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Adult-onset neurodegenerative diseases are among the most difficult human
health conditions to model for drug development. Most genetic or toxin-
induced cell and animal models cannot faithfully recapitulate pathology in
disease-relevant cells, making it excessively challenging to explore the
potential mechanisms underlying sporadic disease. Patient-derived induced
pluripotent stem cells (iPSCs) can be differentiated into disease-relevant
neurons, providing an unparalleled platform for in vitro modelling and
development of therapeutic strategies. Here, we review recent progress in
generating Alzheimer’s, Parkinson’s and Huntington’s disease models
from patient-derived iPSCs. We also describe novel discoveries of pathologi-
cal mechanisms and drug evaluations that have used these patient iPSC-
derived neuronal models. Additionally, current human iPSC technology
allows researchers to model diseases with 3D brain organoids, which are
more representative of tissue architecture than traditional neuronal cultures.
We discuss remaining challenges and emerging opportunities for the use of
three-dimensional brain organoids in modelling brain development and
neurodegeneration.

1. Introduction

Neurodegenerative diseases are often characterized by progressive atrophy
of neurons and tissue, which corresponds to a loss of neuronal function and
results in impaired cognition and/or movement. Each specific neurodegenera-
tive disease preferentially affects a defined population of neurons, leading to
distinctive age-related clinical profiles [1]. However, many neurodegenerative
diseases share common molecular features that precede neuronal death
and dysfunction, including mitochondrial dysfunction, axonal damage and
abnormal protein aggregation [2,3]. Aberrant processing and aggregation of
misfolded proteins cause complex and distinctive pathophysiological profiles
in several neurodegenerative proteinopathies. Some well-known hallmarks
of these diseases include Amyloid B (AB) plaques and phosphorylated
Tau (pTau)-containing tangles in Alzheimer’s disease (AD) [4], a-synuclein-
associated Lewy bodies in Parkinson’s disease (PD) [5] and mutant huntingtin
(Htt)-containing inclusion bodies in Huntington’s disease (HD) [6]. These
aggregated proteins may act via loss-of-function or gain-of-toxicity mechanisms
to cause neuronal axon damage and cellular vulnerability. Thus, clearance
of neurotoxic aggregation is a major focus of phenotypic assays for drug devel-
opment, which includes methods to monitor autophagy-lysosomal network
function, chaperone-mediated folding and clearance, and ubiquitin-proteasome
protein degradation [3]. Many pathogenic mutations are associated with pro-
tein processing and/or aggregation. For example, HD is a monogenic disease
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caused by a polyglutamine expansion in mutant Htt, which
causes the protein to aggregate. Likewise, several known
pathogenic mutations in AD are associated with A pro-
duction. However, the majority of AD and PD cases are
idiopathic, which makes exploring disease mechanisms very
difficult without access to damaged tissue in the patient’s
nervous system. Post-mortem brain tissues have provided
essential pathological information for each disease, but it is
not suitable for identifying the biological changes during
initial stages of disease. Furthermore, transgenic animals are
valuable models for phenotypic and preclinical testing during
drug development, but microenvironment and species differ-
ences may be major reasons that transgenic animals have
been largely unable to sufficiently recapitulate disease pheno-
types. Current approaches to drug discovery have not
delivered effective therapeutics to reduce neurodegeneration
in AD [7], and other neurodegenerative suffer from a lack
of therapeutic options. Thus, the current models may be com-
plemented by access to patient-derived disease-relevant
neural cell types, greatly aiding preclinical drug evaluation
for neurodegenerative disease.

Recent advances in the ability to reprogram patient
somatic cells into inducible pluripotent stem cells (iPSCs)
have provided a novel means to generate disease-relevant
cells for in vitro disease modelling [8,9]. Human iPSC technol-
ogy was launched by Yamanaka and colleagues when they
first introduced the transcription factors, OCT4, SOX2, KLF4
and ¢-MYC, to somatic cells, generating a novel method for
producing stem cells [10]. In principle, human iPSCs can
differentiate into any cell type of human body; thus, patient
iPSCs can provide a source of cells that harbour a precise
constellation of genetic variants, which is associated with
pathogenesis in the appropriate microenvironment. As such,
iPSCs are often used in well-established models of human
disease, including both developmental and adult-onset
diseases, in the form of either two-dimensional (2D) cell cul-
tures or three-dimensional (3D) organoids [9,11-16].
Importantly, cells derived from patient iPSCs have been
shown to recapitulate phenotypes of various human neuro-
degenerative diseases, including AD [17,18], amyotrophic
lateral sclerosis [19,20], HD [21] and fragile X syndrome
[22]. Also, improvements in iPSC culture and the develop-
ment of robust differentiation protocols have made it
possible to carry out phenotype-based drug screening in
iPSC-derived disease-target cells [11,18,20,23]. Expandable
iPSCs can give rise to a large number of disease-related
cells, providing an excellent opportunity for large-scale drug
testing [9]. However, several technical considerations should
be taken into account when applying this approach. For
example, one key issue is that variability in the phenotypes
of iPSC lines from individual patients necessitates a large
cohort of lines to eliminate misleading pathological mechan-
isms or drug effects. In order to address this issue, the use
of current gene-editing technology has allowed researchers
to standardize genetic background by using isogenic control
lines [24,25]. Thus, coupling of gene editing technologies
with patient-derived iPSCs has enabled the generation of a
set of genetically defined human iPSC lines for disease mod-
elling [24]. Another hurdle for modelling disease with iPSC-
derived cells is that the maturity of derived neurons and
differentiation time required for phenotypes to emerge may
be variable across iPSC lines [26]. This variability issue can
be addressed by the use of multiple well-characterized iPSC

lines and isogenic controls. Moreover, for most diseases of n

ageing, multiple or chronic treatments are required to pro-
mote the expression of disease-associated phenotypes in
cellular models [27-33]. This challenge is significant, but may
be addressed in many cases by the use of long-term 3D
organoid cultures. These complex structures provide unique
human organ-like tissue that is amenable to long-term cul-
turing for disease modelling. The self-organizing capability
of iPSCs can recapitulate several key features of human corti-
cal development, including progenitor zone organization,
neurogenesis, gene expression and distinct human-specific
outer radial glia cell layers [34]. Furthermore, the complex
structures promote disease pathogenesis by accelerating
neuronal differentiation and maturation, providing excellent
laboratory models for human neurodegenerative disease.

