
Cardiac Sca-1+ cells are not intrinsic stem cells for myocardial 
development, renewal and repair

Lu Zhang, PhD#1,2, Nishat Sultana, PhD#2,3, Jianyun Yan, PhD#4, Fan Yang, PhD1,2, Fuxue 
Chen, PhD5, Elena Chepurko, DVM3, Feng-Chun Yang, MD, PhD6, Qinghua Du, MS6, Lior 
Zangi, PhD3, Mingjiang Xu, MD, PhD6, Lei Bu, PhD7, and Chen-Leng Cai, PhD1,2,*

1Riley Heart Research Center, and Herman B Wells Center for Pediatric Research, Indiana 
University School of Medicine, 1044 West Walnut Street, Indianapolis, Indiana 46202, USA

2Department of Developmental and Regenerative Biology, and The Black Family Stem Cell 
Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA

3Department of Medicine, and Cardiovascular Research Center, Icahn School of Medicine at 
Mount Sinai, New York, New York 10029, USA

4Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical 
University, Guangdong Provincial Biomedical Engineering Technology Research Center for 
Cardiovascular Disease, and Sino-Japanese Cooperation Platform for Translational Research in 
Heart Failure, Guangzhou, Guangdong 510280, China

5College of Life Sciences, Shanghai University, Shanghai 200444, China

6Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, 
University of Miami Miller School of Medicine, Miami, Florida 33136, USA

7Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New 
York 10016, USA

# These authors contributed equally to this work.

Abstract

Background: For over a decade, Sca-1+ cells within the mouse heart have been widely 

recognized as a stem cell population with multipotency that can give rise to cardiomyocytes, 

endothelial cells and smooth muscle cells in vitro and after cardiac grafting. However, the 

developmental origin and authentic nature of these cells remain elusive.

Methods: Here, we used a series of high-fidelity genetic mouse models to characterize the 

identity and regenerative potential of cardiac resident Sca-1+ cells.

Results: With these novel genetic mouse models, we found that Sca-1 does not label cardiac 

precursor cells during early embryonic heart formation. Postnatal cardiac resident Sca-1+ cells are 
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in fact a pure endothelial cell population. They retain endothelial properties and exhibit minimal 

cardiomyogenic potential during development, normal aging and upon ischemic injury.

Conclusions: Our study provides definitive insights into the nature of cardiac resident Sca-1+ 

cells. The observations challenge the current dogma that cardiac resident Sca-1+ cells are intrinsic 

stem cells for myocardial development, renewal and repair and suggest that the mechanisms of 

transplanted Sca-1+ cells in heart repair need to be reassessed.
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Introduction

Whether mammalian hearts harbor a population of intrinsic stem cells for myocardial 

renewal and repair and, if they do, how to identify these cells for use in cell-based therapy 

for heart failure are central questions in cardiac regenerative medicine1–5. In the past two 

decades, tremendous efforts have been made to search for such cells, and many forms of 

cardiac stem cells (CSCs) have been identified1, 2. Recently, the nature of c-Kit+ CSCs and 

their function in heart repair were questioned6–10. Three independent groups coincidentally 

indicated that cardiac c-Kit+ cells lack myogenic potential during heart development and 

repair11–13.

Murine stem cell antigen-1 (Sca-1) is a member of the Ly-6 gene family (gene name 

Ly6a)14, 15. Sca-1 encodes a cell surface protein widely used to enrich hematopoietic stem 

cells (HSCs) from the bone marrow (BM)14, 16. With this perception, Sca-1 has been 

persistently thought to be a marker to identify adult stem cells in multiple organs17–21. 

Cardiac Sca-1+ cells were one of the first putative CSCs identified in the adult mouse 

heart22–26, and are found distributed in diverse CSC subtypes in mice (e.g., cardiospheres, 

side populations, and cardiac colony-forming unit fibroblasts)27–32. The human equivalent of 

the murine Sca-1 ortholog has not been identified. However, Sca-1+-like cells were isolated 

from the adult human heart using an anti-mouse Sca-1 antibody and showed cardiomyogenic 

potential when cultured in vitro33. Importantly, a phase I clinical trial (CADUCEUS) was 

performed in which autologous Sca-1-related cardiosphere-derived cells were administered 

to patients with myocardial infarction (MI). Reduced scar size with improved cardiac 

function was observed in the patients34.

Despite these findings, questions have been raised regarding the mechanisms of Sca-1+ cells 

in heart repair. In transplantation of exogenously expanded Sca-1+ cells, the number of 

identifiable engrafted cells has been found to be extremely low (<0.5%), and thus, they are 

unlikely to contribute to functional heart repair through myocardial differentiation35. The 

myogenic potential of engrafted Sca-1+ cells may also require further investigation because 

the conclusions are mainly based on immunostaining with potential microscopic 

artifacts36, 37. In addition, previous reports determining the myogenic potential of cardiac 

Scal-1+ cells have largely relied on in vitro cardiomyogenic differentiation culture 

procedures and that may not represent the nature of endogenous Scal-1+ cells23, 30. 

Furthermore, the developmental origin of cardiac Sca-1+ cells remains largely unknown. 
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These questions raise doubts about whether Sca-1 expression marks bona fide embryonic 

and/or adult CSCs38. In summary, there is an urgent need to define the authentic identity of 

Sca-1+ cells in the developing and adult hearts, to provide definitive answers as to whether 

Sca-1 expression represents a true and applicable CSC population for heart repair.

