, 2018) for functional class enrichment analysis and we performed a hypergeometric test as fol-

lows. Let us assume that in a group ‘g’ from screening (for example, the group with increased slow

fraction but no change in mode growth rate), out of total Ng genes, Xg genes are associated with

function f according to GOslim annotation. Let us also assume that out of total N genes screened in

our data, X genes belong to the functional class f according to GOslim annotation. Thus, the proba-

bility that the group ‘g’ contains more number of genes of functional class f than expected by

Dhar et al. eLife 2019;8:e38904. DOI: https://doi.org/10.7554/eLife.38904 13 of 23

Research article Genetics and Genomics

https://doi.org/10.7554/eLife.38904


chance alone is given by p ¼
P

Ng

i¼Xg

X

i

� �

N � X
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� �

N

Ng

� �

; which gives the p-value. A further multiple testing

correction was done using Benjamini-Hochberg procedure with FDR<0.1.

Quantification of incomplete penetrance
Incomplete penetrance was calculated for all mutants that showed significant reduction in mean pro-

liferation rate compared to the WT strain (Mann-Whitney U test, FDR < 0.1). For each of these

mutants, replicate proliferation distributions were compared with replicate proliferation distributions

of WT strain that were reproducible across the screening experiment. Average overlap of the mutant

proliferation distributions with the bulk sub-population of each of the WT proliferation distribution

was calculated. For WT strain, to calculate bulk sub-population from a proliferation distribution, first,

a cumulative distribution function (cdf) was calculated with density being calculated at an interval of

0.01 h�1. The cdf function was then scanned for maximum slope using a window of 5 points. At the

point with maximum slope, a line with the maximum slope was fitted and the point that deviated

from the fitted line by >�0.02 h�1 was considered as the edge of the bulk sub-population. Thus, for

each mutant, this led to a distribution of a percentage of cells showing WT-like proliferation (Fig-

ure 2—figure supplement 1). In the next step, it was tested whether the distribution of percentage

of WT-like cells was significantly different from zero (Wilcoxon rank-sum test for one sample) and an

FDR correction for multiple testing was performed (FDR < 0.1).

Mitotracker green and TMRE staining
To perform mitotracker green (MitoTracker Green FM, Molecular Probes, Thermo Fisher Scientific)

staining, cells were centrifuged at maximum speed for 2 min and washed twice with buffer contain-

ing 10 mM HEPES (pH 7.4) and 5% glucose. Cells were then re-suspended in the same buffer and

Mitotracker Green (10 mM stock dissolved in DMSO) was added to a final conc. of 100 nM. Cells

were incubated for 20 mins at 30˚C, washed twice with PBS (pH 7.4) and quantified by flow cytome-

try (LSR Fortessa, BD Biosciences).

TMRE (Tetramethylrhodamine, Ethyl Ester, Perchlorate) (Molecular Probes, Thermo Fisher Scien-

tific) is a positively charged dye that accumulates inside mitochondria depending on the mitochon-

dria transmembrane potential generated due to transfer of protons across mitochondrial membrane

resulting in net negative charge inside the mitochondria (Crowley et al., 2016). For TMRE staining,

cells were grown as in pre-growth step in microcolony assay, precipitated, washed twice with PBS,

were re-suspended in PBS, and TMRE was added to a final conc. of 100 nM from a 10 mM stock dis-

solved in DMSO. Cells were incubated at 30˚C for 30 min, were washed twice with PBS and were

analysed by flow cytometry or were sorted. There was a gap of 15–20 min between the end of stain-

ing and beginning of flow cytometry experiments due to the time required for cleaning, priming and

setting up of flow cytometry machine parameters. Day-to-day variations were observed in measure-

ment of TMRE distributions.

Cell sorting and growth measurement of sorted bins
Cells were sorted by TMRE signal into four bins HI, M1, M2, LO (Supplementary file 5, Figure 3C)

in an Aria II SORP cell sorter (BD Biosciences). For growth rate measurement, stress resistance mea-

surement, and mitochondrial DNA quantitation by qPCR in the sorted bins, 100,000 cells per bin

were sorted at room temperature into 1.5 ml tubes pre-filled with 600 ml of PBS. After sorting, 200

ml of YPD was added to each tube, cells were centrifuged for 5 min at maximum speed at room tem-

perature, and the supernatant was thrown away. Cells were re-suspended in 600 ml of PBS before

proceeding for subsequent experiments. For heat shock experiments, 100 ml of sorted cells were put

into PCR tubes and were subjected to heat shock in a PCR machine, put on ice for 1 min before

measurement of growth and viability. For RNA sequencing experiments, 750,000 cells per bin were

sorted in three 1.5 ml tubes, each pre-filled with 800 ml of PBS. After sorting, 200 ml of YPD was

added to each tube, centrifuged at maximum speed for 5 min, and supernatants were discarded.

