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ABSTRACT With growing human genetic and epidemiologic data, there has been increased interest for the study of gene-by-
environment (G-E) interaction effects. Still, major questions remain on how to test jointly a large number of interactions between
multiple SNPs and multiple exposures. In this study, we first compared the relative performance of four fixed-effect joint analysis
approaches using simulated data, considering up to 10 exposures and 300 SNPs: (1) omnibus test, (2) multi-exposure and genetic risk
score (GRS) test, (3) multi-SNP and environmental risk score (ERS) test, and (4) GRS-ERS test. Our simulations explored both linear and
logistic regression while considering three statistics: the Wald test, the Score test, and the likelihood ratio test (LRT). We further applied
the approaches to three large sets of human cohort data (n = 37,664), focusing on type 2 diabetes (T2D), obesity, hypertension, and
coronary heart disease with smoking, physical activity, diets, and total energy intake. Overall, GRS-based approaches were the most
robust, and had the highest power, especially when the G-E interaction effects were correlated with the marginal genetic and
environmental effects. We also observed severe miscalibration of joint statistics in logistic models when the number of events per
variable was too low when using either the Wald test or LRT test. Finally, our real data application detected nominally significant
interaction effects for three outcomes (T2D, obesity, and hypertension), mainly from the GRS-ERS approach. In conclusion, this study
provides guidelines for testing multiple interaction parameters in modern human cohorts including extensive genetic and environ-
mental data.
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GENE and environment (G-E) interaction has been stud-
ied for a wide range of human traits using both genome-

wide scale interaction screening (Hamza et al. 2011; Hancock
et al. 2012;Wei et al. 2012;Wu et al. 2012; Siegert et al. 2013)
and targeted analyses focusing on sets of genes or single
nucleotide polymorphisms (SNPs) (Mahdi et al. 2009; Risch
et al. 2009; Nickels et al. 2013; Dashti et al. 2015). In regards
to the limited success, a number of statistical methods have
been developed to improve the detection of G-E interaction

effects (Thomas 2010a; Aschard et al. 2012; Gauderman et al.
2013). In particular, statistics based on aggregated genetic
information have been shown to be a promising path forward
(Manning et al. 2011; Hutter et al. 2012; Ma et al. 2013;
Courtenay et al. 2014; Qi et al. 2014; Jiao et al. 2015;
Aschard et al. 2017). In practice, the most common strategy
consists in testing for genetic risk score (GRS)-by-exposure
interaction using SNPs previously identified in marginal ge-
netic effect screenings (Ripatti et al. 2010; Salvatore et al.
2014; Pisanu et al. 2017), although the approach is applica-
ble to any sets of SNPs [e.g., gene-level sets, pathway- or
network-level sets, or polygenic set (Thomas 2010b;
Meyers et al. 2013)]. Basically, the GRS-based method aggre-
gates genetic information by summing risk alleles (alleles
associated with increased value of quantitative traits or
greater risk of disease traits). Potential gain in power for such
approaches comes from circumventing a penalty for multiple
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testing [a single 1 degree-of-freedom (df) test rather than
one test per SNP]. However, the main limitation is that the
power gain relies on an assumption that interaction effects,
if present, are highly correlated with the marginal genetic
effects (i.e., the risk alleles of SNPs in the GRS have G-E in-
teraction effects in the same direction). Note that this is
very similar to the burden test assumption for rare variants
analysis (Lee et al. 2014). When this concordance assump-
tion does not hold, the standard individual SNP-based inter-
action approach can outperform the GRS-based interaction
approach.

Given that a growing amount of extensive phenotypic and
epidemiological data in human genetic cohorts becomes
available, joint interaction tests involving multiple SNPs and
multiple exposures have been seldom considered, although
a linear mixed model approach using a random effect for
multiple interactions has been recently described (Moore
et al. 2019). There are several arguments in favor of applying
joint interaction approach for multiple interactions. First,
multiple environmental factors might influence a disease
through the same intermediate mechanisms. For example,
exposure to various carcinogens increases the risk of cancers
by increasing the risk of deleterious genetic mutations
(Kawaguchi et al. 2006; Ferreccio et al. 2013). Similarly,
shared intermediate phenotypes (e.g., atherosclerosis) for
heart attack and stroke are known to be associated with mul-
tiple lifestyle factors (e.g., smoking, diet, and alcohol con-
sumption) (Massin et al. 2007; Rafieian-Kopaei et al. 2014).
In such situations, one can hypothesize that nongenetic risk
factors may also have shared interaction effects with genetic
variants of the disease in question (Figure 1A). Second, be-
cause most exposures associated with human diseases dis-
play modest effect sizes, risk score approaches integrating
all effects of risk factors (McClelland et al. 2015; Merchant
2017) can potentially lead to increased power as done for
GRS. Moreover, some exposures have strong correlations
with one another [e.g., cigarette smoking and alcohol con-
sumption (Fisher and Gordon 1985), or diet and socio-
economic status (Darmon andDrewnowski 2008)]. Correlations
among exposures, if induced by an unmeasured variable, can
be used to improve power to detect interactions though only
a part of exposures interact with genetic variants (Aschard
et al. 2014) (Figure 1B).