Methods

The data, analytical methods, and study materials will be made available to other researchers 

for the purposes of reproducing the results or replicating the procedure upon reasonable 

request. Inquiries can be directed to the corresponding author.

Mouse models

All mouse experiments were conducted in accordance with an approved IACUC protocol at 

the Icahn School of Medicine at Mount Sinai and were in compliance with institutional and 

governmental regulations (PHS Animal Welfare Assurance A3111–01). Nkx2.5H2B-GFP/+, 

cTNTH2B-GFP/+, c-KitH2B-GFP/+, and ROSA26RtdTomato/+ mouse lines were described 

previously12, 39–41. PDGFRαH2B-GFP/+ mice were obtained from Dr. Philippe Soriano42.

Three cassettes (LoxP-4XployA-LoxP-H2B-tdTomato-FRT-Neo-FRT, LoxP-
nLacZ-4XPloyA-LoxP-H2B-GFP-FRT-Neo-FRT and MerCreMer-FRT-Neo-FRT) were 

inserted into the start codon of the Sca-1 (Ly6a) locus to generate Sca-1H2B-tdTomato/+, 

Sca-1nLacZ-H2B-GFP/+ and Sca-1MerCreMer/+ knock-in mouse models, respectively. The 

cassettes were flanked by a 5.0 kb 5ʹ homologous arm and a 4.0 kb 3ʹ homologous arm in 

the targeting constructs. The constructs were linearized and electroporated into mouse 

embryonic stem (ES) cells. Positive ES cells were identified by long-range PCR (Roche) 

with two pairs of primers (P1+P2 and P3+P4). The primer sequences are as follows: P1, 5-

ATGAATAGTTGACCCCCACATGCT-3; P2, 5-CAGGGTGGACCTGCTTCAGAACCT-3 

(Sca-1STOP-H2B-tdTomato/+); P2, 5-GGATGTGCTGCAAGGCGATTAAGT-3 

(Sca-1nLacZ-H2B-GFP/+); P2, 5-GTTCAGCATCCAACAAGGCACTGA-3 (Sca-1MerCreMer/+); 

P3, 5-AGAGCTTGGCGGCGAATGGGCTGACCG-3; and P4, 5-

TGACAACCATCAAGGTTATGATCT-3. The PCR fragments were further subcloned and 

verified by DNA sequencing. Targeted ES cells were microinjected into blastocysts to 

generate chimeric mice. The chimeric mice were crossed with C57BL/6 and Black Swiss 

mice to obtain germline transmission mice. The Neo cassette was removed by crossing with 

Flippase deleter mice. Sca-1H2B-tdTomato/+ mice were obtained by crossing 

Sca-1LoxP−4XPloyA-LoxP-H2B-tdTomato/+ with Protamine-Cre mice.

Tamoxifen (Sigma, cat. T5648) was injected intraperitoneally into the mice at a dose of 0.12 

mg/g body weight.

X-gal staining

Mouse tissues were isolated in ice-cold PBS and fixed in 4% paraformaldehyde for 30 min 

at 4°C. After fixation, the tissues were washed three times with PBS and incubated in X-gal 

solution (5 mM potassium ferricyanide, 5 mM potassium ferrocyanide, 2 mM MgCl2, and 1 

mg/ml X-gal) overnight at room temperature (RT). For section staining, after fixation, the 

tissues were treated with 30% sucrose overnight at 4°C and embedded in optimal cutting 
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temperature (OCT) compound (Tissue-Tek, 4583) on dry ice. Then, 10-μm sections were cut 

and post-fixed in 4% paraformaldehyde for 5 min. The sections were stained with X-gal 

solution overnight at 37°C.

Immunofluorescence

Mouse tissues were perfused with 4% paraformaldehyde, dehydrated with sucrose and 

embedded in OCT. Embedded tissues were cut into 10-μm sections. Sections were blocked 

with 10% donkey serum (Sigma, D9663) in PBS for 1 h at RT and incubated with primary 

antibodies overnight at 4°C. The primary antibodies were goat anti-PECAM (CD31) (1:50, 

R&D Systems, AF3628) and rat anti-Sca-1 (1:200, BD Biosciences, 553333). Sections were 

then incubated with secondary antibodies for 1 h at RT. The secondary antibodies used were 

donkey anti-goat Alexa Fluor 488 (1:500; Invitrogen) and donkey anti-rat Alexa Fluor 594 

(1:500; Invitrogen). Stained sections were mounted with Vectashield mounting medium with 

DAPI (Vector Laboratories). Immunofluorescence images were obtained using a Leica 

fluorescence microscope.

A TSA plus Fluorescein System (Perkin Elmer, NEL741001KT) was used to amplify Sca-1 

antibody fluorescent signals when necessary. After primary antibody incubation, an HRP-

conjugated secondary antibody was applied for 1 h at RT. HRP-conjugated donkey anti-rat 

IgG (1:1000; Invitrogen, A18745) was used as the secondary antibody. Sections were 

washed three times in TNT buffer and amplified with TSA Plus Working Solution for 10 

min at RT.

Myocardial infarction

MI was induced by ligation of the LAD coronary artery as previously described43. Briefly, 

8- to 16-week-old mice were anesthetized with 4% isoflurane before intubation. The left 

thoracic region was trimmed with an electric razor and sterilized with 70% isopropanol. 