The cell pellets were gently washed twice using PBS. Total RNA was isolated using MasterPure yeast

RNA isolation kit (Epicentre) following manufacturer’s protocol. Cells from four sorted bins were
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grown in SCD medium up to 48 hr and their growth distributions were remeasured using high-

throughput microscopy assay (Figure 5—figure supplement 6A).

To determine percentage of respiration deficient cells, cells were plated on plates containing Syn-

thetic Complete medium with 3% glycerol and 0.1% glucose (SCDG) solidified with 1.5% agar to a

target density of ~100–150 colonies per plate. After 5–7 days, number of small and big colonies

were counted and the percentage of respiration deficient cells were determined as - percentage of

respiration deficient cells = Number of small colonies
Number of smallþbig coloniesð Þ �100

Respiration deficient cells showed almost no mtDNA and remained slow growing even after

seven days of growth in Synthetic Complete medium with 2% glucose (SCD) (Figure 5—figure sup-

plement 6B,C).

Cells were also tested for switching of respiration capability (Figure 5—figure supplement 6D,

E). Equal number of sorted cells from each bin was plated onto SCDG plates (with 0.1% glucose and

3% glycerol as the carbon sources) and SCG plates (with 3% glycerol as the carbon source) and

allowed to grow for 5 days. Percentage of cells regaining respiration capability was calculated as

(No. of respiration capable cells on SCDG plate – No. of colonies on SCG plate)/Total no. of colonies

on SCDG plate.

Growth rate switching in microcolonies
To test whether microcolonies switch from fast to slow or slow to fast growth rate, microcolony

growth rates at all time points of tracking were calculated. Growth rate of a microcolony at a time

point was calculated using linear regression of ln(area) with time including one preceding time point

and one subsequent time point and only fits with R2 �0.9 were considered. In case of two cutoff val-

ues (say ‘c1’ as the lower cutoff and ‘c2’ as the higher cutoff) for growth rate for determining slow

and fast growing microcolonies, if a microcolony showed growth rate above ‘c2’ for at least three

consecutive time points and afterwards showed growth rate below ‘c1’ in at least three consecutive

time points and the time of switching from fast to slow growth was not within last three time points

of observation (to avoid incorrect classification due to slowdown in growth at later time points), the

colony was classified to be switching from fast to slow growth (Figure 5—figure supplements 7,

8 and 9). Similarly, if a microcolony showed growth rate below ‘c1’ for at least three consecutive

time points and afterwards showed growth rate above ‘c2’ in at least three consecutive time points

and the time of switching from slow to fast growth was not within first 3 time points of observation

(to avoid incorrect classification due to the lag phase), the colony was classified to be switching from

slow to fast growth (Figure 5—figure supplements 7, 8 and 9). In case of a single cutoff value, the

same criteria were applied as above with ‘c1’ being equal to ‘c2’. This was applied to identify switch-

ing in cells of TMRE sorted bins HI, M1, M2 and LO in the WT strain. Various cut-off values for identi-

fying switching were tested to check switching of microcolony growth rates across different ranges

of growth rates (Figure 5—figure supplements 7, 8 and 9).

For calculating switching in unsorted WT and deletion strains, the criteria for classification were

slightly modified since there were fewer time points of observation. Specifically, if a microcolony

showed growth rate above ‘c2’ for at least two consecutive time points and afterwards showed

growth rate below ‘c1’ in at least two consecutive time points and the time of switching from fast to

slow growth was not within last 2 time points of observation (to avoid incorrect classification due to

slowdown in growth at later time points), the colony was classified to be switching from fast to slow

growth (Figure 5—figure supplement 7). Similarly, if a microcolony showed growth rate below ‘c1’

for at least two consecutive time points and afterwards showed growth rate above ‘c2’ in at least

two consecutive time points and the time of switching from slow to fast growth was not within first 2

time points of observation (to avoid incorrect classification due to lag), the colony was classified to

be switching from slow to fast growth (Figure 5—figure supplement 7).

