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It is known that plant arboviruses infect insect vector cells by endocytosis;

however, the cellular receptors that mediate endocytosis have not been well

defined. In our recently published work and this study, by clarifying the ver-

tical transmission mechanism of Rice stripe virus (RSV) in Laodelphax
striatellus, we provide a novel paradigm for how arboviruses enter insect

germ-line cells. Instead of direct interaction with a viral receptor, the virus

binds to a secreted ligand protein, hitchhiking the ligand-receptor pathway

to achieve cell entry. Vitellogenin (Vg) is an indispensable protein for

embryo development that is synthesized extra-ovarially and taken up by

germ-line cells through Vg receptor (VgR)-mediated endocytosis. After reveal-

ing that RSV invades L. striatellus ovary by a specific molecular interaction

with the insect Vg in haemolymph, this study addressed VgR’s function in

mediating the RSV invasion of the germarium nurse cells, further confirming

the ligand’s receptor-mediated viral cell-invasion mechanism. Understanding

the viral ovary-entry pathways in vectors will help to find suitable measures to

block the trans-generation transmission of the viruses.

This article is part of the theme issue ‘Biotic signalling sheds light on

smart pest management’.
1. Introduction
Viral entry into specific host or tissue cells is regarded as the early stage of a viral

infection, and viral attachment is the first step for cell entry. Attachment factors

serve to bind the viral particles and thus help to concentrate virus onto the surface

of susceptible cells. On the cell surface, the virus specifically binds to the viral

receptor and initiates cell entry by activating signalling pathways and promoting

endocytic internalization. The interactions between a virus and its cellular recep-

tors are usually highly specific, thus the types of receptors present determine, to a

large degree, which cell types and species can be infected [1–6]. Unravelling the

cellular receptors that specifically mediate viral cell entry will provide the basis for

the development of strong anti-viral strategies [2,7,8].

For the viruses that infect mammals, hundreds of attachment factors and

receptors have been identified [1,9]. For several important human viruses, the

detailed molecular mechanisms of viral cell entry have been elucidated and

have led to efficient therapeutic methods [10–12]. For example, maraviroc, an

FDA-approved HIV cell-entry inhibitor, binds to the CCR5 receptor, an essential

co-receptor for most HIV strains, blocks binding of the viral envelope glyco-

protein, gp120, to CCR5 to prevent the membrane fusion events necessary for

viral entry. HIV is then unable to enter human macrophages or T cells [2,7].

For viruses that infect plant cells, the rigid and fairly thick cell wall presents a

unique barrier for entry. Initial entry into plant cells is believed to take advantage

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2018.0312&domain=pdf&date_stamp=2019-01-14
http://dx.doi.org/10.1098/rstb/374/1767
http://dx.doi.org/10.1098/rstb/374/1767
http://dx.doi.org/10.1098/rstb/374/1767
mailto:zhangll@im.ac.cn
mailto:fangrx@im.ac.cn
https://dx.doi.org/10.6084/m9.figshare.c.4320986
https://dx.doi.org/10.6084/m9.figshare.c.4320986
http://orcid.org/
http://orcid.org/0000-0002-4321-0521
http://orcid.org/0000-0002-1677-4591


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180312

2
of breaks in the integrity of the cell wall. Most plant viruses are

carried by insect vectors and are inoculated into the plant

tissues or cells through the breaks made by the insect’s stylet

[13–15]. Since the virus can enter the plant tissues or cells

through such a break, interactions with specific plant cellular

receptors may not be necessary.

Some human viruses of medical importance are also trans-

mitted by arthropod vectors [16,17]. The viral transmission

routes within the arthropod vectors, independent of animal

or plant host, are highly conserved [18]. A complete circulation

route for viruses that are transmitted by arthropod vector in a

persistent-propagative manner starts from the viral entry into

midgut epithelia. Viruses then replicate inside the infected

cells and spread to adjacent gut cells, passing through the

gut barrier to disseminate into the haemolymph. From the

haemolymph, viruses can invade various insect tissues, includ-

ing salivary glands, which lead to the delivery of viruses into

healthy hosts through the saliva. Some arboviruses can be ver-

tically transmitted to offspring and the transmission initiates

from the viral entry of germ-line cells in female ovaries

[14,18]. Microscope-based techniques have clarified the infec-

tion routes of viruses within the vector body; however, for

each transmission barrier, especially midgut, salivary glands

and ovaries, the cellular receptors that mediate the initial

viral entry are not well defined or characterized [16,19].

