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Pattern-recognition receptors (PRRs), which are single transmembrane pro-

teins belonging to the receptor-like kinase (RLK) and receptor-like protein

(RLP) super families, sense microbe- and host-derived molecular patterns to

activate immune responses in plants. PRRs associate with co-receptors, scaf-

fold proteins and receptor-like cytoplasmic kinases (RLCKs) to form

immune receptor complexes at the cell surface, allowing activation of cellular

responses upon perception of extracellular ligands. Recent advances have

uncovered new mechanisms by which these immune receptor complexes are

regulated at the levels of composition, stability and activity. It has become

clear that RLCKs are central components directly linking PRRs to multiple

downstream signalling modules. Furthermore, new studies have provided

important insights into the regulation of reactive oxygen species, mitogen-

activated protein (MAP) kinase cascades and heterotrimeric G proteins,

which has not only deepened our understanding of immunity, but also

expanded our view of transmembrane signalling in general.

This article is part of the theme issue ‘Biotic signalling sheds light on

smart pest management’.
1. Introduction
In the absence of an adaptive immune system, plants rely on cell surface-

localized and intracellular immune receptors to detect potential pathogens.

A large number of proteins belonging to receptor-like kinase (RLK) and receptor-

like protein (RLP) super families act as cell surface immune receptors or com-

ponents of receptor complexes in plant disease resistance. Some of these proteins

function as surface-localized pattern-recognition receptors (PRRs) or components

of PRR complexes to perceive microbe- and host-derived molecular patterns associ-

ated with pathogen attacks and trigger defences in plants [1]. Meanwhile, others

recognize apoplastic effectors to trigger plant immunity [2]. On the other hand,

cytoplasmic nucleotide binding leucine-rich repeat domain-containing receptors

(NLRs) recognize pathogen-secreted cytoplasmic effectors to trigger immune

responses in plants [3].

Plant PRRs perceive ligands of diverse biochemical nature through their

variable ectodomains (ECDs). PRRs form dynamic receptor complexes with co-

receptors, which participate in the perception of ligands and signalling. PRRs

also dynamically interact with receptor-like cytoplasmic kinases (RLCKs), which

play key roles in transducing signals from PRRs to downstream signalling. Readers

are referred to recent reviews for detailed coverage [4–6].

New studies show that the composition of PRR complexes and the regula-

tion of their stability and activity are more complex than previously thought.

In addition, we are beginning to unravel how PRRs regulate major downstream

signalling events that are crucial for plant defences. In this review, we highlight

recent data and discuss how the new findings have advanced our understanding

of pattern-triggered immunity.
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2. Composition of pattern-recognition receptor
complexes

RLCKs have emerged as central players in receptor complexes,

linking PRRs to downstream signalling [6]. RLCKs involved in

pattern-triggered immunity include family VII, which contains

46 members, and family XII, which contains 12 members [7].

Among these, several RLCKs including BOTRYTIS-INDUCED

KINASE1 (BIK1) and PBS1-LIKE1 (PBL1) have been known

to play roles in pattern-triggered immunity by directly

interacting with PRRs, but whether different RLCK members

are differentially recruited to distinct PRRs remains elusive.

A recent systematic analysis of higher-order mutants showed

that clades 5, 7 and 8 of RLCK VII are genetically linked to mul-

tiple PRRs, while clade 4 is specifically required for signalling

downstream of chitin receptors [8], indicating that numerous

RLCK VII members function as crucial components in multiple

PRR complexes and a specific subgroup of RLCK VII proteins

are recruited by chitin receptors.

In addition to PRRs and RLCKs, recent studies have uncov-

ered increasingly complex PRR complexes. FLAGELLIN

SENSING 2 (FLS2) and ELONGATION FACTOR-TU (EF-Tu)

RECEPTOR (EFR), which are receptors recognizing bacterial

flagellin epitope flg22 and bacterial elongation factor-TU

epitope elf18, respectively, have been shown to associate with

FERONIA (FER), a receptor of RAPID ALKALIZATION

FACTORs (RALFs) [9,10]. FER also weakly interacts with

BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1), which

is a co-receptor for both FLS2 and EFR, to promote pattern-

induced FLS2–BAK1 and EFR–BAK1 interactions [10],

suggesting that FER functions as a scaffold protein for

ligand-induced dimerization of the receptors and co-receptor.