After thoracotomy, an 8–0 nylon suture was placed to ligate the LAD. The ribcage and 

muscle layers were closed with 5–0 polypropylene sutures. Excess air and blood was 

removed from the chest cavity, and the skin was closed with 4–0 polypropylene sutures. The 

intubation tube was removed, and mice were housed with moist food and a water bottle.

Heart perfusion and flow cytometry

The procedure for preparing single non-myocardial cells from murine hearts was described 

previously12. Before surgery, mice were injected with heparin. Animals were anesthetized 

by isoflurane inhalation. Hearts were perfused with Ca2+-free collagenase type II solution. 

Atria and connective tissues were removed. Ventricles were cut into small pieces and gently 

dissociated into single cells with a Pasteur pipette. Dissociated single cells were transferred 

into a 50 ml Falcon tube and centrifuged at 10×g for 5 min. Cardiomyocytes formed a cell 

pellet on the bottom. Non-cardiomyocytes were harvested and transferred into a new tube 

without disturbing the cardiomyocyte pellets. The cells were centrifuged at 300×g for 5 min 

and resuspended and incubated in 5–10 ml of 1X RBC (Red Blood Cell) lysis buffer at RT 

for 10 min to remove red blood cells. The cells were collected, washed twice, and 

resuspended in PBS with 0.5% BSA for flow cytometry analysis.
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Bone marrow flow cytometry

Flow cytometric analyses were performed as we previously described44. Mice (8 weeks old) 

were sacrificed for BM cell collection. Single-cell suspensions derived from the BM were 

stained with panels of fluorochrome-conjugated antibodies (Sca-1, BD Biosciences 553108; 

c-Kit, BD Biosciences 560557). Dead cells were excluded by DAPI staining. Analyses were 

performed using an LSRII flow cytometer. All data were analyzed using FlowJo7.6 

software.

Statistical Analysis

Results are shown as mean±SEM. Statistical analysis was performed in Student t test to 

compare data from individual experimental groups. For each group, at least 3–5 animals or 

tissue samples were collected for experimentation.

Results

The new Sca-1H2B-tdTomato reporter mouse recapitulates endogenous Sca-1 expression

To characterize the nature of cardiac Sca-1+ cells, we first generated a Sca-1H2B-tdTomato/+ 

knock-in mouse model by inserting an H2B-tdTomato cassette into the start codon of Sca-1 
(Ly6a) through homologous recombination (Figure S1 A). In this model, Sca-1 genomic 

sequences are preserved. Nuclear tdTomato (H2B-tdTomato) expression is under the control 

of complete Sca-1 regulatory elements, thereby providing a sensitive, robust genetic tool to 

identify endogenous Sca-1+ cells in developing and adult mouse hearts. All 

Sca-1H2B-tdTomato/+ mice were viable and exhibited completely normal development into 

adulthood (>12 months).

To confirm the fidelity of the knock-in allele, we compared tdTomato with endogenous 

Sca-1 expression in various organs of Sca-1H2B-tdTomato/+ mice at postnatal day (P) 60 to 90 

(P60–90). Sca-1H2B-tdTomato expression co-localized with a Sca-1 antibody in multiple cell 

types within the kidney, intestine and lung (Figure S1 C-F). With this reporter line, we also 

detected Sca-1+ cells in the spleen and thymus (data not shown), consistent with previous 

findings that Sca-1 is expressed in these organs45–49. Sca-1 is a cell surface marker that is 

widely used along with c-Kit in the identification of HSCs16, and thus, Sca-1 and tdTomato 

expression should overlap in the c-Kit+ BM cell population from Sca-1H2B-tdTomato/+ mice. 

We tested tdTomato expression on c-Kit+ HSCs of Sca-1H2B-tdTomato/+ mice via flow 

cytometry (Figure S1 G1). Indeed, Sca-1H2B-tdTomato and Sca-1 expression largely 

overlapped (Figure S1 G4). These results further demonstrated that H2B-tdTomato signals in 

Sca-1H2B-tdTomato/+ mice recapitulate endogenous Sca-1 expression.

Heterogeneous Sca-1+ cell populations in postnatal mouse hearts

Next, we used Sca-1H2B-tdTomato/+ mice to identify Sca-1+ cells in the heart. Cardiac Sca-1+ 

cells were found at all postnatal stages inspected (P0, P7, P14, and P30–360), with a low 

number and expression level (based on the brightness of H2B-tdTomato) at birth. The 

number and expression level progressively increased as the heart grew. By P30, 

Sca-1H2B-tdTomato-positive cells were dispersed in all cardiac chambers at high density 

(Figure 1).
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Sca-1+ CSCs were initially described as a population of cells lacking the HSC marker c-

Kit22. However, later studies showed that Sca-1 is widely co-expressed with c-Kit in many 

CSC subtypes (e.g., cardiospheres, side populations, and cardiac colony-forming unit 

fibroblasts)27–32. To obtain a definitive answer regarding cardiac Sca-1 cell identity related 

to c-Kit, we crossed Sca-1H2B-tdTomato/+ mice with c-KitH2B-GFP/+ knock-in mice (Figure 1 

A). Bright, nuclear-localized tdTomato and GFP signals facilitated identification of co-

localization. Hearts from the compound heterozygotes (Sca-1H2B-tdTomato/+;c-KitH2B-GFP/+) 

were collected at P30–120. By directly inspecting sections under a microscope, we found 

that a substantial number of Sca-1H2B-tdTomato-positive cells were also c-KitH2B-GFP-positive 

(Figure 1 B, C). By flow cytometry, we estimated that ~51.8% of Sca-1 H2B-tdTomato-positive 

cells express c-Kit in a 4-month-old heart (Figure 1 D).