As environmental data are increasingly common in large-
scale human genetic studies, interaction analyses including
multiple SNPs and multiple exposures might be performed
systematically on behalf of standard G-E interaction screen-
ings. However, despite a few recent works published (Casale
et al. 2017), our knowledge of the strengths and limitations
of joint analysis approach for multiple G-E interactions is still
limited. Here, we addressed a part of this question and ex-
plored the relative performance of four joint G-E interaction
test approaches for both quantitative and binary trait models:
(1) a joint test for multiple single SNP-by-single expo-
sure interaction effects (omnibus test), (2) an interaction
test between (weighted or unweighted) GRS and multiple

exposures, (3) an interaction test for multiple SNPs and an
environmental risk score (ERS), and (4) a GRS-by-ERS in-
teraction test. Specifically, we assessed their robustness and
relative power through simulations using three different sta-
tistical tests [Wald test, Score test and likelihood ratio test
(LRT)] and varying a range of parameters including the total
number of SNPs and exposures considered, the presence of
correlation between exposures, dependence between SNPs
and exposures, and the pattern of G-E interactions in regards
of the marginal genetic and environmental effects. We fur-
ther demonstrated the relevance of the proposed approaches
in three large sets of population-based cohort data focusing
on four common complex traits [coronary heart disease
(CHD), type 2 diabetes (T2D), obesity, and hypertension]
and four environmental risk factors (total energy intake, diet
quality, physical activity, and smoking status).

Materials and Methods

Model overview

Consider the following generalized linear model, including
main effects of genetic and exposure risk factors and G-E
interaction effects:

where Gi are SNPs, Ej are exposures, and the link function lðÞ
is either the identity when the outcome Y is continuous or
expit() when Y is a disease probability. In this model, bGi

is
themain effect ofGi (i ¼ 1 . . .M, whereM is the total number
of SNPs), bEj is the main effect of Ej ( j ¼ 1 . . .K, where K is
the total number of exposures), and bGiEj is the interaction
effect between Gi and Ej.

We aim at assessing the relative performances of joint
interaction tests, where multiple interaction parameters are
tested jointly in a fixed effect model, whether or not some of
the predictors are aggregated into summary variables (see
next section about GRS and ERS). For mathematical conve-
nience, we present here three joint tests using theWald, LRT,
and Score statistics. The multivariate Wald statistics GWald is
defined as:

GWald ¼ STQ21S (2)

where S is the vector of the L estimated interaction effect
parameters ðĝlÞ tested jointly and Q is the estimated vari-
ance-covariance matrix of these parameters, i.e.:
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Under the null hypothesis of no interaction effect (ĝ1 = . . .=
ĝL= 0), G follows a chi-squared distribution with df equal to
L ð¼ M3KÞ, the total number of interaction terms tested
jointly ðGWald � x2

df¼LÞ.
The LRT statistics GLRT is defined as:

GLRT ¼ 2
�
logðLðS0ÞÞ2 log

�
L
�
Ŝ
���

(3)

where LðŜÞ is the likelihood of the model when S ¼ Ŝ the
estimated interaction coefficients usingMaximum Likelihood
Estimators (MLE) or Ordinary Least Square. The GLRT follows
a chi-squared distribution with Lð¼ M3KÞ df under the null.

The Score test statistics GScore is defined as:

GScore ¼ UTðS0ÞI21ðS0ÞUðS0Þ (4)

where Uð0Þ ¼ @logðLÞ
@S jS¼S0 is the value of the derivative of the

log-likelihood when S ¼ S0, and Ið0Þ ¼ 2E

h
@2logðLÞ
@S@S’

��
S¼S0

i

is the Fisher Information. Under the null hypothesis, the
GScore follows a chi-square distribution with Lð¼ M3KÞ df.
Note that an important difference between the Score test and
the other tests is the total number of parameters estimated.
Indeed, the Wald test requires the unrestricted estimates of
the parameter (i.e., the model including interactions, so that
the total number of parameters equals M+ K+M3K), while
the LRT requires quires both the restricted (without interac-
tion) and unrestricted estimates of the parameter [i.e., (M+K)
32 + M3K], and the Score test requires restricted estimates
of the parameter (i.e., M + K). More details on these test
statistics are described in Supplemental Note (see Supple-
mental Material).

Interaction tests considered

In the standard omnibus test, all interaction effects, b̂GiEj from
Equation 1 are estimated and tested jointly, so the test statis-
tic Gomnibus � x2

df¼M3K. For GRS-based interaction tests, we
consider both weighted ðwGRSÞ and unweighted ðuGRSÞ
forms, where a GRS is built as the (weighted or unweighted)
sum of risk alleles of the M SNPs. Explicitly, uGRS ¼P

i¼1...m
Gi,

and wGRS ¼P
i¼1...m

wi 3Gi, where wi is commonly defined as

marginal genetic risk estimates from Y � lðw01 þ wiGiÞ. We
first use GRS in a multi-exposure by GRS (multiE-GRS)
model:

so that the corresponding combined test of the bGRS*Ej inter-
action terms is: GmultiE2GRS � x2

df¼K. As for GRS, we also con-
sider the use of ERS to capture a global effect of multiple
exposures. The ERS is built similarly to the wGRS using
weights from marginal environmental models (i.e.,
wERS ¼ P

j¼1...K
wj 3 Ej). The multi-SNP by ERS (multiSNP-

ERS) model is then defined as:

Y � l
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X
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þ
X

i¼1...M
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(6)

and the corresponding combined test of the bGi*ERSGi inter-
action terms is defined as GmultiSNP2ERS � x2

df¼M . Finally, we
consider the GRS-by-ERS interaction (GRS-ERS) approach:

Y � lðb0 þ bGRSGRSþ bERSERS þ bGRS*ERSGRS*ERSÞ
(7)

in which test statistics of bGRS*ERS can be defined as
GGRS2ERS ¼ ðb̂GRS*ERS=ŝbGRS*ERS

Þ2 � x2
df¼1

Simulation study

Unless otherwise stated, we simulated series of 10,000 rep-
licates each including N = 20,000 samples using Equation 1
with K = [2–10] correlated exposures and M = [10, 100,
300] independent SNPs, while varying the distribution of
exposures data (normal/non-normal, correlated strongly/
moderately), and allowing for dependence between SNPs
and exposures. We also varied the parameters of the model
ðbGi

;bEj; bGiEjÞ, but always assumed nonzero main effects of
the genetic variants and environmental factors that increased
risk of diseases (i.e., bGi

. 0 and bEj . 0). In each series, we
explored the performance of six joint test approaches
(i.e., omnibus, multiE-uGRS, multiE-wGRS, multiSNP-ERS,
uGRS-ERS, and wGRS-ERS) in null models ðbGiEj ¼ 0Þ and
alternative models ðbGiEj 6¼ 0Þ for robustness and power,
respectively.

Figure 1 Hypothetical causal
model. In (A), multiple exposures
(E1, E2, and E3) influence an inter-
mediate phenotype (U), which ef-
fect on the outcome (Y) depends
on a genetic variant (G). This sce-
nario induces multiple interaction
effects between G and the multi-
ple exposures on the Y. In (B),
multiple exposures (E1, E2, and E3)
are influenced by another unmea-

sured variable, inducing a correlation between them. However, only one of these exposures interacts with G. In such case, the joint test of all inter-
actions is more powerful than the test of E1xG only.
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For null simulation series, we calculated genomic infla-
tion factor ðlÞ as the ratio of the median value of observed
chi-square statistics over the median value of expected chi-
square statistics. Power was estimated under the alternative
models for two main scenarios, (1) different percentages of
true G-E interaction (i.e., 20, 40, or 60%), and (2) in the
presence or absence of correlation between marginal effects
and interaction effects. When comparing power, we also
performed a standard univariate model testing each G-E
pairwise interaction independently (e.g., 100 univariate
models for testing 10 SNP and 10 exposures). The signifi-
cance threshold for the six interaction approaches was 0.05,
while the significance threshold for the univariate model
was adjusted for multiple testing by using Bonferroni cor-
rection (= 0.05/L, where L is the total number of interac-
tion parameters tested). Binary traits were analyzed using
logistic regression, while quantitative traits were analyzed
using standard linear regression. For hypothesis testing, we
considered three test statistics in the joint test: Wald test,
Score test, and LRT.

Genetic variants were drawn independently of each other
from a binomial distribution with n = 2 and using the coded
allele as the risk allele. We considered two scenarios includ-
ing only common variants [risk allele frequency (RAF) of
1–99%] or only rare variants (RAF of 0.1–1% or 99–99.9%). To
mimic the genome-wide significant SNPs, the main effects of
SNPs were drawn from a left truncated normal distribution,
mean of 0, and variance equals to h2SNP/Mc, where h2SNP, the
trait heritability, equals 0.3 and Mc, the number of causal
SNPs, equals 10,000. Then, actual SNPs coefficients ðbGi

Þ
were derived by rescaling the main genetic effects based on
the expected probability of allele frequencies ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð12 p
p Þ,

where p is RAF. We generated exposure values from a mul-
tivariate normal distribution with mean 0 and a covariance
matrix set for the presence of relatively strong (mean pair-
wise r-squared equals 0.10, Supplemental Material, Figure
S6A) or moderate correlation (mean pairwise r-squared
equals 0.02, Figure S6B). For non-normal exposures, we ran-
domly selected 50% of the exposures and squared all values,
resulting in a chi-squared distribution of the exposure. Expo-
sure effects on the outcome ðbEjÞ were drawn from absolute
values of a normal distribution and assuming the total out-
come variance explained by all exposures ranged between
0.02 and 0.05.

When assuming G-E correlations, we randomly selected
50%of the exposures anda randomset of associatedSNPsand
added genetic effects drawn from a normal distribution with
mean 0 and variance 0.005 (so that each associated SNP
explained on average 0.5% percent of the variance of the
exposure) to the selected exposures. For power, we generated
G3E interactions using standardized SNPs in order to ensure
that the interaction terms do not modify the marginal effects
of SNPs (i.e., adding interactions of unstandardized SNPs
could change the direction of SNP marginal effects in the
model) (Aschard 2016). For linear outcome, G-E interaction
effects ðbGEl

Þwere generated fromuniform distribution in the

range [0.001, 0.002] when assuming correlation between
interaction effects and marginal effects, and in the range
[20.007, 0.007] when assuming no correlation between
those. For binary outcome, bGEl were also drawn from uni-
form using the ranges [0.002, 0.002] and [20.01, 0.01] in
the presence or absence of the correlation, respectively. Fi-
nally, for logistic models, we defined the intercept ðb0Þ so
that the expected baseline prevalence equaled to 30%.