The glycosylphosphatidylinositol (GPI)-anchored protein

LLG1, which was first identified as a chaperon and co-receptor

of FER, was recently shown to interact constitutively with FLS2

and EFR and form a complex with BAK1 in a ligand-dependent

manner [11,12]. LLG1 is required for steady state accumulation

of FLS2 in the resting state and ligand-induced degradation of

the FLS2 protein [12], indicating a crucial role of LLG1 in the

dynamic control of FLS2. It should be noted that a number of

RLPs such as lysin motif (LYM)-containing proteins possess

GPI [13], raising a possibility that GPI-anchored proteins are

broadly involved in the regulation of cell surface receptors.

In addition, the leucine-rich repeat (LRR)-RLK FLS2-

INTERACTING RECEPTOR (FIR) was recently identified as

a component of FLS2 complex by a high-throughput interac-

tome study [14]. FIR interacts with both FLS2 and BAK1 and

facilitates flg22-triggered FLS2–BAK1 complex formation

[14]. In addition, another small LRR–RLK APEX constitutively

associates with both PLANT ELICITOR PEPTIDE RECEPTOR

1 (PEPR1) and PEPR2, which perceive plant elicitor peptides

(Peps) [14]. Interestingly, both loss-of-function mutation and

overexpression of APEX lead to diminished Pep signalling,

indicating that appropriate APEX dosage is required for

PEPR complex formation or signalling. Furthermore, the Arabi-
dopsis malectin-like/LRR–RLK IMPAIRED OOMYCETE

SUSCEPTIBILITY1 (IOS1) interacts with multiple PRRs and

is critical for pattern-triggered immunity [15]. These findings

suggest that PRR complexes are composed of multiple com-

ponents, which allow plants to initiate robust immune

response once stimulated by molecular patterns.

Inappropriate and excessive immune signalling is detri-

mental to plants. Thus, negative regulatory components must
be included in PRR complexes. Before pattern perception,

PRR complexes must be maintained at a resting state. For

example, a LRR–RLK BAK1-INTERACTING RECEPTOR-

LIKE KINASE2 (BIR2) interacts with BAK1 and prevents

unwanted interactions with PRRs in the absence of patterns

[16]. After pattern perception, BIR2 dissociates from BAK1

and results in PRR–BAK1 complex formation. Recently, it

was reported that another LRR–RLK BIR3 interacts with not

only BAK1 but also PRRs to prevent PRR–BAK1 complex for-

mation and immune activation before pattern perception [17].

As with BIR2, BIR3 is released from BAK1 after ligand-induced

activation of the PRR complexes. These findings indicated that

PRR complexes are highly regulated in the resting state to avoid

abnormal immune activation. In addition, ligand-induced PRR

complex formation is also tightly controlled. For example, two

malectin-like RKs ANXUR1 (ANX1) and ANX2, which are

receptors of RALF4 and RALF19, negatively regulate

immune responses triggered by multiple patterns [18,19].

They constitutively associate with both FLS2 and BAK1, but

interfere with flg22-induced FLS2–BAK1 complex formation

to prevent excessive immune activation [19]. In the future, it

will be interesting to test whether these negative regulatory

components compete with positive regulatory components in

the formation of PRR complexes.
3. Regulation of protein phosphorylation and
stability in pattern-recognition receptor
complexes

In addition to dynamic regulation of the composition of PRR

complexes, the stability and phosphorylation of PRR complex

components are also subject to delicate regulation. A most

recent study showed that flg22 and elf18 induce BAK1 phos-

phorylation at Ser602, Thr603, Ser604 and Ser612 in vivo, and

these four phosphosites are required for flg22 but not brassi-

nosteroid (BR) signalling [20]. In addition to serine/threonine

phosphorylation, an increasing number of RLKs have been

shown to undergo tyrosine phosphorylation, and this modifi-

cation is important for their activation [20–23]. A Tyr residue

is present in kinase subdomain VIa (Tyr-VIa) and conserved

in about 80% Arabidopsis LRR–RLKs. The Tyr-VIa (Tyr403)

phosphorylation of co-receptor BAK1 is required for elf18 but

not BR signalling [20]. Interestingly, the Tyr-VIa position is

conserved in EFR but not in BR INSENSITIVE 1 (BRI1), the

receptor of BR, indicating that the common co-receptor may

differentially regulates two class of LRR–RLKs based on the

presence or absence of this Tyr residue in the receptors [20].