Arthropods have cellular membrane structures that are

comparable with those of mammals. Viral entry into arthropod

cells by receptor-mediated endocytosis has been detected

using electron microscopy [20,21]. For example, Rice dwarf

virus (RDV), which is transmitted by Nephotettix cincticeps,

enters N. cincticeps cells by endocytosis through coated pits

[21]. The treatment of N. cincticeps cells with drugs that block

either receptor- or clathrin-mediated endocytosis confirmed

the clathrin-dependent receptor-mediated endocytosis [21].

Electron tomography clearly showed that the RDV minor

outer-capsid protein P2 connects the viral particle to the

host’s cellular membrane during cell entry [22]. However, the

cellular receptor for RDV’s cell entry remained unidentified

[19]. At present, no insect cellular receptor for viral entry has

been well defined [16,19]. By contrast, considerable numbers

of attachment factors and receptor candidates have been ident-

ified [16,19,23–26]. For example, Aedes aegypti transmits West

Nile virus (WNV). A secreted mosquito C-type lectin captures

WNV in the haemolymph by binding to the WNV envelope

glycoprotein. A CD45-like protein tyrosine phosphatase,

mosPTP-1, located at the cell surface recruits the C-type lectin

through a molecular interaction, which enables WNV to

attach onto the cell surface and facilitates viral cell entry [24].

However, whether mosPTP-1 participates in viral endocytosis

was not studied, and it is not clear if it acts as an attachment

factor or as an entry receptor [27]. Identifying the cellular recep-

tors involved in the initial recognition of arboviruses by their

insect vectors at each critical transmission barrier is still a

major challenge.

Building on our previous studies [28,29], we reveal that

a plant arbovirus hitchhikes a well-defined insect ligand-

receptor interaction pathway to achieve its cell entry. This

represents a previously undescribed mechanism for the arbo-

viral invasion of vector cells. Rice stripe virus (RSV) is the

causative agent of rice stripe disease and is completely depen-

dent on Laodelphax striatellus (small brown planthopper, SBPH)

for transmission from RSV-infected rice to healthy plants. RSV

is able to infect L. striatellus ovaries and is vertically transmitted
to offspring. We have demonstrated that the insect vitellogenin

(Vg) protein plays a key role in helping RSV to invade

L. striatellus ovaries. Following the Vg synthesis and transport

route, we have found that RSV binds to Vg in haemocytes and

then travels in the haemolymph to the nurse cells in the

germarium zone. Taking into consideration the Vg-uptake

mechanism that has been clarified in detail, we hypothesized

that RSV may break the L. striatellus ovarian barrier by entering

nurse cells through Vg receptor (VgR)-mediated endocytosis.

In this study, we provide new evidence of VgR’s function in

mediating the RSV invasion of nurse cells, further confirming

this novel viral cell-entry mechanism.

By searching the L. striatellus genome ([30] and personal

communications) with our previously obtained VgR sequence

(GenBank number KJ452775), a single-copy VgR gene was

identified (figure 1a, sequence and annotation). The VgR

open reading frame is 5784 bp in length, encoding 1928

amino acids. A BLAST algorithm-based analysis [31] against

sequence databases revealed that the full-length amino acid

sequence of L. striatellus VgR shared a 76% identity with VgR

from Nilaparvata lugens. A SignalP 4.1 analysis [32] revealed a

signal peptide of 20 amino acids at the N-terminus

(figure 1a). The transmembrane (TM) prediction using

Hidden Markov Models (http://www.cbs.dtu.dk/services/

TMHMM/) identified a TM helix from amino acids 1774–

1796. Thus, VgR appears to be a TM protein with an N-terminal

extracellular region and a C-terminal cytoplasmic tail. An

analysis of the deduced protein sequence with the SMART

algorithm revealed conserved domains similar to those of the

low-density lipoprotein receptor family [33,34], including

two ligand-binding domains with insect VgR characteristics

[35], epidermal growth factor-like domains and YWXD

amino acid repeats (figure 1a).