Real data application

We applied our interaction test approaches to three large sets
of human cohort data, the Nurses’ Health Study (NHS I),
NHS II, and Health Professional Follow-up Study (HPFS).
The total sample size available with genetic data in the three
cohorts was 37,664. Though all analyses were conducted in
the combined cohort data, each analysis included different
numbers of cohort participants depending upon the availabil-
ity of disease and exposure data considered. All disease and
exposure data were drawn from self-reported biannual ques-
tionnaires of each cohort.

We focused on four binary traits, T2D, CHD, obesity, and
hypertension. For each trait, we excluded all individuals who
had the disease prior to each cohort inception (baseline).
Then, we defined cases as individuals who had reported to
have the disease since the baseline and controls were defined
as individuals who had never reported it between the baseline
and their last time of follow-up. Exposure variables we con-
sideredwere established risk factors of the four diseases, such
as smoking status (ever smoker vs. never smoker), physical
activity [measured as Metabolic Equivalent of Task (MET)
hours per week], diet quality [Healthy Eating Index (HEI)
(range: 1–100) that indicates healthier dietary intake with
higher score)], and total energy intake (kcal/week). To avoid
potential reverse causation, we used exposure datameasured
at the earliest time point in the follow-up (i.e., baseline of
each cohort). Since all the traits were binary, and based on
our simulation results, we used a logistic regression model
with Score test statistic.

To build G-E interactions, we included sets of SNPs pre-
viously identified to be associated with the four traits from
large-scale GWAS (International Consortium for Blood
Pressure Genome-Wide Association Studies et al. 2011;
Morris et al. 2012; Locke et al. 2015; Nikpay et al. 2015).
We also included the following covariates: age (when expo-
sures were measured), study (NHS, NHSII, and HPFS), gen-
otyping platforms (Affymetrix, IIllumina, Omniexpress,
Oncoarray, and Humancore exomchip) (Lindström et al.
2017), and principal components computed from the full sets
of genotypes (top three principal components of each
platform).

Data availability

The authors affirm that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article. Supplemental material available at Fig-
share: https://doi.org/10.25386/genetics.6849047.
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Results

Validity of the statistical approaches for
multiple interactions

We first compared the robustness of three test statistics (Wald
test, Score test, and LRT) when testing multiple parameters
jointly in linear and logistic regression models (Figure 2).
Using null models of no interaction effect (but assuming
the presence of marginal genetic and environmental effects),
we simulated series of 20,000 individuals with M = 100 in-
dependent common SNPs and K = [2, 6, 10] normally dis-
tributed and correlated exposures. For binary outcomes, we
considered a prevalence of 30%. The Wald statistics showed
strong robustness in the linear regression but severe deflation
in logistic regression as the number of interactions tested
jointly increases. The standard LRT statistics, derived from
(MLE), showed strong inflation with increasing number of
interactions in both linear and logistic regression models.
Note that inflation for the linear model could be easily fixed
by substituting MLE with ordinary least squares estimates
(Supplemental Note and Figure S1), but such a fix is not
possible for logistic model. The Score statistics showed the
highest robustness in the both linear and logistic regression,
although we noted some non-negligible inflation for logistic
regression as the number of interactions increased. As dis-
cussed in the Supplemental Note, the better calibration of the
Score test is likely explained by the smaller number of param-
eters that have to be estimated (i.e., conversely, the LRT and
Wald test face instability because of the many interaction
parameters that the tests have to estimate).

Because the bias was more obvious in logistic regression,
we further examined whether the bias was influenced by the
modeling of G-E interaction effects or simply due to the
number of outcome events per predictor variables (EPV)
(Peduzzi et al. 1996) (Figure S2). We compared chi-squared
statistic distributions of the three test statistics of omnibus
test under a complete null model (i.e., no interaction and no
main effects) for a fixed EPV (e.g., EPV = 5), while assessing
marginal genetic effects only, or interaction effects only ,with
the same number of parameters L in testing jointly. More
precisely, we compared two scenarios: (1) draw M indepen-
dent SNPs and tested L SNPs, only a subset of parameters
jointly (e.g., M = 120, L = 100); or (2) draw M indepen-
dent SNPs and K correlated exposures, and tested L interac-
tion parameters jointly (e.g., M = 10, K = 10, L = 100).
As shown in Figure S2 for L = [100, 400], we observed
trends similar to those from Figure 1 in marginal effect mod-
els (inflation for LRT and deflation for Wald test). Although
we noticed the bias might be slightly larger for G-E interac-
tion models, we did not observe any major qualitative differ-
ence between interaction models and SNP only models,
suggesting the bias is driven mostly by the small number of
EPV (e.g., EPV , 10).