The great potential for the use of iPSC technology in
developing treatments for human disease is evident [25]. In
this review, we provide an overview of iPSC technology
in modelling neurodegenerative diseases of the central nervous
system (especially AD, PD and HD), including methods for
differentiating disease-relevant neurons, important findings in
drug development, and current trends for improving treatment
of neurodegenerative disease. We also discuss the use of iPSC-
derived 3D brain organoids to study the central nervous
system and current findings from this technology with regard
to neurological diseases. The advantages and disadvantages
of iPSC 3D organoid modelling and potential new treatments
for neurodegenerative diseases are highlighted.

2. iPSC-based disease modelling and drug
discovery in Alzheimer's disease

AD is the most common form of dementia in the elderly,
affecting more than 40 million people worldwide [35]. The
primary gross pathology of the disease is brain volume
reduction and hippocampal degeneration, while the patholog-
ical hallmarks are extracellular AB plaques and aggregation
of hyperphosphorylated tau in neurofibrillary tangles. The
result of these pathological processes is that AD patients
suffer progressive memory impairment and acute cognitive
dysfunction during late-stage disease [4]. Experimental
therapies that target AB deposition have been thus far unsuc-
cessful in clinical trials. Although current medications, which
include cholinesterase and N-methyl-D-aspartate (NMDA)
inhibitors, cannot stop neuronal loss, the drugs may lessen
and stabilize cognitive defects [4].

Both genetic and environmental factors are likely to be
involved in AD pathogenesis. Most genetic forms of AD
result in disease onset before age 60 and are termed early-
onset or familial AD. By contrast, the most pervasive form
of AD is idiopathic with increasing incidence after 65 years
of age; this category is denoted late-onset AD or sporadic
AD [36]. Importantly, familial AD-associated gene mutations
are all involved in AB production and include amyloid-3
precursor protein (APP) [37], presenilinl (PSENT) [38] and
presenilin 2 (PSEN2) [39]. Theoretically, these genetic mut-
ations cause Amyloid B 1-42 (Ap42) production and result
in extracellular AB aggregation. However, the causes of
sporadic AD are poorly understood. A few genetic factors,
including apolipoprotein E (APOE) [40], sortilin-related
receptor (SORLI) [41] and SMI-1 (SMII) [42], were reported
to be associated with late-onset AD. It has also been
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suggested that complex interactions between genetic risk fac-
tors and other host factors, such as diabetes mellitus,
hypertension and obesity, play important roles in the aetiol-
ogy of late-onset AD [43]. Nevertheless, the specific causes
and mechanisms underlying the occurrence and progression
of sporadic AD are still elusive.

iPSCs have been widely used to explore disease patho-
genesis associated with both inherited monogenetic
mutations and sporadic AD (table 1). Since multiple neuronal
types are susceptible in AD, protocols have been developed
to generate different subtypes of forebrain neurons from
AD-iPSCs for use as in vitro models of disease (table 2). The
accumulation of AB peptide, which is produced from APP
via sequential cleavage by [-secretase and +y-secretase, is
thought to be a causative factor of AD pathology [36,54],
and the elevation of AB was found to result from pathogenic
mutations in APP, PSEN1 and PSEN2. PSEN1 encodes a sub-
unit of y-secretase that releases soluble APP from the cellular
membrane. Several mutations in presenilinl (PSEN1) have
been identified, including A79 V [45], Y115C, M146l [38],
A264E [39,48], G265C [47], G384A [49], T449C [47], S169del
[48] and a single nucleotide deletion in intron 4 [38].
Additionally, all of these mutations have been shown to elev-
ate AB42 secretion in AD-iPSC derived cortical neurons.
PSEN1(P117R) was associated with reduced neurite length
and susceptibility to inflammatory response [46]. It was
also shown that hyper-phosphorylation of microtubule-
associated protein Tau (pTau) occurs in AD-iPSC-derived
neurons carrying PSENT mutations [47,48]. Moreover, AD-
iPSC-derived neural progenitors with S169del or A264E
mutations were shown to exhibit low rates of proliferation
and high rates of apoptosis [48]. Similarly, PSEN2 encodes
the catalytic subunit of y-secretase and is involved in amy-
loid-B precursor protein (APP) cleavage. PSEN2(N141I) was
associated with increased AB42 secretion and decreased
action potential in neurons derived from patent iPSCs
[39,50,51]. Mutations in APP involving V717 (either V7171
or V717 L) and APP duplication have been shown to cause
the elevation of AB, Tau and pTau in AD-iPSC-derived fore-
brain neurons and astrocytes [37,38,52]. The elevated Tau
expression was reduced by AP antibody treatment [38].
Furthermore, APP(E693del) was associated with accumu-
lation of intracellular AB oligomers and susceptibility to
stress response in forebrain neurons [27]. In general, ApB42
secretion was reduced in familial AD iPSC-derived neurons
after treatment with - or +y-secretase inhibitors, including
BSI-IV, compound E, compound W or DAPT. NSAID or imi-
dazole-based modulators of y-secretase activity were also
shown to be effective at reducing AB42 secretion [45].