Indeed, elf18-triggered Tyr-VIa (Tyr836) phosphorylation of

EFR is required for EFR activation and elf18-triggered immu-

nity [20,21]. Moreover, the Tyr-VIa (Tyr428) phosphorylation

of CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1), a co-

receptor for LysM-type receptor kinases, is also indispensable

for CERK1 activation upon chitin perception [22,23]. These

findings suggest that Tyr-VIa phosphorylation serves as a

phospho-code determining specificity of RLKs [20].

In addition to PRRs and co-receptors, RLCKs are also

subject to phosphorylation. For example, BIK1 is autopho-

sphorylated and/or transphosphorylated by BAK1 on

Tyr243 and Tyr250 in vitro. Genetic analysis indicated that

Tyr243 and Tyr250 are required for immune function of

BIK1 [24]. A recent study suggested that BIK1 is directly
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phosphorylated at Ser89 and Thr90 by EFR, and that is

required for elf18-triggered growth inhibition [25]. BIK1 has

been shown to trans-phosphorylate BAK1 in vitro, but it

remains unknown whether BIK1 and other RLCKs in turn

phosphorylate PRRs and co-receptors in vivo. The redundancy

of various RLCK members makes it difficult to determine

whether they are required for the observed phosphorylation

in vivo. To this end, a series of rlck vii higher order mutants

have been constructed, which may provide important genetic

resources for this analysis. For example, the rlck vii-4 sextuple

mutant is severely impaired in chitin-triggered immune

responses [8]. This mutant will be suitable for analyses of

RLCK-mediated CERK1 phosphorylation.

Protein stability of the PRR immune components is

also tightly controlled. For example, FLS2 stability is regulated

by 26S proteasome pathway, which has been discussed by

several excellent reviews [4,26,27]. Recent studies showed

that BIK1 is also subject to degradation by 26S proteasome

pathway. It was reported that CALCIUM-DEPENDENT

PROTEIN KINASE 28 (CPK28) constitutively associates with

BIK1 to negatively control BIK1 accumulation in a protea-

some-dependent manner [28]. Another study showed that

Arabidopsis heterotrimeric G proteins are directly coupled

to the FLS2-BIK1 complex and attenuate the proteasome-

dependent degradation of BIK1 in the resting state [29].

These findings indicated that BIK1 accumulation is tightly con-

trolled by multiple components and the detailed mechanism

has been uncovered by a most recent study [30]. A pair of closely

related ubiquitin E3 ligases PLANT U-BOX25 (PUB25) and

PUB26 poly-ubiquitinate and promote degradation of non-acti-

vated BIK1 [30]. Interestingly, both CPK28 and heterotrimeric

G proteins regulate BIK1 stability through PUB25/26. Before

ligand perception, heterotrimeric G proteins directly inhibit

PUB25/26 E3 activity to stabilize BIK1, ensuring optimum

signalling competence. Upon ligand-induced PRR activation,

CPK28 directly phosphorylates PUB25/26 to enhance the E3

ligase activity and accelerates degradation of non-activated

BIK1, preventing over-accumulation of activated BIK1 and exces-

sive immunity. At the same time, the activated BIK1 is protected

from degradation, allowing it to activate downstream signalling

[30]. These findings suggested that PUB25/26, CPK28 and

heterotrimeric G proteins form a regulatory module to fine-

tune the homeostasis of BIK1. Interestingly, a recent study

showed that serine/threonine kinase 1 (SIK1) also stabilizes

BIK1 in the resting state, indicating that BIK1 stability is tightly

regulated by multiple mechanisms [31]. Similarly, the turnover

of non-activated OsRLCK176 is also regulated by OsCPK4

in rice [32], indicating that there is a conserved regulatory

mechanism for RLCK stability in Arabidopsis and rice.
4. Activation of downstream signalling
components

Increasing evidence suggests that RLCKs regulate multiple

early signalling events in the vicinity of plasma membrane

[33–37]. A recent study reported that a sub-population of

BIK1 localizes to the nucleus, suggesting a direct regulation

of nuclear events, a possibility requires future attention [25].