Recently, pro-epicardial origin cardiac resident CFU-Fs (colony-forming units–fibroblasts) 

were identified in the adult mouse heart. These cardiac CFU-Fs express platelet-derived 

growth factor receptor α (PDGFRα) and Sca-1 and exhibit mesenchymal stem cell 

properties with multipotency (including cardiomyogenic potential) when cultured in vitro32. 

A new study also showed that PDGFRα+/Sca-1+ side population cells from the adult mouse 

heart are clonogenic and have the capacity to produce cardiomyocytes, endothelial cells, and 

smooth muscle cells after cardiac grafting50. To further characterize cardiac Sca-1+ cells and 

their relationship with PDGFRα, we crossed PDGFRα H2B-GFP/+ knock-in mice with 

Sca-1H2B-tdTomato/+ mice (Figure 1 E). Cryosections of 

Sca-1H2B-tdTomato/+;PDGFRαH2B-GFP/+ mouse hearts were examined at P60–240. 

Sca-1H2B-tdTomato/PDGFRaH2B-GFP double-positive cells were widely observed in all 

cardiac chambers (Figure 1 F, G). Flow cytometry revealed that ~49.3% of Sca-1 
H2B-tdTomato cells express PDGFRα in a 3-month-old heart (Figure 1 H).

Exogenously expanded cardiac Sca-1+ cells were shown to express early cardiomyogenic 

markers, including Nkx2.5, Gata4 and Mef2c, upon treatment with oxytocin23. Lineage 

tracing with a Sca-1 transgenic mouse model also showed that Sca-1+ cells continuously 

contribute to myocardial turnover during physiological aging at adulthood51. If any subset of 

cardiac resident Sca-1+ cells acts as intrinsic stem cells that provide a progenitor pool for 

myocardial growth during heart maturation after birth or myocardial turnover during aging 

at adulthood, we speculate that these Sca-1+ cells may transiently express the 

cardiomyogenic marker Nkx2.5 during progenitor to cardiomyocyte conversion. Therefore, 

we attempted to determine whether any cardiac Sca-1+ cells simultaneously express Nkx2.5 

in postnatal hearts. Nkx2.5H2B-GFP/+ knock-in mice were crossed with Sca-1H2B-tdTomato/+ 

mice (Figure 1 I), and cardiac tissues of the compound heterozygous animals 

(Nkx2.5H2B-GFP/+;Sca-1H2B-tdTomato/+) were rigorously examined at P30–180 (15–30 day 

intervals between stages). Surprisingly, we did not find any Sca-1H2B-tdTomato and 

Nkx2.5H2B-GFP double-positive cells at any of the stages examined (Figure 1 J, K).

Cardiac troponin T (cTnT) is an indicator of differentiated cardiomyocytes. Stable 

fluorescence of the H2B-tdTomato fusion protein from Sca-1H2B-tdTomato/+ mice may allow 

short-term cell lineage tracing52, 53 and detection of Sca-1 and cTnT double-positive cells 

when Sca-1+ progenitor cells differentiate into cardiomyocytes. To determine whether Sca-1 

is expressed in cardiomyocytes, cTnTH2B-GFP/+ mice were crossed with Sca-1H2B-tdTomato/+ 
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mice (Figure 1 L). Cardiac sections of the compound heterozygous mice 

(Sca-1H2B-tdTomato/+;cTnTH2B-GFP/+) at P30–180 (15–30-day interval between stages) were 

thoroughly examined. However, no Sca-1H2B-tdTomato and cTnTH2B-GFP double-positive 

cells were found at any of the stages examined (Figure 1 M, N).

Cardiac resident Sca-1+ cells are of the Tie2 endothelial lineage

To further determine the identity of Sca-1+ cells throughout heart formation, we generated a 

dual-reporter mouse line Sca-1nLacZ-H2B-GFP/+ in which a LoxP-nLacZ-4XPolyA-LoxP-
H2B-GFP cassette was inserted into the start codon of Sca-1 (Ly6a) through homologous 

recombination (Figure S2 A, B). The nLacZ cassette was flanked by two LoxP sites, and 

thus, Sca-1H2B-GFP expression is initiated when the nlacZ cassette is removed by Cre 

excision. We performed whole-mount X-gal staining on various tissues/organs from 

Sca-1nLacZ-H2B-GFP/+ mice. nLacZ signals were detected in the kidney, lung, spleen, thymus, 

intestine, and stomach, consistent with previous reports45–49 and observations of 

Sca-1H2B-tdTomato/+ mice (Figure S2 C-J).