The majority of AD cases are diagnosed as sporadic or
polygenic, suggesting that AD is most often a multifactorial
disease that arises from genetic variants and environmental
factors [24,43]. Genome-wide association studies (GWASs)
have identified numerous genetic variants associated with
sporadic AD, such as GRB2-associated binding protein
(GAB2), galanin-like peptide (GALP), piggyBac transposable
element derived 1 (PGBD1), tyrosine kinase, non-receptor 1
(TNK1) and clusterin (CLU, also known as apolipoprotein J)
[55]. APOE encodes Apolipoprotein E, a cholesterol carrier
lipoprotein in the brain, which has several isoforms or alleles.
The APOE4 allele was the first gene risk factor to be identified
for sporadic AD and is still the most significant. Patients with
APOE4 have elevated risk compared with those carrying

APOE3, while APOE? is considered to be a protective allele
[56]. APOE4 codes for APOE(C112R), which has altered bind-
ing affinity towards lipoproteins and AB [57]. In human
iPSC-derived forebrain neurons, the APOE4 allele was associ-
ated with high levels of pTau, AB secretion and GABAergic
neuron degeneration [40,44,53]. These AD-related phenotypic
events were reduced by treating cells with the APOE4 struc-
ture corrector, PH002 [40]. In APOE3/E4 neurons, apigenin,
an anti-inflammatory drug, showed neuroprotective effects
by reducing Ca®" signalling frequency and caspase 3/7-
mediated apoptosis [46]. In APOE3/E4 forebrain cholinergic
neurons, neurotoxicity was increased when cells were treated
with ionomycin, and cell viability was reduced while calcium
was elevated upon glutamate treatment [44]. SORL1 is
functionally associated with directing APP to endocytic path-
ways. A certain genetic variation in the SORLI 5 region is
known as a gene-risk factor for sporadic AD, and it has
been shown that this variant reduces expression of SORL1
in AD-iPSC-derived neurons. Additionally, BDNF treatment
cannot induce SORL1 expression to reduce Af secretion by
contrast with wild-type SORLI carriers [41]. BMI1 encodes
polycomb complex protein BMI1, and is associated with
transcriptional repression of several genes through Ringl
mediated E3-mono-ubiquitin ligase activity. In cortical
neurons generated from sporadic AD patient-derived iPSCs,
BMI1 was downregulated and associated with AD pheno-
types including ApB secretion/extracellular deposition, Tau
phosphorylation and neuronal degeneration. Mechanistically,
BMI1 was associated with transcript repression of micro-
tubule-associated protein tau (MAPT) and destabilization
of glycan synthase kinase-38 (GSK-38) and p53. Thus, seve-
ral drugs that target these mechanisms were effective for
reducing phenotypes [42]. Also, the AD-associated pheno-
types, such as elevations in AP secretion and Tau
phosphorylation, and activation of GSK-38 were identified
in neurons generated from sporadic AD patient-derived
iPSCs [17,27,58]. These phenotypes could be reduced by
treating AD-iPSC-derived neurons with the pB-secretase
inhibitors BSi-II and OM99-2; however, y-secretase inhibitors
(Compound E and DAPT) had no rescue effects on the
sporadic AD-iPSC-derived neurons [17].

As AD-iPSC-derived neurons can recapitulate patho-
logical features of disease, these cells provide a promising
platform for the identification of potential drug targets
and further drug development. Drug screening has been
carried out in AD-iPSC-derived neurons to search for
compounds that can reduce AP toxicity-mediated cell
death. Accordingly, cyclin-dependent kinase 2 inhibitors
were identified as agents that can robustly reduce A neuro-
toxicity [18]. Furthermore, six pharmaceutical compounds
were also identified for the ability to lower AB production.
Among these compounds, a combination of bromocriptine,
cromolyn and topiramate showed potent anti-Af effects in
AD-iPSC-derived neurons [49].

3. iPSC-based disease modelling and drug
discovery in Parkinson’s disease

PD is one of the most common adult-onset neurodegenera-
tive diseases, affecting 1% of people over the age of 60
worldwide [59]. The core pathology of PD involves selective
loss of A9-type dopaminergic neurons that project from the
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Table 2. (Continued.)
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differentiated cell type
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supplement for differentiation
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methods for neuronal induction

Flamier et al. [42]

GABAergic neurons,

MAP2, TUJ1, GABA,

B27

N2, B27

N2, LDN, Noggin

glutamatergic

VGLUT1, ChAT
MAP2, TUJ1, VGLUTY,

Israel et al. [17];

neurons, cholinergic

N2, B27, BDNF/GDNF, cAMP for

N2, B27, bFGF

PA6 co-cultured, Noggin, SB431542 for

Young et al. [41]

neurons

GAD67/GABA

isolating neurons (D24,

(D184 (D44 ™)

B27

NPCs isolation (CD184™, (D15,

(D44—, (D2717)
B27, doxycycline hydrochloride

Kondd ét al. [27] 4

cortical neurons

© MAP, TBR2, SATB2,

none

VGLUT
MAP2, TUJ1, FOXGT,

Ortiz-Virumbrales et al.

basal forebrain

Brainphys medium, B27, NGF/

p75'+ NPCs isolation : Brainphyé médihm, B27

v LDN, SB431542, SAG, purmorphamine .

[50]; Moreno et al.

[51]

cholinergic neurons

p75/CHAT/VACHT/

Nkx2.1

BDNF

neurosphere formation: Brainphys medium,

B27, NGF/BDNF

AA, ascorbic acid; RA, retinoic acid; NPC, neural progenitor cell.

substantia nigra (SN) in the midbrain to the dorsal striatum n

[60]. The pathological hallmark of PD is Lewy bodies, which
consist of intra-neuronal aggregates of the synaptic protein
a-synuclein [61]. PD clinical manifestations include motor
deficits, such as tremor, rigidity, akinesia and postural
instability. At present, there is no cure for PD, but dopamine
(DA) replacement [62-64] or deep brain stimulation may be
prescribed for relief of motor symptoms [65].