VgR expression was measured by quantitative reverse

transcription PCR (RT-qPCR) with the VgR-specific primers

VgR-QF/VgR-QR (primer sequences listed in electronic

supplementary material, table S1 and protocols described

in electronic supplementary material). Temporal expression

measurements indicated that the VgR transcript was produced

in females at all stages of ovarian development (figure 1b). The

VgR transcript level rapidly increased in immature female

ovaries of final-instar nymphs and in the early previtellogenic

period (before 12 h posteclosion), and continued its dramatic

rise during the vitellogenic periods, reaching its peak at 96-h

posteclosion (figure 1b). In other tested tissues of female

adults, including fat body, midgut, salivary glands and haemo-

cytes, VgR was at very low or undetectable levels (figure 1b).

We next determined the cellular distribution of VgR. Immuno-

fluorescence staining with a VgR-specific antibody indicated

that the protein was distributed in both the germarium and

developing oocytes (figure 1c).

To determine whether the RSV–Vg interaction mediates

RSV cell entry through VgR-mediated endocytosis or the

interaction just enriched the virus amount reaching the ger-

marium assuming RSV enters the cells through an

interaction with another receptor, we investigated VgR’s func-

tion during the RSV infection of insect ovaries. We knocked

down VgR transcripts using RNA interference (RNAi)

through the microinjection of dsRNA of VgR (dsVgR). Dsgfp

was microinjected as a control. The fifth-instar nymphs, at

24 h before eclosion, were injected with dsRNA. Both the

VgR-knockdown efficiency and the RSV titres were measured

48-h posteclosion. RT-qPCR indicated that treatment with
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Figure 1. The Laodelphax striatellus VgR gene and its expression profile. (a) Schematic composition of L. striatellus VgR, as illustrated by the SMART algorithm. SP,
signal peptide sequence; LBD, ligand-binding domain; EGF, epidermal growth factor-like domain; YWTD, YWTD amino acid repeats; TM, transmembrane domain; CP,
cytoplasmic region. (b) RT-qPCR to quantify VgR mRNA levels in L. striatellus tissues at different developmental stages. Ef2, L. striatellus elongation factor 2 gene.
Means and s.d. were calculated from three independent experiments, with five mRNA samples per experiment. (c) Immunofluorescence assay to localize VgR protein
in L. striatellus ovaries. VgR was probed with a mouse anti-VgR polyclonal antibody and stained with Alexa Fluor 488 (shown in green). Samples were examined
using a Leica TCS SP8 confocal microscope. Images are representatives of three independent experiments each with five insects analysed. Gr, germarium; O, oocyte.
Scale bar, 20 mm. (Online version in colour.)
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dsVgR resulted in a 75% lower VgR transcript abundance in

ovaries compared with the dsgfp treatment. We then assessed

whether the RSV titre in the ovaries was affected by the RNAi-

mediated VgR deficiency and found that, compared with the

control group injected with dsgfp, dsVgR-treated L. striatellus
showed a 73% lower RSV titre in the ovaries (figure 2a). Immu-

nofluorescence staining was performed to observe the RSV

infection route in ovaries. At 48-h posteclosion in the dsgfp-

treated group, 79% of the insects showed RSV infecting most

parts of the germarium (type C infection level), 17% showed

RSV RNPs (filamentous ribonucleoprotein particles) accumu-

lating in the anterior part of the germarium (type B), while

only 4% showed no RSV RNPs in the germarium (type A).

By contrast, in the dsVgR-treated group, a significantly

lower proportion of the insect population exhibited a heavier

RSV infection. In total, 21% of the insects had a type A ovarian

infection level, 45% had type B and 34% had type C

(figure 2b,c). Thus, VgR appears to be required for the RSV

invasion of L. striatellus ovaries. When the VgR-deficient

RSV-infected L. striatellus females were mated with RSV-

infected males, no offspring were produced, indicating that

the VgR-deficiency also impeded Vg uptake and oocyte devel-

opment. We then compared the influence of dsVg [28] and

dsVgR on RSV ovarian infection levels and found that the

RNAi-mediated silencing of either associated gene resulted

in similar decreases in the viral infection level in the ovaries,

suggesting that VgR is the dominant downstream receptor

for the Vg–RSV complex. Cellular receptors usually deter-

mine the cell types that viruses can invade, while the lack of

a viral receptor leads to a complete block of viral cell entry

[1]. dsRNA-mediated gene silencing does not eliminate all

gene transcripts; therefore, it remains uncertain whether the

Vg–VgR endocytic machine is the only receptor pathway
required for RSV to enter L. striatellus nurse cells. A