We crossed Sca-1nLacZ-H2B-GFP/+ mice with endothelial-specific Tie2Cre mice54 to determine 

endothelial identity and to ascertain how many Sca-1+ cells are of the cardiac 

endothelium30, 35, 37, 55. X-gal staining was performed on the hearts of 

Sca-1nLacZ-H2B-GFP/+;Tie2Cre mice as well as Sca-1nLacZ-H2B-GFP/+ control littermates at 

P30–120 (15–30-day interval between stages) (Figure 2 B-M). In Sca-1nLacZ-H2B-GFP/+ 

hearts, we detected a vast number of Sca-1nLacZ-positive cells. However, hardly any (nearly 

zero) X-gal+ cells were found in Sca-1nLacZ-H2B-GFP/+;Tie2Cre hearts at any of the stages 

detected. We performed immunostaining on Sca-1nLacZ-H2B-GFP/+;Tie2Cre cardiac tissues 

with an anti-PECAM (CD31) antibody. Sca-1H2B-GFP-positive cells generated by Tie2Cre 

excision were co-localized with PECAM (Figure 2 N-Q). These results conclusively suggest 

that cardiac Sca-1+ cells are purely of the Tie2 endothelial lineage.

Sca-1 does not label any cardiac precursor cells during early embryonic heart formation

Currently, the developmental origin of cardiac Sca-1+ cells remains unknown. If resident 

Sca-1+ cells represent a population of CSCs for myocardial renewal and repair in 

adulthood51, we speculate that Sca-1 could possibly be expressed in early cardiac precursors 

at mid-late gestation, during which cardiac progenitors from the first and second heart field, 

pro-epicardium/epicardium, and cardiac neural crest progressively migrate and differentiate 

to form a four-chambered heart with great arteries56–58. Therefore, we performed X-gal 

staining to search for Sca-1+ cells in E7.0-P0 hearts of Sca-1nLacZ-H2B-GFP/+ mice. In fact, 

Sca-1 expression was not detected in any of the early cardiogenic regions (including cardiac 

crescent at E7.0–7.5, first and second heart field at E8.0–9.5, pro-epicardium/epicardium at 

E8.0–16.5, and cardiac neural crest cells at E8.5–11.5) (Figure S3 A-H). The earliest stage 

with Sca-1nLacZ-positive cells was E17.5 (Figure S3 I-J), consistent with observations of 

Sca-1H2B-tdTomato/+ mice, in which we detected a few Sca-1H2B-tdTomato-positive cells at 

E17.5 but no Sca-1-expressing cells at or before E16.5 (Figure S3 M-P).
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Sca-1+ cells minimally differentiate into cardiomyocytes during homeostasis and aging

To further investigate the differentiation potential of cardiac resident Sca-1+ cells, we 

generated a third knock-in mouse model, Sca-1MerCreMer/+, by inserting an inducible 

MerCreMer cassette into the Ly6a start codon (Figure S4). Sca-1MerCreMer/+ mice were 

crossed with the ROSA26RtdTomato reporter41 to obtain 

Sca-1MerCreMer/+;ROSA26RtdTomato/+ double heterozygous mice (Figure 3 A). To examine 

the potential occurrence of Sca-1MerCreMer leakiness, we examined 10-month-old 

Sca-1MerCreMer/+;ROSA26RtdTomato/+ mouse hearts without tamoxifen induction, and 

tdTomato signals were not detected. Next, we treated Sca-1MerCreMer/+;ROSA26RtdTomato/+ 

mice with tamoxifen at P30, P60 and P120 for 1 month (on days 1, 3, 5, 7, 11, 15, 19, 23 and 

27) (Figure 3 A), and ROSA26RtdTomato cells were detected throughout the hearts (Figure 3 

B). Immunostaining with an anti-PECAM antibody showed that tdTomato cells are PECAM
+ (Figure 3 C-E), further confirming the endothelial identity of cardiac Sca-1+ cells.

Recent lineage tracing of cardiac Sca-1 cells in a transgenic mouse model carrying a 14-kb 

Sca-1 regulatory element showed that cardiac Sca-1-derived cardiomyocytes continuously 

contribute to myocardial replacement during aging, although the frequency is relatively low 

(an average of 2–5% of total cardiomyocytes at 2–18 months)51. Whether the transgenic 

mouse model utilized in the study represents the endogenous activity of Sca-1+ cells is 

unknown. Therefore, we introduced a super-sensitive cardiomyocyte-specific reporter mouse 

model, cTnTnlacZ-H2B-GFP/+ and crossed it with Sca-1MerCreMer/+ mice. The LoxP-
nLacZ-4XPloyA-LoxP-H2B-GFP cassette was inserted into the cTnT start codon in 

cTnTnlacZ-H2B-GFP/+ mice40. Bright nuclear GFP (cTnTH2B-GFP) was expressed when Cre 

activity was present in the myocardium or myocardial precursor cells (Figure 3 F). In the 

absence of tamoxifen, no GFP+ cells were observed in 

Sca-1MerCreMer/+;cTnTnlacZ-H2B-GFP/+ hearts (data not shown). We injected tamoxifen into 

Sca-1MerCreMer/+;cTnTnlacZ-H2B-GFP/+ mice at P30, P60, P90 and P120. After 1–2 months of 

induction, cardiac tissues were collected at P60, P90, P120 and P180 (Figure 3 F). Very few 

cTnTH2B-GFP-positive cells were found in the cardiac sections examined: only 12, 6, 4 and 0 

cells were detected in whole hearts at P60, P90, P120 and P180, respectively (Figure 3 G). 

To increase Sca-1MerCreMer effectiveness, we administered tamoxifen for 3 months. 

However, the number of cTnTH2B-GFP-positive cells did not significantly change (altogether 

<15 cells in the whole heart, ~0.0012% of total cardiomyocytes). These results suggest that 

the myogenic potential of cardiac resident Sca-1+ cells is exceedingly low or non-existent.