Exploring further the impactofdifferentnumbersofEPVon
multivariable interaction tests, we found that joint analysis of
multiple parameters (in our case multiple interaction terms)

tended to bedramaticallymore sensitive toEPV than standard
univariate test (Figure S3). As expected based on existing
literature, univariate tests were robust across different test
statistics once the test achieved the rule of thumb of EPV =
10 (Vittinghoff and McCulloch 2007), regardless of the total
sample size. Conversely, in omnibus tests for a fixed EPV,
Wald test and LRT statistics showed increasing deflation
and inflation, respectively, as the sample size increased. For
example, whereas an EPV of 10 might be sufficient to have a
calibrated LRT for a sample size of 1000, increasing the sam-
ple size to 5000 required to reach an EPV of 50 to have a valid
test. Again, only the Score test showed good calibration
across the different numbers of EPV and sample size, high-
lighting this should be the preferred statistics for testing

Figure 2 Q-Q plots of Wald test, Score test, and LRT. To evaluate ro-
bustness of the three test statistics, we generated 10,000 series of 20,000
samples with 100 common SNPs and up to 10 correlated and normally
distributed exposures under the null hypothesis of no interaction effect
but in the presence of main genetic and environmental effects. For logis-
tic model, we considered a disease prevalence of 30%. To compare the
robustness, we simulated the data with different number of exposures 2,
6, and 10 corresponding to the number of event per variable (EVP) of 30,
10, and 6. (A) Q-Q plot of linear regression with EPV of 30. (B) Q-Q plot of
logistic regression with EPV of 30. (C) Q-Q plot of linear regression with
EPV of 10. (D) Q-Q plot of logistic regression with EPV of 10. (E) Q-Q plot
of linear regression with EPV of 6. (F) Q-Q plot of logistic regression with
EPV of 6.
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multiple interactions jointly in modern genetic datasets in-
cluding hundreds of thousands of individuals.

Robustness comparison in joint analysis approaches

Based on the results above, we examined the six G-E interac-
tion test strategies (i.e., omnibus, multiE-uGRS, multiE-
wGRS, multiSNP-ERS, uGRS-ERS, and wGRS-ERS) under
the null using Score test for linear and logistic regression.
Table 1 shows type I error rates calculated as a genomic in-
flation factor ðlÞ for normally distributed and highly corre-
lated exposures while varying three parameters: the RAF, the
number of SNP analyzed jointly, and the presence or absence
of G-E dependence. In linear models, all six approaches
showed consistent and strong robustness regardless of RAF,
the number of SNPs tested, and dependence between SNPs
and exposures. Similarly, logistic models for GRS-related
approaches (multiE-uGRS, multiE-wGRS, uGRS-ERS, and
wGRS-ERS) showed consistent robustness. Conversely,
multi-SNP approaches (omnibus and multi SNP-ERS)
showed moderate to strong inflated statistics with increasing
number of variants and decreasing RAF (Figure S4 and Table
1), highlighting the limitation of the Score test in logistic re-
gression when the number of parameters becomes too large
in the baseline model (i.e., the model without interaction).

Such inflation was also found in type I error rates for omnibus
tests with 300 common SNPs (Table S1). When performing
the same simulations but using moderately correlated (Table
S2) or non-normally distributed exposures with moderate
correlation (Table S3), we observed similar findings of con-
sistent robustness in linear models and GRS-based ap-
proaches of logistic models, and inflation in multi-SNP
approaches of logistic models.

Power comparison for joint analysis approaches

We aimed first at understanding the potential benefit of
testing jointly multiple interaction parameters, as opposed
to testing them separately and correcting for multiple
testing using a Bonferroni adjustment. To address this
question, we considered a set of K predictor (here interac-
tion effects) and derived the theoretical power of the two
aforementioned approaches, i.e., the joint test of all K pre-
dictors vs. the test of each single predictor followed by
correction of the P-values for the K tests performed, while
assuming a subset K* of the predictor are associated with
the outcome. Unsurprisingly, as showed in Figure 3, A–D
we first found that, when K* ¼ 1, there are at best small
gains from using multiple interaction tests. The single pre-
dictor approach tends to have higher power as the effect

Table 1 Genomic inflation factors ðlÞ under the null hypothesis of no interaction for six interaction tests with normally distributed and
highly correlated exposures

Independent G-E Dependent G-E

SNP (N) SNP (N)
10 100 300 10 100 300

Linear regression
Rare SNPa Omnibus 1.01 1.02 0.92 0.99 0.97 1.03

MultiE-uGRS 0.99 0.96 0.98 1.05 1.02 1.01
MultiE-wGRS 0.96 0.96 0.96 0.93 0.94 0.95
MultiSNP-ERS 1.00 1.00 1.01 1.03 1.00 1.02
uGRS-ERS 1.01 1.01 1.02 1.01 0.99 1.02
wGRS-ERS 0.96 0.98 0.99 1.00 0.98 1.04

Common SNPb Omnibus 0.99 0.99 0.99 1.03 1.02 1.02
MultiE-uGRS 0.99 0.98 1.05 1.01 0.99 1.05
MultiE-wGRS 1.01 0.98 1.02 0.98 1.00 1.01
MultiSNP-ERS 1.01 1.05 1.00 0.99 1.00 0.99
uGRS-ERS 0.97 1.01 1.00 1.01 1.01 1.01
wGRS-ERS 0.99 1.01 0.99 1.02 0.98 0.98