Switching of cells from high to low membrane potential
To test for switching between high and low TMRE states, cells with high, medium or low TMRE were

grown for 48 hr after sorting and their mitochondrial membrane potential values were remeasured

(Figure 5—figure supplement 10). Cells from the HI TMRE bin consisted of 99% of high TMRE cells

and 1% low TMRE cells (impurity). As measured by time-lapse microscopy (Figure 5—figure supple-

ment 11), high TMRE cells in the HI bin consisted of slow-growing (80%) and fast growing (20%)
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cells. Low TMRE cells in the HI bin (impurity) were assumed to be fast growing, as this gave a conser-

vative estimate for the number of cells switching from high to low TMRE state in 24 hr. The mean

growth rates of the slow and fast-growing cells (geometric mean) were 0.20 h�1 and 0.37 h�1

respectively (Figure 5—figure supplement 11). The percentages of cells switching from low TMRE

to high TMRE state in 24 hr was estimated as the average switching rate of cells from M1, M2 and

LO bins to high TMRE state and it was estimated to be ~10% in 24 hr (Figure 5—figure supplement

10). Given these data, assuming exponential growth for all sub-populations over 24 hr and in the

absence of switching from high to low TMRE state,

%of lowTMREcells
¼

0:01�e0:37�24�0:1� 0:01�e0:37�24ð Þ
0:80�e0:20�24þ0:19�e0:37�24þ0:01�e0:37�24 � 100%

¼ 71:87�7:19
97:20þ1365:49þ71:87

� 100% ¼ 4:21%

This estimate is 8-fold lower than the observed % of low TMRE cells (34.7%).

For growth of cells from 24 hr to 48 hr, assuming exponential growth for 24 hr and no switching

from high to low TMRE state,

%of lowTMREcellsafter48hr
¼

0:347�e0:37�24�0:1� 0:347�e0:37�24ð Þ
0:80�0:653�e0:20�24þ0:20�0:653�e0:37�24þ0:347�e0:37�24 � 100%

¼ 2493:81�249:4
63:47þ1437:36þ2493:81

� 100% ¼ 56:2%

Again, this estimate is substantially lower than the observed % of low TMRE cells (76.5%). Taken

together, these results suggest considerable switching from high to low TMRE state.

Measurement of mtDNA copy number by qPCR
To determine mtDNA copy number per cell using quantitative PCR (qPCR), five primer pairs specific

to nuclear DNA (ACT1, ALG9, KRE11, TAF10, COX9) and five primer pairs specific to mitochondrial

DNA (COX1, ATP6, COX3, ATP9, tRNA – primer picked around tQ(UUG)Q gene) were used

(Supplementary file 3). A standard curve for each of primer was made, using six concentrations of

genomic DNA serially diluted from the highest concentration by 4-fold at each step. Absolute quan-

tification of DNA copy number was performed using the standard curve. Three technical replicates

for each primer and for each sample were set up totaling 30 reactions per sample. To compare

mtDNA copy number across sorted bins, nuclear DNA and mtDNA copy numbers in all bins were

normalized by the respective values for LO bin. Two sample t-test was used to check whether the

normalized value for nuclear DNA differs significantly from the normalized value for mtDNA and a

p-value was calculated using a two-sample t-test. Mean mtDNA copy number per cell was calculated

by the ratio of mtDNA to nuclear DNA and standard deviations were calculated by taking error

propagation models into account.

To overexpress the MIP1 gene, the MIP1 gene under the control of the native promoter (930 bp

upstream and 262 bp downstream, total insert length - 4957 bp) was cloned into pRS413 plasmid

and then transformed into NEB 10B electrocompetent E. coli cells. The plasmid with the verified

construct was then isolated and transformed into yeast cells.