Sca-1+ cells retain their endothelial identity and do not differentiate into cardiomyocytes 
after injury

A previous report showed that transplanted cardiac Sca-1+ cells with telomerase activity 

have the ability to migrate to injured areas of the myocardium22. Lineage tracing in the 

Sca-1 transgenic mouse model also revealed that cardiac Sca-1+ cells exhibited increased 

cardiomyocyte differentiation potential under pathological conditions51. These observations 

may need further evaluation because the transplanted Sca-1+ cells and the transgenic allele-

labeled Sca-1+ cells may not mimic the characteristics of endogenous cardiac Sca-1+ cells.

Zhang et al. Page 8

Circulation. Author manuscript; available in PMC 2019 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To investigate the differentiation potential of resident Sca-1+ cells upon injury, we ligated 

the left anterior descending (LAD) coronary artery of Sca-1H2B-tdTomato/+;Nkx2.5H2B-GFP/+ 

mice and Sca-1H2B-tdTomato/+;cTnTH2B-GFP/+ mice at P60–150 (Figure 4 A-G). These 

sensitive genetic tools allowed us to precisely locate Sca-1-derived cardiomyogenic 

progenitors (Sca-1+/Nkx2.5+) and cardiomyocytes (Sca-1+/cTnT+) when they were present 

in the injured zone. Longitudinal sections of the injured heart showed decreased ventricular 

wall and septum thickness, suggesting acute MI (Figure 4 A). All cardiac sections of 

Sca-1H2B-tdTomato/+;Nkx2.5H2B-GFP/+ mice at 2, 5, 8 and 15 days post-surgery (dps) were 

examined, and Sca-1H2B-tdTomato-positive cells were found in the infarcted zone. However, 

no Sca-1H2B-tdTomato/Nkx2.5H2B-GFP double-positive cells were found (Figure 4 B-D). 

Moreover, we did not find any Sca-1H2B-tdTomato/cTnTH2B-GFP double-positive cells at 5, 8 

and 15 dps in the injured area of Sca-1H2B-tdTomato/+;cTnTH2B-GFP/+ hearts (Figure 4 E-G).

Furthermore, we performed LAD ligation in 

Sca-1MerCreMer/+;cTnTnlacZ-H2B-GFP/+;ROSA26RtdTomato/+ triple heterozygous mice (3–5 

months old). Tamoxifen was administered from 1 dps to 30–120 dps for continuous labeling 

of the Sca-1+ cells (Figure 4 H), and ROSA26RtdTomato signals were detected throughout the 

injured heart, including the infarcted regions, in these animals (indicating efficient 

induction), and exhibited enhanced density in the border zone (Figure 4 J1–2). Examination 

of Sca-1MerCreMer/+;cTnTnlacZ-H2B-GFP/+;ROSA26RtdTomato/+ hearts revealed a very limited 

number of cTnTH2B-GFP-positive cells (Figure 4 K-M). Only ~10 cells (~0.001% of total 

cardiomyocytes) were found in the entire heart at 30, 60, and 120 dps, and none were 

located in the injured area (Figure 4 K-M). These observations confirm the extremely low 

myogenic potential of cardiac resident Sca-1+ cells and suggest that the myogenic potential 

of these cells (if any) is not spontaneously stimulated under pathological conditions. In 

addition, we also performed LAD ligation in Sca-1nLacZ-H2B-GFP/+;Tie2Cre mice (3–6 

months old) and found that Sca-1H2B-GFP-positive cells were distributed in the border zone 

and infarcted area at 3–30 dps, indicating the Sca-1+ cells maintain their endothelial identity 

upon injury (Figure 4 N-Q).

Discussion

In this study, we employed a series of new mouse models to define the nature of cardiac 

resident Sca-1+ cells. These high-fidelity genetic tools avoid potential artifacts from 

immunostaining, and provide definitive conclusions regarding the identity and potency of 

cardiac resident Sca-1+ cells. With these models, we determined that Sca-1 is not expressed 

in early cardiac precursors during embryonic heart formation. Although cardiac Sca-1+ cells 

are heterogeneous, they belong to the Tie2 endothelial lineage exclusively, with minimal 

cardiomyogenic potential under both physiological and pathological conditions. These 

observations challenge the long-standing dogma that resident Sca-1+ cells are intrinsic CSCs 

for myocardial development, renewal and repair.

Previous lineage tracing with a transgenic mouse model carrying a 14-kb Sca-1 genomic 

sequence detected many more Sca-1-derived myocardial cells in the adult mouse heart (~2–

5% of total cardiomyocytes) than we observed in this study using a Sca-1MereCreMer mouse 

model carrying a complete Sca-1 genomic sequence (~0.001% of total cardiomyocytes). We 
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presume that a partial Sca-1 genomic fragment does not recapitulate endogenous Sca-1 

expression. Use of partial promoter fragments has also confounded previous attempts to 

lineage label c-Kit+ cells59. The extremely low number of Sca-1-derived cardiomyocytes 

may not even be functionally essential to the heart. These cells may arise from rare, 

sporadic, and transient Sca-1 expression barely detected in the Sca-1 reporter mice 

(Sca-1H2B-tdTomato).