Both genetic and environmental factors are likely to be
involved in PD pathogenesis. About 10% of PD cases
are caused by inherited genetic mutations; most of the
responsible genes are involved in regulation of mitochondrial
function and oxidative stress, including SNCA (a-synuclein)
[5,29], PARK2 (Parkin) [66], PINK1 (PTEN-induced kinase
1) [67], PARK7 (protein deglycase DJ-1), LRRK2 (leucine-
rich repeat kinase) [67-69] and ATP13A2 (ATPase type
13A). GWASs have also identified SNPs and triplication of
SNCA [70], LRRK2, GBA1 (B-Glucocerebrosidase), MAPT
(microtubule-associated protein tau) [59] and GAK (cyclin
G-associated kinase) [71-73] as being highly associated
with sporadic PD [74,75]. Certain environmental factors
have also been shown to be associated with PD pathogenesis,
including exposures to certain pesticides, herbicides, heavy
metals and bacteria. For modelling PD in animals, parkinson-
ism may be experimentally induced by disrupting
mitochondrial function with MPTP (1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine) [76] or 6-OHDA (6-hydroxydopa-
mine) [69,77].

Modelling PD with disease iPSCs has been widely used to
explore pathogenesis associated with inherited monogenetic
mutations as well as sporadic PD (summary in table 3).
SNCA encodes a-synuclein and is the first gene that was
linked to PD. Although the function of a-synuclein is not
well understood, a-synuclein aggregation in Lewy bodies is
a major pathological phenotype of PD. SNCA(A53T) was
shown to be associated with a-synuclein aggregation and
Lewy body-like deposition in dopaminergic neurons derived
from PD-iPSCs. Moreover, neuronal death was caused
by mitochondrial dysfunction due to nitrosative and oxi-
dative stress [32]. Triplication of SNCA leads to doubling of
a-synuclein expression in dopaminergic neurons derived
from PD-iPSCs [78], and this genetic aberration is linked to
cell death with mitochondrial swelling in cortical neurons
[79]. Furthermore, SNCA (A53T and triplication) was associ-
ated with ER and nitrosative stress in PD-iPSC-derived
cortical neurons [29]. Oligomeric a-synuclein was identified
in cortical neurons harbouring SNCA triplication and was
associated with neuronal death. Mechanistically, oligomeric
a-synuclein selectively induced oxidation of the ATP
synthase B-subunit, leading to permeability transition pore-
associated cell death [79]. Although the pathological role of
a-synuclein structure is contentious, Lewy bodies are
known to consist mainly of fibrils and are composed of inso-
luble a-synuclein (B-sheet structures [82]. Autosomal
dominant LRRK2 (leucine-rich repeat kinase 2) encodes a
protein containing multiple-functional domains including a
protein kinase, GTPase and protein-interacting regions.
Mutations in LRRK2 have been correlated with both familial
and sporadic PD. LRRK2(G2091S) was associated with upre-
gulation of a-synuclein protein, elevated expression of key
oxidative stress-response genes and mitochondrial dysfunc-
tion in dopaminergic neurons that were derived from PD-
iPSCs. GW50764 (an LRRK2 kinase inhibitor) prevented
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neuronal cell death, implying that blocking LRRK2 kinase
activity may be a valuable drug mechanism [67]. Moreover,
PD-iPSC-derived dopaminergic neurons were sensitive to
apoptosis after exposure to stressors including hydrogen
peroxidase, MG132 and 6-OHDA. This enhanced sensitivity
is consistent with our current understanding of early PD
phenotypes [69]. In neural stem cells, LRRK2(G2091S) was
associated with defective self-renewal and neuronal differen-
tiation [68]. LRRK2(G2091S) was also surprisingly correlated
with the disintegration of nuclear envelope, which was
associated with ageing in other human diseases [30,68,83].
This iPSC-based research suggested that the nuclear pore
structure may be useful for early diagnosis of PD and could
become a therapeutic target. Mitochondrial abnormalities
are a commonly studied mechanism of dysfunction in PD
research. As such, a recessively inherited early-onset form
of PD is caused by a mutation in PINK1 (PTEN-induced puta-
tive kinase 1) encoding a mitochondria-localized kinase,
which accumulates on the outer membrane of damaged mito-
chondria [84]. Similar to mutations in LRRK2, mitochondrial
dysfunction was associated with cell death in PINK1(Q456X)-
carrying dopaminergic neurons. Cell viability could be
rescued by antioxidant reagents, coenzyme Q10 and rapamy-
cin [67]. In dopaminergic neurons with induced ageing by
overexpression of progerin (a truncated nuclear envelope
protein laminin A), the PINK1(Q456X) and PARK2(V324A)
mutants exhibited neuron-specific neuromelanin accumula-
tion. In the same neurons, other PD-associated phenotypes
were recapitulated, such as loss of tyrosine hydroxylase
(converts L-tyrosine to L-DOPA), Lewy-body inclusions
and enlarged mitochondria [33]. This report was consistent
with the previous findings that impairment of nuclear pore
structure is associated with PD, and the overexpression of
progerin provides a tool to accelerate the ageing process
and study late-onset age-related PD for drug development.
Another PD-related gene, PARK2 (Parkin), is an E3 ubiquitin
ligase that targets mitochondria with PINK1 accumulation
for degradation [84]. Mutations in PARK2 are associated
with an autosomal recessive early-onset familial PD and are
correlated to loss tyrosine hydroxylase-positive dopaminergic
neurons [66]. An exon deletion that results in the loss of
Parkin expression leads to increased oxidative stress, reduced
DA uptake and increased spontaneous DA release in
dopaminergic neurons derived from PD-iPSCs. These obser-
vations suggest that Parkin is involved in controlling DA
neurotransmission and suppressing DA oxidation in human
midbrain dopaminergic neurons [80].