Logistic regression
Rare SNPa Omnibus 1.09 1.60 3.49c 1.13 1.65 3.63c

MultiE-uGRS 1.02 1.01 1.04 1.00 1.02 1.05
MultiE-wGRS 1.02 1.00 0.98 0.94 0.93 0.98
MultiSNP-ERS 1.05 1.20 1.58 1.05 1.17 1.57
uGRS-ERS 0.99 1.00 0.98 1.01 0.98 1.01
wGRS-ERS 1.03 0.98 0.99 1.02 0.96 1.01

Common SNPb Omnibus 1.03 1.32 2.74c 1.02 1.31 2.81c

MultiE-uGRS 0.98 1.01 0.98 0.98 1.05 0.96
MultiE-wGRS 0.99 0.99 0.99 0.96 1.00 1.02
MultiSNP-ERS 0.86 1.04 1.40 0.98 1.07 1.41
uGRS-ERS 0.98 1.04 0.99 1.01 0.97 0.98
wGRS-ERS 0.99 1.01. 1.01 0.96 0.98 1.06

a Rare SNP: RAF = [0.1–1% or 99–99.9%].
b Common SNP: RAF = [1–99%].
c 5000 replicates.
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of the variants increased and K increased (e.g., noncentral-
ity parameter (ncp) = 9, K ¼ 500, Figure 3C), while the
multivariate approach performs slightly better for small
effect. Conversely when there are multiple associated pre-
dictors (i.e., as K* increases relative to K), the multivariate
approach performs in general better than the univariate
approach (Figure 3, E–H). For example, to achieve 80%
power at a nominal level of 5% while analyzing K=100
predictors, and assuming very small effect (ncp = 1), the
univariate test requires up to 20% of the predictors to be
associated with the outcome, while the multivariate test
would achieve the same power if 10% of the predictors are
associated (Figure 3E).

To compare the relative power of the six G-E interaction
strategies, we next performed a series of simulations using
linear and logistic regression models (Figure 4). We used, as
in Table 1, normally distributed and highly correlated expo-
sures. As expected, the power of all the approaches increased
with increasing number SNPs tested and increasing propor-
tion of true effects among the interactions. However, we
found that the relative gain in power relied on the correlation
between interactions and marginal effects and the correla-
tion across exposures. In linear models, score-based ap-
proaches (i.e., using GRS and ERS) were the most powerful
when simulating G-E interaction effects correlated with mar-
ginal genetic and environmental effects. Conversely, when

Figure 3 Degrees of freedom vs. correction for multiple testing. In (A–D) we considered a single associated predictor with noncentrality parameter (ncp)
in [1–9] and compared the cost of adding K equals 1 (A), 9 (B), 49 (C), 299 (D) null statistics, to form a K+1 degree of freedom test vs. correcting the
univariate test of that predictors for a total of K+1 tests. We plotted the power of the resulting univariate test (black line) and multivariate test (blue line)
as a function of the ncp. The red dashed line represents the 5% threshold. In (E–H), we have drawn series of K in [10–300] chi-squared statistics with 1 d
f, representing single predictor (e.g., SNPs) tests, while varying the proportion of chi-squared under the null and chi-squared under the alternative. Under
the alternative we chi-squared were drawn from a noncentral chi-squared distribution with ncp equals to 1 (E), 2 (F), 3 (G), and 4 (H), while under the
null, chi-squared were drawn from a central chi-squared. For each series, we derived the minimum proportion of associated predictors (%SNPint)
required to achieve 80% power at a significance threshold of 0.05 with a multivariate test of all K terms (blue lines), and with a univariate test (black
lines). For the latter, we considered the null hypothesis that none of the predictor tested reaches the significance threshold after correcting for the K tests
performed.
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simulating G-E interaction effects uncorrelated to marginal
effects, the omnibus test was the most powerful approach.
Logistic models showed qualitatively similar power results.
Using normally distributed exposures with moderate corre-
lation appeared to have limited impact on the power re-
sults (Figures S5 and S6). However, we noticed that power
advantages of the GRS-based approaches over multi-SNP ap-
proaches in the presence of correlation between interactions
and marginal effects tended to decrease with increasing cor-
relation between exposures (i.e., coefficients: 0.02–0.20) (Fig-

ure S7). When there was no correlation between interactions
andmarginal effects, we observed that the power ofmulti-SNP
approaches tended to increase with increasing exposure cor-
relation, particularly univariate test and multiSNP-ERS test in
linear models.