Recent advances show that RLCKs directly regulate heterotri-

meric G protein-mediated signalling, production of reactive

oxygen species (ROS), and mitogen-activated protein kinase

(MAPK) activation through phosphorylation-relay.
(a) Calcium influx
Pattern-triggered transient calcium influx is one critical cellular

response, which almost participates in all the cellular responses

[38]. Recent work showed that BIK1 and PBL1 are required for

FLS2-, EFR-, PEPR1- and PEPR2-mediated calcium influx,

suggesting that BIK1 and PBL1 may directly or indirectly regu-

late the unknown calcium channel in calcium influx [36,37].

Although plasma membrane-localized calcium permeable

channels such as cyclic nucleotide-gated channels (CNGCs),

ionotropic glutamate receptors (GLRs) and reduced hyperos-

molality-induced [Ca2þ] increase 1 (OSCA1) exist in plants

[39], no genetic evidence has supported the involvement of

these channels in pattern-triggered calcium influx. It was

reported that nuclear membrane-localized CNGC15 and

Ca2þ-dependent adenosine triphosphatase (Ca2þ-ATPase)

facilitate symbiotic calcium oscillations in response to symbio-

tic elicitors [40,41]. Interestingly, flg22 also induces calcium

oscillation in the guard cell and the pumps Ca2þ-ATPase 8

(ACA8) and ACA10 are required for FLS2-mediated immunity

[42,43], suggesting that calcium channels and pumps may be

similarly involved in pattern-triggered calcium oscillation. In

addition, plasma membrane-localized GLR3.3 and GLR3.6

have been implicated in wound-induced systemic electrical sig-

nalling and response to aphid feeding [44,45]. The GLR-

mediated calcium influx further activates vacuolar ion channel

TWO-PORE CHANNEL1 (TPC1) to release vacuolar Ca2þ,

activating defences against aphids [45]. It is worth noting

that the aphid-elicited calcium influx depends on BAK1,

suggesting that unknown PRRs are involved in plant responses

to aphids [45]. Consistent with this notion, treatment of plants

with inhibitors of iGluR (mammalian GLR homologues)

attenuates pattern-triggered calcium influx [46]. Thus, a

major task in the future will be to identify calcium channels

involved in pattern-triggered calcium influx and to investigate

the mechanisms by which PRRs activate these channels.

(b) Heterotrimeric G protein activation
G protein activation is another critical response. Heterotrimeric

G proteins are common signalling components in eukaryotes,

which are composed of a, b and g subunits. In animals, the

activation of heterotrimeric G protein is controlled through

interaction with seven-transmembrane G protein-coupled

receptors (GPCRs). In the resting state, a GDP-bound Ga inter-

acts with a Gbg dimer to form an inactive heterotrimer. Upon

activation by ligands, GPCRs promote GDP–GTP exchange in

the Ga subunit, leading to Ga activation and the dissociation of

Ga from the Gbg subunits [47,48]. Ga has intrinsic GTPase

activity to hydrolyse of GTP, allowing Ga to cycle back to

the GDP-bound resting state [49]. A class of regulator of G

protein signalling (RGS) proteins act as GTPase accelerating

proteins (GAPs) to negatively regulate G protein signalling.

Arabidopsis contains four Ga proteins (GPA1, EXTRA-

LARGE GTP-BINDING PROTEIN1 (XLG1), XLG2, and

XLG3), one Gb protein (AGB1), and three Gg proteins

(AGG1, AGG2, and AGG3) [50]. Plant Ga proteins also have

spontaneous GTP hydrolysis activity, which is similarly

enhanced by RGS proteins [51,52], although some plant species

appear to use alternative regulatory proteins to enhance Ga

GTP hydrolysis [53].