CRISPR/Cas9-mediated gene knockout or cultivable L. stria-
tellus cell line will be used in the future to clarify the

function of the Vg–VgR endocytic machine in RSV cell entry.

To further confirm that RSV enters the germarium nurse

cells using the VgR-mediated endocytic machinery, we investi-

gated the co-localization patterns of RSV and VgR in nurse

cells. Insect VgR localizes in clathrin-coated pits on the surface

of germarium nurse cells or growth-competent oocytes. Vg

binding to the membrane-bound VgR results in the accumu-

lation of Vg in clathrin-coated pits, which subsequently

invaginate and pinch off to form intracellular coated vesicles.

These vesicles then carry the Vg–VgR to an endosome. Vg is

then accumulated in early endosomes, which are fused into

late endosomes, forming the yolk granules [36]. Using an

immunofluorescence assay, we found that RSV and VgR co-

localize in the germinative zone (figure 3a) where RSV–Vg

co-localization occurred. By immunoelectron microscopy, the

RSV RNPs and VgR were found to co-localize on the surfaces

of the nurse cells, inside the intracellular vesicle-like structures

and in the yolk granules at high abundances (figure 3b). Thus,

VgR is required for RSV to enter the nurse cells. When Vg is

deficient and VgR remains normally expressed, RSV cannot

efficiently invade the germarium [28,29], indicating that the

influence of VgR on the ability of RSV to invade an ovary is

dependent on Vg.

Based on our obtained data regarding Vg transport, the VgR-

mediated endocytic machine and RSV invasion of the insect

ovarian germarium, we proposed a model in which RSV crosses

the ovarian barrier to enter the nurse cells of the germarium,

resulting in successful vertical transmission (figure 4). Laodelphax
striatellus fat body and haemocytes produce Vg in different mol-

ecular forms, but only the haemocyte-produced Vg is able to
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Figure 2. Influence of a VgR deficiency on RSV infection of the L. striatellus ovary. RSV-infected fifth-instar nymphs at 24 h before eclosion were injected with
dsRNA. Both VgR knockdown efficiency and the RSV titre were measured 48-h posteclosion. (a) Quantitative assessment of RSV in dsRNA-injected ovaries. Each dot
represents one RSV-infected L. striatellus ovary. Both means and s.d. were calculated from three independent experiments, with 5 – 7 mRNA samples per experiment.
Ef2, L. striatellus elongation factor 2 gene. **p , 0.01; ***p , 0.001. (b) Immunofluorescence assay to define different RSV infection levels in L. striatellus ovar-
ioles. (i) Type A, RSV did not invade the ovariole; (ii) type B, RSV began to invade the tip of the germaria of only a few ovarioles and (iii) type C, RSV present in
most of the germaria of nearly all ovarioles. Arrows indicate the RSV-infected area. The RSV antibody was conjugated to Alexa Fluor 488. Gr, germarium; O, oocyte;
scale bar, 100 mm. (c) Statistical summary of L. striatellus individuals with different RSV infection levels. The dsVgR-treatment of L. striatellus impeded the ability of
RSV to infect L. striatellus ovarioles when compared with the dsgfp-treatment. Each number represents one ovary dissected from one insect. The total 52 or 53
analysed ovaries were collected from three independent dsRNA injection experiments; in each experiment, 15 – 20 insects per group were analysed. (Online version in
colour.)
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Figure 3. Immunofluorescence and immunoelectron micrographs showing the distributions of RSV and VgR in the L. striatellus germaria. (a) Immunofluorescence
assay to show the co-localization of RSV and VgR in the germarium. RSV was probed with a rabbit anti-RSV polyclonal antibody and stained with Alexa 488 (shown
in green), and VgR was probed with a mouse anti-VgR polyclonal antibody and stained with Alexa Fluor 594 (shown in red). Co-localization of RSV and VgR is
shown in yellow. Images were examined using a Leica TCS SP8 confocal microscope. Images are representative of three independent experiments, with a total of 15
SBPHs analysed. Gr, germarium; O, oocyte. Scale bar, 20 mm. (b) Immunoelectron micrographs showing the distribution of RSV and VgR in the germarium. Both
RSV (red arrow) and VgR (yellow arrow) antigens were found on the surfaces of nurse cells (i); inside the nurse cells within a vesicle-like structure (ii); associated
with an endosome (iii) and within the yolk granule (iv ). (v) The cross-sectional view of the germarium zone with a white rectangle indicating the region for
detection of RSV-VgR co-localization close to the cytomembrane, scale bar is 10 mm. (vi) The enlarged vesicle-like structure detected in (ii). Red arrow, 6-nm
gold-conjugated goat-anti-rabbit IgG against RSV used to detect the virus; yellow arrow, 10-nm gold-conjugated goat-anti-mouse IgG against VgR. P, cytoplasm;
E, endosome; Y, yolk granule; CM, cytomembrane; TC, trophic core; NC, nurse cell; V, vesicle-like structure. Scale bar in all figures except for (v) represents 100 nm.
(Online version in colour.)
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interact with RSV capsid protein [29]. When Vg is produced in