Apart from monogenic inherited PD, several genes have
been identified as risk factors for sporadic PD. Mutated
GBAL1 is a well-validated risk factor for PD [85]. GBAI encodes
the lysosomal enzyme B-glucocerebrosidase, which is involved
in glycolipid metabolism. Mutations in GBA1 (N370S and
L444P) were correlated to lowered [-glucocerebrosidase
activity and oa-synuclein accumulation in dopaminergic
neurons derived from PD-iPSCs [72]. The substrate of
B-glucocerebrosidase, glucosylceramide, was accumulated
in cells with either GBA1 mutations or defects in autophagic
and lysosomal machinery. In GBA1(N370S)-carrying dopa-
minergic neurons, DA synthesis and release were reduced.
Monoamine oxidase B (MAO-B) expression was upregulated,
and the inhibitor, rasagiline, rescued DA regulation [72].
Moreover, NECAB2 (neuronal calcium-binding protein 2)
was increased, causing the dysregulation of neuronal calcium

homeostasis and increasing the vulnerability of cells to stress n

from cytosolic calcium elevation [71,72]. In an iPSC-based
platform, MAO-B inhibitors or overexpression of wild-type
GBA1 were shown to be potential therapeutic strategies for
PD treatment [72]. Recently, the adaptive immune system
was suggested to be associated with PD after researchers
detected higher Th17 frequency in blood and upregulated
T lymphocytes in post-mortem tissues. In co-culture with
activated T lymphocytes, cell death was induced via upregu-
lation of IL-17 receptor and NF-kB activation in dopaminergic
neurons derived from sporadic PD-iPSCs. Blockade of IL-17
by the IL-17 antibody, secukinumab, provided a potential
method for rescue of neuronal cell death [81].

Disease modelling with 2D iPSC-derived cultures may
not be ideal due to a lack of complexity and neuronal imma-
turity, which are especially disadvantageous for modelling
adult-onset sporadic diseases. Recently developed methods
to generate brain organoids may help to create complex 3D
models of midbrain tissue from iPSCs. These midbrain orga-
noids are attractive models for mechanistic studies and drug
discovery for PD due to the inclusion of well-characterized
neurons, astroglia and oligodendrocytes [86]. Indeed, the
genetic signatures of the brain and intestinal organoids
derived from PD-iPSCs carrying the LRRK2(G2019S) mut-
ation were altered compared to controls. Although further
work is needed to elucidate the molecular pathology caused
by the PD-associated mutations, these studies demonstrate the
utility of the 3D organoid platform for PD research [87]. 3D
brain or midbrain organoids will allow the exploration of mul-
tiple factors that contribute to PD and broaden the potential
targets for drug development to neuron-adjacent cells.

4. iPSC-based disease modelling and drug
discovery in Huntington’s disease

HD is an autosomal dominant, fatal, progressive neurodegen-
erative disorder which is monogenic with exonic CAG repeat
in the huntingtin (HTT) gene. The expanded CAG repeat
encodes a polyglutamine tract that causes a toxic gain of
function and leads to preferential death of GABAergic projec-
tion neurons in the striatum. Typically, HD symptoms
typically manifest in midlife with motor deficits. Healthy
individuals have an average number of CAG repeats ranging
from 10 to 35, and HD patients have 36 or more expanded
CAGs. Notably, CAG repeat length is highly correlated to
disease severity and the onset age. Most importantly, there
is no cure for HD, and the only treatments available are for
the management of symptoms [88].

Since striatal medium spiny neurons (MSNs) are the
major susceptible cell type in HD, many differentiation proto-
cols have been developed to generate MSNs from hESCs and
human iPSCs (table 4). Although it is now possible to derive
highly enriched MSNs from HD patient-derived iPSCs for
disease modelling, the recapitulation of HD-relevant pheno-
types, including neuronal degeneration and aggregation of
mutant huntingtin (mHtt) protein in HD-iPSC-derived neur-
ons often requires the addition of other cellular stressors. For
example, it has been shown that HD-iPSC-derived MSNs cul-
tured in vitro have elevated levels of caspase activity upon
growth factor withdrawal [91,95,96], hydrogen peroxide
treatment [89,90,95] or glutamate stimulation [95]. Moreover,
the formation of mHtt aggregates in the HD-iPSC-derived
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neurons is rare. So far, only a few studies have indicated that
EM48-positive mHtt aggregation can be detected in
long-term cultured HD-iPSC-derived neurons with the
treatment of the proteasome inhibitor, MG132 [90], or in
the HD-NPCs engrafted into neonatal rat brains [6].

The recent advance of genome editing technology pro-
vides an excellent opportunity to create isogenic HD-iPSC
pairs for better in vitro HD modelling via correction of the
CAG locus in the HTT gene of HD-iPSCs [92,97,98]. An
et al. [92] were the first to generate genetically corrected iso-
genic HD-iPSC clones by homologous recombination. The
neurons derived from the isogenic line showed rescue of dis-
ease phenotypes, including cell death and mitochondrial
abnormalities caused by trophic factor withdrawal [92].
Using CRISPR/Cas9 technology, genetically corrected iso-
genic lines were also generated for in wvitro neuronal
induction. Xu et al. [98] used neuronal progenitor cells
derived from HD patients, isogenic controls and non-related
healthy controls to show that differential gene expression
levels caused by genetic background variation were elimi-
nated by using isogenic iPSCs as controls. Among the
genes identified in this study, HD-iPSCs carrying CAGg
exhibited dysregulation of CHCHD?2, a genetic risk factor
associated with mitochondrial oxidative phosphorylation
in late-onset PD [99]. This result suggests that isogenic
lines can provide specific controls for studying disease
mechanisms and exploring new phenotypes.

Use of cell-based therapy in HD rodent models revealed
that motor deficits could be rescued by transplanting
human iPSC-derived neural stem cells, but the treatment
did not improve striatum function [6,92]. These results indi-
cate that grafted cells were not sufficiently functional as
MSN:s, or that other types of cells (e.g. striatal interneurons
or non-neuronal cells) were required for optimum functional
recovery [92]. Glial dysfunction and pathology have been
implicated in the pathogenesis of neurodegenerative diseases
[94,100-102]. In HD, glial pathology was shown to be associ-
ated with striatal neuron dysfunction and other disease
phenotypes. In rodent models, striatal transplantation of glia
functioned to reduce disease phenotypes, including improv-
ing behavioural outcomes, restoring interstitial potassium
homeostasis, slowing disease progression and extending life-
span. These results suggest a functional role of glia in HD,
implying the potentials for iPSC-based glial replacement
therapies [102]. Thus, we provide a summary of protocols
for iPSC differentiation into HD-relevant cells, including
MSNss and astrocytes (table 4).