Unlike animals, plants contain no functional GPCR pro-

teins. Instead, plant heterotrimeric G proteins are coupled

to receptor kinases, including FLS2 [29,54,55]. In soya bean,
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Figure 1. A model for G protein activation by pattern-recognition receptors (PRRs). In the resting state, regulator of G protein signalling 1 (RGS1) associates with
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Ga proteins interact with RLK Nod factor receptor 1 (NFR1)

to control nodule formation, and RGS proteins negatively

regulate Ga protein activity during this process [55]. In this

case, NFR1 phosphorylates and enhances the GAP activity

of RGS proteins, indicating a distinct regulatory mechanism

of G protein signalling. A recent study showed that G protein

inactivation/activation in the FLS2 receptor complex is

directly controlled by RGS1 (figure 1; [56]). In the resting

state, RGS1 directly interacts with and maintains Ga proteins

in a GDP-bound form by enhancing GTP hydrolysis. RGS1

also directly associates with FLS2–BIK1 complex. As such,

RGS1 maintains the G proteins in the resting state. After

flg22 perception, BIK1 and its related PBS1-Like (PBL)

kinases directly phosphorylate RGS1 at multiple sites includ-

ing Ser428 and Ser431 to trigger its dissociation from FLS2

and Ga proteins. This leads to the de-repression of Ga pro-

teins and G protein activation (figure 1). In addition to

flg22, elf18, chitin, and Pep2 also trigger RGS1 phosphoryl-

ation (figure 1; [56]), indicating that the aforementioned

mechanism of G protein regulation is used by multiple PRRs.

In addition to phosphorylating RGS1, BIK1 also directly

phosphorylates XLG2/3 N-terminus after flg22 treatment,

which is required for full activation of ROS production and

disease resistance to Pseudomonas syringae. However, the

N-terminus of XLG2 is dispensable for the G protein-mediated

stabilization of BIK1 and G protein regulation by RGS1 [29,56],

suggesting that the phosphorylation of XLG2 independently

modulates immune responses through an unknown mechanism

(figure 1).
(c) Reactive oxygen species
Pattern-triggered ROS production is a robust immune signal-

ling readout, which plays a crucial role in stomatal closure

and callose deposition. In plants, pattern-triggered ROS

production is largely produced in apoplast [57]. In some
cases, ROS can be produced in chloroplasts, peroxisomes

and mitochondria [58]. Pattern-triggered apoplastic ROS pro-

duction is fast and transient, and can reach peak within

30 min. Pattern-triggered ROS production in the apoplast is

mainly mediated by a plasma membrane-localized NADPH

oxidase called Respiratory Burst Oxidase Homologue D

(RBOHD) and cell wall peroxidases [57,59]. Before activation,

RBOHD directly associates with multiple PRR complexes.

Upon activation of the PRR complexes, RBOHD is phos-

phorylated by multiple kinases including BIK1, PBL1,

CPK5 and SIK1 [31,35,37,60]. RBOHD activity is further regu-

lated by binding to calcium and phosphatidic acid (PA), and

interaction with G proteins [29,61,62]. Recent studies showed

that in addition to RLCK VII-8 including BIK1 and PBL1,

RLCK II-5 and -7 are genetically required for ROS production

triggered by multiple patterns, while RLCK VII-4 members

function specifically in CERK1-mediated ROS production

[8], although it remains to be tested whether these RLCK

VII members directly phosphorylate RBOHD to activate

ROS production.