Application to data from large population-
based cohorts

Using the Score test statistic in logistic regression, we con-
ducted six interaction analyses per each trait, testing jointly

Figure 4 Power comparison of G-E interaction approaches with normal distributed and highly correlated exposures. We derived series of 10,000
simulated replicates (except for univariate and omnibus tests in logistic models using 1000 replicates) and each included 20,000 samples, 10 exposures,
and a varying number of SNP (n = 10, 100, and 300). (A) presents results for linear models assuming all G-E interactions effects correlated with marginal
effects, (B) linear models assuming no correlations between G-E interaction effects and marginal effects, (C) logistic models assuming correlations
between G-E interaction effects and marginal effects, and (D) logistic models assuming no correlations between G-E interaction effects and marginal
effects.
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for multiple interactions between SNPs known to be associ-
ated with four traits (number of SNPs included = 65, 76, 27,
and 48 for T2D, obesity, hypertension, and CHD, respec-
tively) and four exposures (HEI as a measure of diet quality,
total calorie intake, MET-hour per week as a measure of
physical activity, and ever smoking) (Table S4). Details of
the SNPs are described in Tables S7–S10. Prior to the inter-
action tests, we assessed marginal effects of GRS and expo-
sures with the traits. T2D and obesity showed associations
with all the four exposures, whereas hypertension was asso-
ciated with HEI, MET-hour, and smoking ever, and CHD was
associated with HEI and ever smoking (Table S5). For each
trait, we constructed ERS including only exposures that were
marginally associated with the trait. We observed only lim-
ited correlation between the four exposures in our data, such
as the maximum correlation coefficient was 0.17 between
HEI and MET-hour per week (Table S6). Results of joint in-
teraction tests are presented in Table 2. We found that
7 (29%) out of the 24 interaction tests performed showed
nominal significance. The most significant interaction was
found in omnibus test for obesity with all four exposures
(P = 0.003). Their interactions were also detected with
GRS-ERS approaches (P = 0.037 and 0.028 for uGRS-ERS
and wGRS-ERS, respectively). Nominally significant interac-
tions were also observed between hypertension and three
exposures (HEI, MET-hour, and smoking) through mul-
tiSNP-ERS (P = 0.006), uGRS-ERS (P = 0.046), and
wGRS-ERS (P = 0.021). Lastly, omnibus test detected a
nominally significant interaction effect of T2D and the four
exposures (P = 0.015). Note that we kept the omnibus in
this analysis despite type I error rate is not fully controlled.
However, based on simulations presented in Table S1, we
expect any bias to be minimal (e.g., type I error rate at 5%
equals 0.059 for the same number predictors in simulated
data).

Discussion

Recent advances in big data era enable us to jointly assess
multiple G-E interaction effects; however, the statistical

challenges and benefits of such approaches remain un-
known. To address this gap, we defined a set of parsimonious
approaches for multiple interactions, and explored their sta-
tistical properties in simulationsandrealdataapplication.Our
results indicate that joint test approaches, in particular ag-
gregating multiple marginal effects such as GRS or ERS, offer
both robustness and power gain, potentially allowing for the
identification of G-E interactions missed by a standard uni-
variate test. However, we also found several important issues
that should be considered for the joint analysis approaches.

First, contrary to univariate test, the choice of the statistics
was crucial in the joint test for multiple interactions (i.e.,
omnibus) especially for binary traits. In logistic models,
Wald test and LRT statistics were deflated and inflated, re-
spectively, with increasing number of interaction parameters,
whereas Score statistic was consistently more robust in the
same scenarios. Consistent with findings from previous stud-
ies, the type I error rate was larger as the EPV decreases
(Peduzzi et al. 1996; Vittinghoff and McCulloch 2007). Fur-
thermore, the two previous studies using Wald test reported
that, for the low EPV (e.g., EPV , 10), sample variance es-
timates were not robust (Peduzzi et al. 1996) and bias of
regression coefficients increased in both positive and nega-
tive directions (Vittinghoff and McCulloch 2007). Because
the biased coefficients often lead to extreme values of MLE,
we observed highly inflated LRT statistics when EPV is , 10
(Supplemental Note). Although the previous studies did not
evaluate Score test, we found that the Score test statistics
were substantially robust even with EPV ,10, suggesting it
should be preferred when testing multiple parameters jointly
in logistic regression. Permutations might be an alternative to
control type I error rates of the three test statistics. Permu-
tation would be computationally demanding and might
break down part of the structure in the data, making inter-
pretation more difficult. However, it might be applicable in
some case, and preliminary analyses we conducted showed
encouraging results (Tables S11 and S12).

In contrast of the logistic regression, all approaches showed
strong robustness in linear models. In general, linear models
do not face issues similar to small EPV. For example, prior
studies assessing the number of subjects per variable (SPV,
similar inprinciple to theEPV,butapplied to linear regression)
showed that twoSPVwereenough tohaveadequateestimates
on regression coefficients, SE, and confidence intervals in
linear regression (Austin and Steyerberg 2015). In our sim-
ulations, this was true for Wald and Score test statistics with
the lowest SPV of 6.7 (= 20,000/3000) but not for LRT.
However, slight inflation in LRT statistics can be easily cor-
rected by using estimates from ordinary least squares instead
of using maximum likelihood estimates (Supplemental
Note).