Several studies have used iPSC-derived neurons to inves-
tigate HD-associated pathogenesis and identify effective
therapeutic strategies or chemical compounds. DNA damage,
including damage response and repair machinery, was
shown to be involved in HD pathogenesis. ATM-p53 signal-
ling was enhanced by phosphorylation of p53 and H,AX
in HD-iPSC-derived neurons. Accordingly, neocarzinostatin
treatment improved cell viability through activating DNA
damage repair pathways [103]. Chiu et al. [89] showed acti-
vation of the A,AR-PKA pathway protected HD-iPSC-
derived MSNs from oxidative stress-induced DNA damage
and cell death. In addition, microglia exhibited proinflamma-
tory gene expression in HD [104], suggesting inflammatory
processes may be associated with HD pathology. In co-cul-
tured MSNs and astrocytes, both derived from HD-iPSCs
[93,94], MSN death was reduced after treatment with a

TNF-a inhibitor, Xpro1595. This result suggests that reducing
cytokine-induced iNOS expression in astrocytes can reduce
HD phenotypes [94]. Store-operated channel (SOC) was associ-
ated with calcium influx in HD-iPSC-derived MSNs, and an
NF-«B inhibitor effectively decreased SOC-mediated calcium
entry [90]. Moreover, inhibitors in the forms of microRNAs
and peptides have been explored as therapeutic strategies for
HD. The miR196a reduced mHtt aggregation through mediat-
ing the ubiquitin-proteasome pathway [105], while P110-TAT,
a peptide inhibitor of dynamin-related protein (Drp1), reduced
HD phenotypes, including excessive mitochondrial fission and
cell death [106].

5. Modelling neurodegenerative diseases
with three-dimensional brain organoids

2D culture systems have been widely used as human cell-
based platforms for modelling neurodegenerative disease,
and these models have been useful for the discovery of poten-
tial treatments. However, 2D culture systems are not suitable
to mimic the intricately structured in vivo environment.
Therefore, 3D culture systems have become valuable tissue
models, which include extracellular matrix and cell-cell
interactions that are necessary for proper differentiation,
proliferation and cell-based functions [107,108]. Hence,
human iPSCs grown in a 3D culture system represents a
straightforward substrate for fundamental studies on the
pathophysiology of human neurodegenerative disease.

PSCs have the capacity for self-organization and can
develop into 3D structures resembling mini-organs, including
the cerebral cortex. ESCs and iPSCs both exhibit the capa-
bility of developing through self-regulated processes into
cortical neuroepithelial structures with multilayered neuroe-
pithelium that resembles the progenitor zones of the
embryonic cortex [109,110]. Therefore, this culture system is
rapidly becoming an important platform for modelling
human cortical development and neurodegenerative disease.
However, these self-organizing cerebral spheres still lack
essential developmental and patterning cues to develop into
fully formed and mature organs. Thus, strategies are under
development to identify and provide appropriate physico-
chemical cues for transforming brain organoids into the
same tissue patterns as occur in vivo. For example, cells
have been embedded in scaffolding materials such as matri-
gel, self-assembling peptide (SAP) matrix and PNIPAAm-
PEG hydrogel [15,86,87,111-119]. To increase oxygen
uptake, culture conditions and vessels have been adjusted,
including raising the oxygen percentage [116,120], use of a
culture shaker, and growth of cultures in a spinning bio-
reactor [15,86,87,112,113,115,121]. Therefore, a growing
number of protocols has been developed for generating
cortex-like tissue in vitro (table 5).

Human iPSCs showed the capability of developing into
a dorsal telencephalon-like structure through self-organized
3D cultures [114,124]. Lancaster ef al. [15] used a spinning
bioreactor to improve diffusion of oxygen and nutrient
supply to the spheroids, meanwhile promoting non-neural
cell production without neuroectoderm formation by block-
ing TGF-8 and BMP pathways. These cerebral cortex
organoids recapitulated features of human cortical develop-
ment including characteristic progenitor zone organization
with abundant outer radial glial stem cells. Pasca et al. [122]
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Table 5. (Continued.)

extracellular

brain region in

organoid

main finding

days

]
S
k=i
]
']
£
=
=

patterning factor

Moreno

electrophysiologically active dopaminiergic neurons;

30 days

hiPSC-derived AA, BDNF, GDNF, TGF-S33, BD Matrigel microfluidic

3D nigrostriatal

et al.

19% of tryosine hroxylase-positive neurons

bioreactor

NSCs cAMP, PMA,

dopaminergic

il

Adil et al.

functional striatal neurons; cell population diversity:

DKK-1, PUR, BDNF, GDNF,

hESC/hiPSC-

neurons
3D striatal neurons

60 days

none

PNIPAAM-PEG

[111]

43% DARPP32 neurons and 27% glial;

hydrogel

cAMP, 1GF-1

derived

Transplantation 3D-derived striatal progenotor

striatal
NSCs

into HD mice improved motor coordination and

increased survival

PUR, purmophamine; AA, ascorbic acid; PMA, phorbol 12-myristate 13-acetate.

expanded self-organized cortical spheroids that contained [ 18 |

astrocytes surrounding electrophysiologically matured and
functional neuronal synapses. Furthermore, defined culture
conditions were used to generate forebrain, midbrain and
hypothalamic organoids in a spinning bioreactor. Human
iPSC-derived brain organoids recapitulated human-specific
outer radial glia cell layers in cortical development and
other key features, including progenitor zone organization,
neurogenesis and gene expression [121]. Moreover, Jo et al.
[123] generated 3D ventral midbrain-like organoids that
contain functional midbrain dopaminergic neurons and
neuromelanin granule, similar to human substantia nigra
tissue. Thus, 3D neural organoids faithfully mimic the basic
processes of brain development and functional patterning
of brain regions, providing a highly advantageous model
for studying human neurodegenerative diseases or other
neurological disorders [34].