Interestingly, a more recent study showed that in addition

to apoplastic ROS production, lipopolysaccharides (LPS) also

trigger second long-lasting ROS production [63]. Microscopic

observation demonstrated that the LPS-triggered second ROS

production is largely associated with chloroplasts, which

only partially depends on LPS receptor LORE [63], indicating

that the additional PRRs or other components may be

involved in LPS recognition and/or response.
(d) Mitogen-activated protein kinase activation
MAPK activation plays vital roles in the establishment of

disease resistance [64]. Patterns commonly trigger activation

of two MAPK cascades within minutes. One cascade is com-

posed of MAPK kinase kinase (MAPKKK) MEKK1, MAPKKs

MKK1 and MKK2, and a MAPK MPK4 [65,66]. The second
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cascade is composed of two MAPKKs, MKK4 and MKK5,

and two MAPKs, MPK3 and MPK6 [67]. The identity of

MAPKKKs upstream of MPK3/6 has been debated for

more than 16 years. A previous study reported that

MAPKKK5 positively regulates chitin-triggered MPK3/6

activation but negatively regulates flg22-triggered MPK3/6

[68], whereas another study reported that MAPKKK5 posi-

tively regulates flg22- rather than chitin-triggered MPK3/6

activation [69]. Until recently, two independent groups

showed that the closely related MAPKKK3/5 function redun-

dantly to activate MPK3/6 downstream of multiple PRRs

(figure 2; [70,71]). In mapkkk3 mapkkk5 double mutants, the

activation of MPK3/6 is greatly compromised, but not abol-

ished, indicating that additional MAPKKKs are involved. It

is possible that ARABIDOPSIS NUCLEUS- AND PHRAGMO-

PLAST-LOCALIZED KINASE1 (NPK1)-RELATED PROTEIN

KINASEs (ANPs) function redundantly with MAPKKK3/5

in pattern-triggered MPK3/6 activation, as they are reported

to be required for MAPK activation triggered by oligogalactur-

onides [72]. YODA (YDA), a MAPKKK closely related to

MAPKKK3/5, is known to form a cascade with MKK4/5

and MPK3/6 to negatively regulate stomatal development

[73]. Surprisingly, silencing of YDA resulted in a stronger acti-

vation of MAPKs triggered by flg22, and mapkkk3 mapkkk5
mutation suppressed the developmental defects of yda [71],

indicating that antagonistic interactions exist between these

two MAPK pathways. Interestingly, MAPKKK7 also plays a

negative role in flg22-induced MAPK activation [74], providing

another example of antagonism among distinct MAPKKKs. It
may well be that YODA and MAPKKK7 compete for

MKK4/5 binding with the MAPKKK3/5.

Another important endeavour of MAPK studies is to

understand how PRRs regulate their activation. A number of

studies have implicated a role of RLCKs in connecting PRRs

to the activation of MAPK cascades [69,75–77]. However, the

subtle phenotypes of rlck single or double mutants are difficult

to reproduce owing to their functional redundancy. Systematic

analyses of higher order mutants showed that RLCK VII-4

members play a major role in chitin-triggered MAPK activation

[8]. These members directly phosphorylate MAPKKK5 at

Ser599 and MEKK1 at Ser603 to activate MPK3/6 and MPK4,

respectively (figure 2; [70]). MAPKKK3/5 are similarly phos-

phorylated in response to diverse patterns including flg22,

elf18, and Pep2 [70]. Importantly, phospho-dead mutations

in MAPKKK5Ser599 and MEKK1Ser603 not only abolish the

chitin-triggered MPK activation, but also flg22-triggered

MPK activation, indicating that these phosphorylations are

similarly regulated by various RLCKs downstream of different

PRRs (figure 2; [70]). The complete sets of RLCKs responsible

for MAPK activation downstream of FLS2, EFR, and PEPRs,

however, remain to be elucidated.

Interestingly, MAPKKK5 is further phosphorylated by

the activated MPK3/6 at Ser682 and Ser692, and this

enhances pattern-triggered MPK3/6 activation and disease

resistance, indicating a positive feedback regulation

(figure 2; [70]). Likewise, MEKK1Ser603 is subjected to positive

feedback regulation by MPK4 [70]. Moreover, it was reported

that BRASSINOSTEROID-SIGNALING KINASE 1 (BSK1)
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phosphorylates Ser289 in the N-terminal of MAPKKK5 to

positively regulate immunity [69], indicating that both N-

and C-termini of MAPKKK5 and MEKK1 are subjected to

regulation by RLCKs. It remains to be determined in the

future whether the aforementioned phosphorylation in

MAPKKKs changes their subcellular localization, enhances

the kinase activity, or increases protein stability.
ing.org/journal/rstb
Phil.Trans.R.
5. Conclusion
PRRs associate with co-receptors, scaffold proteins and RLCKs

to form PRR complexes at the cell surface in the wake of patho-

gen attacks. The composition of PRR complexes is highly

intricate, and their stability and activity are tightly regulated.