RNA sequencing experiment and data analysis
Isolated total RNA (using MasterPure yeast RNA isolation kit (Epicentre)) was checked and quantified

using bioanalyzer. 200 ng of total RNA for each sample was taken and was mixed with 4 ml of 1:1000

dilution of ERCC spike-in mix1 (Thermo Fisher Scientific). Sequencing was done in Illumina HiSeq

with paired end 2 � 50 bp reads. Quality of the sequenced reads was checked using

FastQC (Andrews, 2016) and then the reads were mapped to reference yeast transcriptome (R64-1-

1 reference cdna sequence from Ensembl [Hubbard et al., 2002]) using bowtie2 (Langmead and

Salzberg, 2012). Mapping statistics was calculated using a custom script where only read pairs map-

ping concordantly and uniquely to the reference sequence were considered. The data were normal-

ized using ERCC spike-in reads as controls using RUVg method in R package RUVSeq (Risso et al.,

2014). Correlation between replicates were checked through distance heatmap and PCA analysis

(Figure 5—figure supplement 12A,B), using R package DESeq2 (Love et al., 2014). Differentially

expressed genes were identified using package DESeq2. Functional enrichment analysis on sets of
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differentially expressed genes was done using a hypergeometric test as described above with multi-

ple testing correction (FDR < 0.1) (Benjamini-Hochberg method) with GOslim gene annotations.

Reconstruction of single mutants
Gene deletion mutants were remade in the WT strain using sequence specific homologous recombi-

nation. First, the deletion cassette from the appropriate deletion strain from the collection was

amplified using primers such that the amplified region contained the deletion cassette with KanMX

marker and 50–300 bp of overhang on either side of the cassette. Particular care was taken to avoid

neighbouring genes from being amplified. The PCR product was transformed into competent yeast

cells (prepared using lithium acetate and PLI – made by mixing 1 ml water, 1 ml 1M lithium acetate

and 8 ml 50% PEG3350) and colonies were selected on G418 plates. Two verified clones for each

mutant were picked for experiments. Some of the mutants associated with mitochondrial function

were found to be compensated in the deletion collection (Figure 5—figure supplement 12C,D).

Beyond the initial high-throughput measurement of proliferation distribution of deletion mutants, all

experiments were performed with freshly made deletion mutants.

Long-term microscopy-based growth measurements for measurement
of stress tolerance and drug resistance
To observe growth of yeast cells in drug (fluconazole dissolved in DMSO, stock conc. 5 mg/ml) over

7 days, yeast cells were imaged under the microscope every ~24 hr. To have a bigger part of a well

imaged and to increase the number of data points, 48 fields of view per well were imaged in these

experiments. Yeast cells and microcolonies were identified as above. Before tracking the microcolo-

nies over time, the images for all fields of view in a well were merged which allowed tracking of

microcolonies even if the plate was positioned slightly differently in the microscope at different time

points. Microcolonies were tracked over time and growth rates were calculated. A growth rate of

0.02 h�1 after the first time point was taken as cut-off for survival on fluconazole, as most colonies

showed initial growth but then stopped growing. Percentage survival in heat shock and hydrogen

peroxide treatment was calculated as the ratio of the number of colonies showing growth under

stressed condition compared to the total number of colonies showing growth under unstressed

condition.

Measurement of respiration capability in drug resistant cells
To test whether the cells that survive fluconazole treatment can still respire, the drug resistance of

the sorted sub-populations from the HI and LO bins were measured on agar plates after 15 days of

growth in SCD medium supplemented with fluconazole (9.5 or 10 mg/ml) and solidified with 1.5%

agar. This assay needed lower concentrations of fluconazole compared to the microscopy-based

assay, as only the colonies that divided multiple times were visible on the plate. Sorted cells from

bins HI and LO were plated directly after sorting onto the drug plates (5–6 replicates per bin), onto

plates without any drug as well as onto SCDG plates to calculate the percentage of cells capable of

respiration. Cells were counted after 15 days and 40–50 colonies from each plate were randomly

picked and checked for respiration capability by plating onto plates containing 3% glycerol as the

carbon source.

Data availability
RNA-sequencing data that support the findings of this study have been deposited in NCBI GEO

with the accession code GSE104343. Microscopy images have been submitted to openmicroscopy.

org. The raw microcolony growth data for the WT and mutant strains are available at https://github.

com/lehner-lab/MicroscopyCode-Dhar_et_al/tree/master/Microscopy_screen_processed_data.

Code availability
Custom codes for analysing microscopy images are available at https://github.com/lehner-lab/Micro-

scopyCode-Dhar_et_al (Dhar and Faure, 2019; copy archived at https://github.com/elifesciences-

publications/MicroscopyCode-Dhar_et_al).
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