haemocytes, RSV binds to Vg. RSV is then secreted into the

haemolymph through the Vg secretion pathway and is
transported to the germarium. It is enriched onto the surface

of the nurse cells by Vg binding to the membrane-bound VgR

to induce endocytosis. The endocytic vesicles then carry RSV
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molecular forms. When L. striatellus Vg is produced in haemocytes (named VgL), RSV binds to VgL. The RSV – VgL complex is then secreted into the haemolymph,
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to an endosome and then to the yolk granules, and finally RSV

spreads into the developing oocytes through the nutritive cords.

This is the first work to describe an insect ligand’s receptor-

mediated endocytosis which carries a virus into insect cells.

Unlike the typical virus–receptor interaction, in this case, the

virus hitchhikes an existing ligand-receptor pathway, and the

ligand’s receptor mediates the endocytic process to uptake

the bound virus. In insects, other atypical pathways have also

been reported to facilitate viral cell entry [37,38]. For example,

the green rice leafhopper N. cincticeps vertically transmits both

RDV and the symbiotic bacterium Sulcia. RDV achieves its own

transmission into insect offspring by binding to the Sulcia outer

membrane protein [37]. In the RSV–L. striatellus interaction, the

L. striatellus sugar transporter 6 interacts with RSV CP, and this

interaction mediates RSV’s entry into L. striatellus midgut

epithelial cells [38].

Because of the indispensability of insect Vg for embryo

development, the Vg–VgR-mediated viral attachment and cell

entry might be an evolutionarily conserved mechanism for a

virus to overcome the ovarian barrier to achieve vertical trans-

mission. Insect Vg aids in ovarian infection by other viruses or

endosymbionts [39,40]. For example, the Spiroplasma endo-

symbiont can be vertically transmitted by Drosophila. The

yolk-uptake machinery, mainly containing yolk protein and

yolk receptor, helps the bacteria to colonize the insect germ

line [40]. The whitefly Bemisia tabaci transmits Tomato yellow

leaf curl virus (TYLCV). The TYLCV coat protein can interact

with whitefly Vg, and these interacting parties play vital roles

in TYLCV’s entry into whitefly ovaries. Whether TYLCV

invades the whitefly germ-line cells through VgR-mediated
endocytic machinery remains to be investigated. Moreover,

both L. striatellus and B. tabaci transmit arboviruses that do not

invade ovaries, including Rice black-streaked dwarf virus by

L. striatellus and Papaya leaf curl China virus by B. tabaci. In

each case, the viral coat protein does not bind to the insect Vg,

and the virus is unable to invade the insect ovaries [28,39].

Overall, our studies described a novel molecular mechanism

for how an arbovirus hitchhikes a required insect ligand-

receptor pathway to achieve cell entry and vertical transmission.

This mechanism may serve as a paradigm applying to other

arboviruses of medical and agricultural importance.
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