Future studies are expected to uncover the full complement

of PRR complex components and how they are assembled at

the cell surface in response to different patterns. Questions at
large include whether different PRR complexes are similarly

organized in nanodomains and how the PRR complexes

generate signalling specificity.

RLCKs directly link by phospho-relay PRRs to multiple

downstream signalling components, including RBOHD,

MAPK cascades, and heterotrimeric G proteins. Future efforts

are needed to identify additional downstream components

such as channels controlling calcium influx and other ions

and to understand how these channels are regulated during

immune responses.
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Panstruga R. 2011 Ionotropic glutamate receptor
(iGluR)-like channels mediate MAMP-induced
calcium influx in Arabidopsis thaliana. Biochem. J.
440, 355 – 365. (doi:10.1042/BJ20111112)

47. McCudden CR, Hains MD, Kimple RJ, Siderovski DP,
Willard FS. 2005 G-protein signaling: back to the
future. Cell. Mol. Life Sci. 62, 551 – 577. (doi:10.
1007/s00018-004-4462-3)

48. Oldham WM, Hamm HE. 2008 Heterotrimeric G
protein activation by G-protein coupled receptors.
Nat. Rev. Mol. Cell Biol. 9, 60 – 71. (doi:10.1038/
nrm2299)

49. Neubig RR, Siderovski DP. 2002 Regulators of G-
protein signaling as new central nervous system
drug targets. Nat. Rev. Drug Discov. 1, 187 – 197.
(doi:10.1038/nrd747)

50. Stateczny D, Oppenheimer J, Bommert P. 2016 G
protein signaling in plants: minus times minus
equals plus. Curr. Opin. Plant Biol. 34, 127 – 135.
(doi:10.1016/j.pbi.2016.11.001)

51. Chen JG, Willard FS, Huang J, Liang J, Chasse SA,
Jones AM, Siderovski DP. 2003 A seven-
transmembrane RGS protein that modulates plant
cell proliferation. Science 301, 1728 – 1731. (doi:10.
1126/science.1087790)

52. Johnston CA, Taylor JP, Gao Y, Kimple AJ, Grigston
JC, Chen JG, Siderovski DP, Jones AM, Willard FS.
2007 GTPase acceleration as the rate-limiting step in
Arabidopsis G protein-coupled sugar signaling. Proc.
Natl Acad. Sci. USA 104, 17 317 – 17 322. (doi:10.
1073/pnas.0704751104)

53. Ma Y et al. 2015 COLD1 confers chilling tolerance in
rice. Cell 160, 1209 – 1221. (doi:10.1016/j.cell.2015.
01.046)

54. Bommert P, Je BI, Goldshmidt A, Jackson D. 2013
The maize Ga gene COMPACT PLANT2 functions in
CLAVATA signalling to control shoot meristem size.
Nature 502, 555 – 558. (doi:10.1038/nature12583)

55. Choudhury SR, Pandey S. 2015 Phosphorylation-
dependent regulation of G-protein cycle during
nodule formation in soybean. Plant Cell 27,
3260 – 3276. (doi:10.1105/tpc.15.00517)

56. Liang X et al. 2018 Ligand-triggered de-repression
of Arabidopsis heterotrimeric G proteins coupled to
immune receptor kinases. Cell Res. 28, 529 – 543.
(doi:10.1038/s41422-018-0027-5)

57. Qi J, Wang J, Gong Z, Zhou JM. 2017 Apoplastic ROS
signaling in plant immunity. Curr. Opin. Plant Biol.
38, 92 – 100. (doi:10.1016/j.pbi.2017.04.022)

58. Camejo D, Guzmán-Cedeño Á, Moreno A. 2016
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