It is clear that iPSC-derived spheroids or organoids
could recapitulate neurodevelopmental processes, potentially
allowing the investigation of developmental disorders related
to the human cerebral cortex (table 6). Recently, patient-
derived iPSCs carrying a CDK5RAP2 mutation were used
by Lancaster ef al. to successfully model primary microce-
phaly in 3D cerebral organoids; the cultures recapitulated
premature neural differentiation and decreased numbers of
radial glial cells, producing overall smaller organoids than
wild-type controls [15]. This study provided a striking
example of modelling neurodevelopmental disorders in
human cell culture systems, which have not been successfully
recapitulated in mouse models. Miller—Dieker syndrome
(MDS), a brain malformation (lissencephaly) syndrome, is a
contiguous gene deletion of chromosome 17p13.3 involving
the LIST and/or YWHAE genes (coding for 14.3.3¢) [127].
MDS-iPSC-derived organoids mimicked brain malformations
with a smaller size, which was likely caused by premature
neurogenesis and alterations of cortical niche architecture.
Based on this model system, the authors further discovered
that the LIS1/NDEL1/14.3.3e complex was associated with
cortical niche architecture and the deletion leads to non-
cell-autonomous disturbance of B-catenin signalling [113].
Models of idiopathic autism spectrum disorder (ASD)
based on patient-derived iPSCs revealed that the ASD orga-
noids recapitulated human first-trimester telencephalic
development, but with over-production of neuronal progeni-
tors due to a shorter cell cycle length. Also, the production of
GABAergic neurons was induced due to increased expression
of FOXGI, a transcription factor involved in early cortical
neuron production and associated with prenatal microce-
phaly of some ASDs subtype [125]. Furthermore, Srikanth
et al. [117] modelled a neuropsychiatric disease using
DISC1-disrupted iPSCs to generate cerebral organoids.
DISC1-mutant cerebral organoids display disorganized struc-
tural morphology and impaired proliferation. The authors
further reported that DISC1 isoforms were associated with
elevation of baseline WNT signalling in NPCs, which
resulted in morphological and neurodevelopmental conse-
quences through alterations in cell fate and progenitor
migration. Recently, Zika virus was linked to infants born
with microcephaly. Human brain organoids showed Zika
virus affected neural stem cells, and pure forebrain organoids
showed Zika virus affected cell proliferation in the ventricular
zone. These findings supported the notion that the pathogen
directly affects fetal brain development processes and
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suggested that Zika virus may be involved in apoptosis of
neuron progenitors [128,129].

Brain organoids show faithful recapitulation of brain devel-
opment and organization of functional cells. These highly
complex and dynamic 3D networks among neurons and glia
also provide a means to further understand neurodegenerative
disorders from a more systemic view. As previously noted,
additional cellular insults are often required to generate dis-
ease-relevant phenotypes while modelling with iPSC-derived
neurons. Currently, explorations into the modelling of neurode-
generative disorder phenotypes using 3D organoids for
therapeutic development are becoming increasingly prevalent.

For recapitulating AD pathology, 3D culture systems were
shown to exhibit extracellular deposition of AB and increased
pTau level [116,118,126,130,131]. Using genetically modified
immortalized hNPCs with familial AD mutations (APP and
PSENTI), the aforementioned phenotypes were shown along
with higher expression of four-repeat adult Tau (4R Tau)
isoforms [130,131]. Zhang et al. [118] used a 3D hydrogel-
based culture system to shorten the time necessary of generat-
ing functional neurons and applied treatments to diminish
A oligomer production in AD organoids. In addition, 3D
organoids have been used to reveal new disease phenotypes
as well as AD pathology. For example, Raja et al. [116] identified
endosome abnormalities associated with different mutations in
APP (duplication) or PSEN1 (M146 L, A246E) by using AD-
iPSC-derived brain organoids. Finally, using iPSCs derived
from sporadic AD patients, Lee ef al. [126] recapitulated both
Apand pTau pathology with NPC-derived 3D neurospheroids.

3D organoids also exhibit certain phenotypes, which are
not observed in 2D culture systems. In HD-iPSC-derived
brain organoids, the length of CAG repeat was associated
with neural differentiation capacity [112]. The HD-iPSCs
carrying longer CAG repeats (Q109 and Q180) exhibited com-
plete failure of neuroectodermal acquisition; however, shorter
CAG repeats (Q60) showed milder abnormalities in neural
rosette formation and disrupted cytoarchitecture in cortical
organoids. These findings were not observed in 2D culture
systems and suggest that 3D culture conditions can accelerate
neuronal maturation and recapitulate disease pathogenesis.
From this handful of studies using a 3D culture system for
modelling neurological diseases, one can easily see that this
platform holds immense opportunities and the potential for
studying human-specific neurological diseases. However, it
should be borne in mind that certain limitations will continue
to hamper the study of all neuropathologies, and especially
adult-onset diseases.

6. The applications and challenges of
iPSC-derived three-dimensional cultures

The self-organization of brain organoids without embryonic
surroundings allows researchers to inspect neurodevelop-
mental process. Current models have clearly demonstrated
that exogenous cues are essential for organoids to develop
into well-patterned mature brains. Also, variability in quality
and brain regions are important issues for disease modelling
and drug testing. For modelling of adult-onset diseases,
immature structures or neuron-only organoids may not be
sufficient to reflect complex neurobiological processes and
drug effects. These factors will impact test results from the
laboratory to the clinic. Therefore, robust and mature 3D

organ culture models will help to accelerate neurological
research and neuropharmaceutical development.