Previous studies have also suggested that two types of Sca-1+ cells exist in the mouse heart: 

Sca-1+/CD31− and Sca-1+/CD31+30, 35, 37, 55. With Sca-1nLacZ-H2B-GFP/+;Tie2Cre mice, we 

found that all the cardiac resident Sca-1+ cells are of the Tie2 lineage. Endothelial cells are 

known to be heterogeneous with mixed expression of distinct endothelial markers60–62. 

Whether Tie2 labels a slightly larger cardiac endothelial population than CD31 in the adult 

mouse heart remains unknown. This requires further investigation in the future.

Over the past 15 years, reports from various groups have repeatedly demonstrated the 

myogenic potency of cardiac Sca-1+ cells in vitro. Although our study conclusively suggests 

that endogenous cardiac Sca-1+ cells do not primarily convert to cardiomyocytes, our results 

are not in opposition to the multipotency of these cells when they are cultured in vitro. We 

speculate that exogenous expansion of cardiac Sca-1+ cells with specific media and factors 

may “reprogram” them and significantly change their nature. The induced multipotency of 

exogenously expanded Sca-1+ cells does not confirm their cardiomyogenic potential in vivo. 

Indeed, a study that used transplantation of Sca-1+ cells to the injured heart showed very low 

efficiency of myocardial conversion35. Recent study by Ye et al. in which various types of 

cells (including BM cells, cardiospheres, cardiosphere-derived Sca-1+/CD45− cells, and 

human embryonic stem cell-derived cardiomyocytes) were delivered to ischemic hearts 

revealed that all these cells, regardless of their type or origin, almost equivalently reduced 

infarct size and improved cardiac function63. Based on these observations and the 

endothelial nature of cardiac Sca-1+ cells, we believe the major beneficial effects of 

transplanted Sca-1+ cells to injured hearts are not due to cardiomyogenic potential. In the 

future, it will be interesting to investigate whether and how the paracrine effects and/or 

neovascularization of Sca-1+ cells contribute to heart repair given their endothelial identity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Clinical Perspective:

What is new?

• We show that Sca-1 does not label cardiac stem cells in the embryonic or 

adult mouse hearts.

• Cardiac Sca-1+ cells are purely of the Tie2 endothelial lineage.

• Resident Sca-1+ cells rarely contribute to cardiomyocytes during normal 

aging and after injury.

What are the clinical implications?

• The identity of cardiac Sca-1+ cells is endothelium.

• Mechanisms of transplanted Sca-1+ cells in heart repair need to be 

reevaluated
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Figure 1. Heterogeneity of cardiac resident Sca-1+ cells.
(A) Diagram of the Sca-1H2B-tdTomato/+;c-KitH2B-GFP/+ double heterozygous alleles. (B-C) 
Longitudinal sections of Sca-1H2B-tdTomato/+;c-KitH2B-GFP/+ mouse hearts at P30 (B) and 

P120 (C). Partial Sca-1H2B-tdTomato cells and c-KitH2B-GFP cells showed co-localization 

(yellow, arrows in B2 and C2). (D) Flow cytometry analysis of 4-month-old 

Sca-1H2B-tdTomato/+;c-KitH2B-GFP/+ mouse heart cells. (E) Diagram of the 

Sca-1H2B-tdTomato/+;PDGFRaH2B-GFP/+ double heterozygous alleles. (F-G) Longitudinal 

sections of Sca-1H2B-tdTomato/+;PDGFRaH2B-GFP/+ mouse hearts at P60 (F) and P240 (G). 
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Some Sca-1H2B-tdTomato cells and PDGFRaH2B-GFP cells showed co-localization (yellow, 

arrows in F2 and G2). (H) Flow cytometry analysis of 4-month-old 

Sca-1H2B-tdTomato/+;PDGFRaH2B-GFP/+ mouse heart cells. (I) Diagram of the 

Sca-1H2B-tdTomato/+;Nkx2.5H2B-GFP/+ double heterozygous alleles. (J, K) Longitudinal 

sections of Sca-1H2B-tdTomato/+;Nkx2.5H2B-GFP/+ mouse hearts at P30 (M) and P120 (N). 

Sca-1H2B-tdTomato cells (red, arrows in J2 and K2) and NKx2.5H2B-GFP-positive cells (green, 

arrowheads in M2 and N2) were not co-localized. (L) Diagram of the 

Sca-1H2B-tdTomato/+;cTnTH2B-GFP/+ double heterozygous alleles. (M, N) Longitudinal 

sections of Sca-1H2B-tdTomato/+;cTnTH2B-GFP/+ mouse hearts at P30 (J) and P120 (K). No 

Sca-1H2B-tdTomato cells (red, arrows in M2 and N2) were cTnTH2B-GFP-positive (green, 

arrowheads in J2 and K2). LV, left ventricle; RV, right ventricle. n=3 for each stage. Scale 

bar, 100 μm.
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Figure 2. Cardiac resident Sca-1+ cells are of the Tie2 lineage.
(A) Diagram of the Sca-1nLacZ-H2B-GFP/+ reporter allele. Sca-1H2B-GFP is expressed when 

the nlacZ cassette is removed by Cre excision. (B-M) X-gal staining of hearts from 

Sca-1nLacZ-H2B-GFP/+ and Sca-1nLacZ-H2B-GFP/+;Tie2Cre/+ littermate mice at P30 (B, E), P60 

(C, F) and P120 (H-L). D, G, J and M are high-magnification photomicrographs 

corresponding with the areas outlined in C, F, I and L (white rectangle). Numerous 

Sca-1nLacZ-positive cells were observed in Sca-1nLacZ-H2B-GFP/+ hearts (arrows in B, C D, 

H, I and J), but no X-gal-positive cells were seen in Sca-1nLacZ-H2B-GFP/+;Tie2Cre/+ hearts. 
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(N-Q) Z-stack images of immunostaining with an anti-PECAM antibody (red) of 

Sca-1nLacZ-H2B-GFP/+;Tie2Cre/+ hearts at P60 (N, O) and P120 (P, Q). Sca-1H2B-GFP-positive 

cells co-localized with PECAM (yellow, arrows in O and Q). LA, left atria; LV, left 

ventricle; RA, right atria; RV, right ventricle. n=3 for each stage. Black scale bar, 1 mm. 