Another important limitation of multi-SNP approaches
was minor/risk allele frequency of SNPs when testing for
binary traits. Our simulations showed severe type I error
rates increase with increasing the number of variants in lo-
gistic models and the bias was worse with rare variants

Table 2 Joint analysis approaches for multiple G-E interactions in
NHS I, NHS II, and HPFS cohorts

T2D Obesity Hypertension CHD
(P-value) (P-value) (P-value) (P-value)

Univariatea 0.433 0.686 0.096 1.000
Omnibus 0.015b 0.003b 0.355 0.501
MultiE-uGRS 0.244 0.511 0.101 0.391
MultiE-wGRS 0.544 0.563 0.117 0.540
MultiSNP-ERS 0.051 0.208 0.006b 0.567
uGRS-ERS 0.473 0.037b 0.046b 0.576
wGRS-ERS 0.680 0.028b 0.021b 0.698

T2D, type 2 diabetes; CHD, coronary heart disease; uGRS, unweighted genetic risk
score; wGRS, weighted genetic risk score; ERS, environmental risk score.
a Reported P-values were corrected for multiple testing by multiplying the total
number of G-E interactions using the minimum P-value among the interactions:
0.002 (T2D), 0.002 (obesity), 0.0009 (hypertension), and 0.018 (CHD).

b Nominally significant interactions.
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(RAF , 1%) included in the analysis. Although we did not
assess type I error rates with non-normally distributed con-
tinuous outcomes, previous works highlighted that special
caution is required for rare variants analysis, especially when
analyzing non-normally distributed traits (e.g., traits from
gamma or log normal distributions) (Schwantes-An et al.
2016). We only considered independent variants in all our
analyses. Using correlated variants for GRS-based ap-
proaches would require estimating weights from e.g., multi-
ple regressions or penalized models to avoid redundancy of
genetic information. For SNP-based approaches, correlation
between SNPs might increase instability of all approaches
and is therefore not recommended (Table S13). While the
Score test performed again better, analyzing large number of
correlated variants might induce substantial inflation of the
type I error rate.

Lastly, the presence or absence of correlation between
interaction and marginal effects played a substantial role
to gain power in jointly testing multiple interactions. As
seen in Figure 4, the relative power gain of the six ap-
proaches was highly sensitive to the correlation. When
the interaction effects are correlated to marginal effects,
GRS-based approaches outperformed the others in most of
scenarios. However, when the correlation is absent, SNP-
based approaches (i.e., omnibus or multiSNP-ERS) had
better performance than the GRS-based approaches. Sim-
ilar trends of power gain have been discussed in previous
studies on rare-variant association tests. For example, bur-
den tests, which are very similar to our aggregating meth-
ods (e.g., GRS or ERS), examine genetic associations by
aggregating effects of a set of rare variants into a genetic
score (Wu et al. 2011). Because the test requires a strong
assumption of the same direction and magnitude of effects,
the test is obviously less powerful when the assumption is
violated (Lee et al. 2014). As an alternative, researchers
have proposed variance-component tests that are powerful
with different directions of marginal effects. Such an ap-
proach has been recently proposed for GxE (Moore et al.
2019) and might be compared against our fixed effect ap-
proach in the future.

We found that joint analysis approaches, especially
joint tests with aggregated effects (e.g., GRS or ERS), could
detect more multiple G-E interaction effects with strong ro-
bustness, and, further, much power with correlation between
marginal effects and G-E interaction effects. Because of com-
putational convenience, these score-based approaches would
be easily applicable to other interaction tests, such as gene-
by-gene (G-G) interactions or multivariate interaction tests
for multiple traits in future research. Although our simula-
tions used aggregating approaches for both marginal effects
and interaction effects as Equation 7, the benefits of the
score-based approaches might be achieved even if one tests
aggregating effects of interactions (e.g., GRS-ERS) in models
with multiple marginal effects (e.g., bGi

, bEj). Because our
joint approaches test the interaction effect only (e.g.,
x2
df¼1), increase in the number of total parameters would

not have influence on detecting interaction effects as long
as using the Score test statistic.

Our joint analysis approaches also have some limitations.
First, because joint test approaches examine whether any of
multiple interactions have a signal or not, it does not pro-
vide evidence for any specific interaction effects of SNPs and
the exposures that are the main drivers of the interaction
signals. Instead, joint test approaches offer an opportunity
to gain insights into global interactionpatterns. For example,
significant GRS-based interactionwould indicates an overall
decrease or increase of the genetic effect with exposure,
while the Omnibus and SNP-ERS tests would indicate more
diffuse G 3 E interactions with limited structure. Second,
in practice, it might not be easy to generate ERS where
environmental factors are coded as being categorical or
have different units of measurements. Also, it is still an open
question what, and how many, environmental factors
should be tested jointly for G-E interactions. Our recommen-
dation is to include risk factors that have strong biological
evidence on shared mechanisms, because, otherwise, inter-
pretation can be challenging. Third, when applying the
standard univariate approach, we used a nominal signifi-
cance threshold of 5% after correction for multiple testing
without accounting for correlations between SNPs and ex-
posures or between exposures. This is the most stringent
approach, and more advanced strategies might be consid-
ered in future (Sun and Lin 2017).

In summary, our study shows that approaches allowing for
the joint analysis of multiple G-E interaction effects outper-
form standard pairwise interaction test in many scenarios.
Particularly, GRS-based approaches in conjunction with a
Score test showed both strong robustness and some of the
largest gain in power, although alternatives approaches
might be considered depending on the investigator hypothe-
ses about correlation between GxE effects and marginal
effects. Overall, this study provides the community guide-
lines for testing multiple interaction parameters in modern
human cohorts including extensive genetic and environmen-
tal data.
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