3D neuronal organoids allow penetration of small mol-
ecules and sufficient oxygen and nutrient supply that are
essential for the survival of the innermost cells. Thus, the 3D-
iPSC model enables researchers to analyse molecular and
pharmacological effects in a complex tissue system. Taking
AD as an example, the different culture systems show different
responses to test compounds. For example, in an AD patient
iPSC-derived 3D culture system, amyloid and Tau pathology
were significantly reduced after treatment with - and -y-secre-
tase inhibitors [116,126]; however, Lee et al. [126] indicated that
B- and y-secretase inhibitors work more effectively in decreas-
ing AR levels in AD-NPCs-derived 2D neurons than in 3D
spheroids [132]. Additionally, it was shown that p21-activated
kinase was associated with A oligomer-mediated AD patho-
genesis in the 3D organoids, which was not observed in 2D
culture-derived neurons [118]. Potentially, drug responses
and pathogenesis may vary according to the cell population
and environment that is present, suggesting the 3D culture sys-
tems may more reliably reflect the conditions in patient brains.
Moreover, the pathogenesis of adult-onset neurodegenerative
diseases is generally considered to result from long-term
chronic exposure to neurotoxicants. The cells in 3D-cultured
organoids are viable for much longer times than 2D-cultured
neurons, as long as nutrients and oxygen are efficiently sup-
plied. Therefore, the 3D culture system provides an exciting
platform for exploring pathogenesis caused by long-term neu-
rotoxicant exposure and chronic cellular response. Smirnova
et al. [133] administered neurotoxicants (MPP* and rotenone)
to dopaminergic neurons in 3D neuronal models derived
from PD-iPSCs, and reported that dopaminergic neurons
responded to toxicant exposure by upregulating one-carbon
metabolism, transsulfuration pathways (ASS1, CTH and
SHTM2) and a-synuclein associated microRNAs. This report
provided a pioneering example of using a human cell model
for investigating neurotoxicology and sporadic PD [133]. 3D-
iPSC models provide a more realistic platform to investigate
neurodevelopment and neurological disorders, providing an
excellent multifaceted system with which to investigate chronic
effects of drug treatment.

Despite the great potential of 3D organoids, low numbers
of non-neuronal cells and lack of vascularization may limit
their utility. The interaction between non-neuronal cell popu-
lations and neuronal function has become one of the most
important features that can be modelled by 3D cerebral orga-
noids. For example, the neuronal function was characterized
by synaptic connections and electrophysiological activity in
midbrain organoids, which contained organized dopamin-
ergic neurons, astroglia (4%) and oligodendrocytes (29.6%)
[86]. Likewise, striatal neurons fired action potentials in
Hydrogel-embedded 3D culture systems that contained 27%
glia [86,111]. In a mouse model of HD, motor coordination
and lifespan were improved after transplantation with 3D
striatal progenitors [111]. Pasca ef al. also indicated that neur-
onal synapse function was improved when surrounded by
astrocytes (approx. 20%) in cortical spheroids [122]. The com-
plexity of the extracellular environment in 3D culture systems
presents a relatively realistic platform for studying neurobiol-
ogy and neurological diseases. Additionally, the vasculature is
not present in the early developing neocortex ahead of blood
vessel invasion; however, vascularization is essential for neur-
onal progenitor differentiation in the subventricular zone
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Figure 1. Applications of human induced pluripotent stem cells in neurodegenerative disease.

during late development [134]. This limitation also hampers
PD modelling because degeneration of nigrostriatal projection
neurons is the primary cause of PD symptoms, and vascular-
ization would be an essential first step to begin the enormous
task of rebuilding a functional nigrostriatal circuit in a culture
setting. Strategies such as building a vascular microenviron-
ment by microfluidic chambers have been developed to
address the lack of vascularization, further mimicking the
physiological niche for neurogenesis [135-137]. In the tissue
scaffold, pre-capillary networks were built by co-culture of
pericytes and early vascular cells derived from hPSCs
[138,139]. This approach was able to facilitate the generation
of physiologically relevant vascular networks for neurogen-
esis. Thus, perfusion-based human iPSC-derived 3D brain
organoid platforms represent increasingly realistic in vitro
models for neurodegenerative diseases.

7. Conclusion

Accumulating evidence demonstrates that human iPSCs can
be used as a reliable basis for the generation of disease-
relevant cell types to explore the mechanisms underlying
human disease. Through continuous propagation and efficient
differentiation of patient-derived iPSCs into specific neuronal
subtypes and 3D organoids, we are now able to better recapi-
tulate the cellular progression toward neurodegeneration in
vitro. This capability allows researchers to discover new
methods to manipulate iPSC-derived neurons, uncovering
novel disease phenotypes in vitro in the hope of eventually
identifying novel clinical interventions. For example, age and
disease-associated phenotypes can be recapitulated by pro-
gerin impairment, and this accelerated ageing may be used

in combination with PD-iPSC-derived neurons [33]. The short-
ening of telomeres is a typical feature of ageing, which can be
induced by overexpression of progerin in neurons, helping to
drive the development of PD phenotypes [33]. This discovery
suggests that ageing-accelerated disease modelling may be
applicable in several neurodegenerative diseases, including
AD [140], PD [141] and HD [83]. Since impairment of nuclear
pore structures has been identified in all of the aforementioned
diseases, researchers should be aware of which cellular conse-
quences stem from progerin overexpression and which are
specifically related to the disease. In addition, region-specific
brain organoids provide a platform to investigate early-stage
phenotypes, which may potentially serve as biomarkers for
early diagnosis and drug targets for preventing disease pro-
gression. A key to fulfilling the promise of iPSC technology
to discover new medicines for the human neurodegenerative
disease will be to incorporate the findings from iPSCs with
other successful models. Since brain organoids lack vascular-
ization, patterning cues and complex cell-cell interactions,
such as those found in the nigrostriatal pathway [142], animal
models will continue to provide essential readouts for drug
evaluation, especially those related to physiological interactions
and disease-associated behavioural phenotypes (e.g. cognitive
impairment in AD and motor defects in PD and HD). We sum-
marize current progress and applications of human iPSCs in
neurodegenerative diseases including AD, PD and HD in
figure 1. Although there are still many obstacles to overcome
before iPSC-based technology can be used directly in clinical
applications, the combination of iPSC technology with genome
editing, organoid engineering and other technologies will
certainly accelerate the development of new medicines for
human neurodegenerative disease and eventually may cure
these devastating diseases by cell replacement therapy.
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