White scale bar, 100 μm.
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Figure 3. Sca-1+ cells in the adult heart have minimal myogenic potential.
(A) Diagram of the Sca-1MerCreMer/+ allele. Sca-1MerCreMer/+ mice were crossed with the 

ROSA26RtdTomato reporter to obtain Sca-1MerCreMer/+;ROSA26RtdTomato/+ double 

heterozygous mice. Tamoxifen was administered 9 times in one month (days 1, 3, 5, 7, 11, 

15, 19, 23 and 27) to induce Sca-1MerCreMer expression. (B) A representative 

Sca-1MerCreMer/+;ROSA26RtdTomato/+ heart showed substantial ROSA26RtdTomato-positive 

cells present after tamoxifen treatment (red, arrows in B2). (C-E) Immunostaining with an 

anti-PECAM antibody (green) of Sca-1MerCreMer/+;ROSA26RtdTomato/+ hearts at P30, P60 

Zhang et al. Page 20

Circulation. Author manuscript; available in PMC 2019 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and P90 after 1 month of tamoxifen treatment. ROSA26RtdTomato cells co-localized with 

PECAM staining in these hearts (yellow, arrows in C2, D2 and E2). (F) Diagram of the 

Sca-1MerCreMer/+;cTnTnLacZ-H2B-GFP/+ double heterozygous alleles. cTnT2H2B-GFP was 

expressed when Cre activity was specifically induced in cardiomyocytes. Hearts were 

collected after 1 month of tamoxifen treatment. (G) All cryosections (10 μm) of 

Sca-1MerCreMer/+;cTnTnLacZ-H2B-GFP/+ mouse hearts at P60, P90, P120 and P180 were 

examined under a microscope. Very few GFP cells were detected (arrows in G), and the total 

number was determined and is shown in the corner. LV, left ventricle; RV, right ventricle. 

Black scale bar, 1 mm. White scale bar, 100 μm.
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Figure 4. Resident Sca-1+ cells do not convert into cardiomyocytes upon injury.
(A) Longitudinal sections of Sca-1H2B-tdTomato/+ mouse hearts showing that Sca-1+ cells 

(arrow) are present in the injured area at 5 days post-surgery (dps). Sections were 

counterstained with DAPI. The infarcted region is indicated by asterisks. (B-D) 
Sca-1H2B-tdTomato/+;Nkx2.5H2B-GFP/+ mouse hearts were collected at 2 dps (B), 5 dps (C) 

and 8 dps (D). No Sca-1H2B-tdTomato (arrows in B, C and D) and Nkx2.5H2B-GFP 

(arrowheads in B, C and D) double-positive cells were found in the infarcted area. (E-G) 
Sca-1H2B-tdTomato/+;cTnTH2B-GFP/+ mouse hearts were collected at 5 dps (E), 8 dps (F) and 
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15 dps (G). Sca-1H2B-tdTomato cells in the injured area (arrows in E, F and G) were not co-

localized with cTnTH2B-GFP cells (arrowheads in E, F and G). (H) Diagram of time points 

for LAD surgery and tamoxifen administration for 

Sca-1MereCreMer/+;cTnTnlacZ-H2B-GFP/+;ROSA26RtdTomato/+ triple heterozygous mice. (I-J) 
Representative whole-mount view of 

Sca-1MereCreMer/+;cTnTnlacZ-H2B-GFP/+;ROSA26RtdTomato/+ mouse heart at 60 dps (I). 

ROSA26RtdTomato-positive cells were detected throughout the heart, including the infarcted 

region (arrows in J3). J2 and J3 are high-magnification images of the border zone (J2) and 

infarcted area (J3) in J1. Asterisks in J1–3 indicate the infarcted region. (K-M) Longitudinal 

sections of Sca-1MereCreMer/+;cTnTnlacZ-H2B-GFP/+;ROSA26RtdTomato/+ hearts at 30 dps (K), 

60 dps (L) and 120 dps (M). ROSA26RtdTomato cells were detected in the infarcted region 

(arrows in K-M). No cTnTH2B-GFP-positive cells were detected in the infarcted region at 30, 

60 and 120 dps. M2 is the green fluorescence filter image of M1 and shows the absence of 

cTnTH2B-GFP-positive cells. (N-O) Sca-1H2B-GFP-positive endothelial cells in the infarcted 

region of Sca-1nLacZ-H2B-GFP/+;Tie2Cre hearts at 30 dps. N2 and O2 are high-magnification 

photomicrographs corresponding to the areas outlined in N1 and O1. Black scale bar, 1 mm. 

White scale bar, 100 μm.
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