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The complex transmission ecologies of vector-borne and zoonotic diseases

pose challenges to their control, especially in changing landscapes. Human

incidence of zoonotic malaria (Plasmodium knowlesi) is associated with defores-

tation although mechanisms are unknown. Here, a novel application of a

method for predicting disease occurrence that combines machine learning

and statistics is used to identify the key spatial scales that define the relation-

ship between zoonotic malaria cases and environmental change. Using data

from satellite imagery, a case–control study, and a cross-sectional survey,

predictive models of household-level occurrence of P. knowlesi were fitted

with 16 variables summarized at 11 spatial scales simultaneously. The

method identified a strong and well-defined peak of predictive influence

of the proportion of cleared land within 1 km of households on P. knowlesi
occurrence. Aspect (1 and 2 km), slope (0.5 km) and canopy regrowth

(0.5 km) were important at small scales. By contrast, fragmentation of defor-

ested areas influenced P. knowlesi occurrence probability most strongly at

large scales (4 and 5 km). The identification of these spatial scales narrows

the field of plausible mechanisms that connect land use change and

P. knowlesi, allowing for the refinement of disease occurrence predictions

and the design of spatially-targeted interventions.
1. Introduction
Infectious disease mapping plays a vital role in guiding public health policy and

practice [1]. For diseases with environmental drivers, such as malaria, mapping

has supported the ongoing and successful drive to reduce the number of infec-

tions worldwide and has been pivotal to understanding the effectiveness and

progress of this effort [1–4]. As control reduces incidence, the geographical distri-

bution of infection becomes more heterogeneous [5]. In situations where few data

are available, predicted probability of disease occurrence can be mapped in place

of measures such as incidence or prevalence. This approach has been applied to a

variety of infectious disease systems using methods that combine the strengths of

machine learning and statistics, originally developed to more accurately map

species distributions in ecology (e.g. [6–8]). In addition to geostatistical mapping,
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disease occurrence mapping has helped describe the spatial

distribution of infectious diseases worldwide, and provided

information relevant to the design and execution of disease

control programmes (e.g. [9–11]).

Ensemble boosted regression tree (BRT) analysis is one such

method that is now widely used for disease occurrence map-

ping [6,11,12]. BRT analysis is increasingly used to identify

patterns in large infectious disease datasets, building on analyti-

cal developments in macroecology [12–15], and has been used

to generate hypotheses from these patterns [15]. BRT analysis

combines decision trees, in which trees are grown with binary

splits of predictor values to minimize prediction errors, and

boosting, in which a collection of models are combined [16].

It allows for the uneven distribution of variation in predictor

variables without the need for transformation, is not biased

by correlation between predictors, can incorporate complex

interactions and fit nonlinear functions [16].

A disadvantage of disease occurrence mapping is the diffi-

culty identifying how different factors contribute to models

that generate their spatial predictions; predictions may be

sufficiently reliable, but it may not be clear why [14]. This is

particularly problematic in relation to the scale of processes

that could give rise to spatial heterogeneity of disease, as the

environmental data used to predict occurrence are usually

aggregated on a single spatial scale (e.g. square grid cells of

5 km � 5 km). This may be unavoidable if, for example, satel-

lite data are only available at a fixed resolution, or census

data are pre-aggregated over administrative units. However,

even when disaggregated data are available at high resolution,

there is often no evidence-based methodological recourse to

guide decisions on the appropriate spatial scale for inclusion

in models. Ecological processes occur at different spatial

scales and the scale at which analyses of disease distributions

are conducted influences the inferred contribution of the

determinants of those distributions [17–19].

Differences between the spatial scales of the underlying

biological processes that drive disease transmission and the

scale imposed on models by the aggregation of predictor vari-

ables (such as into raster grid cells) is likely to be particularly

influential in models of zoonoses and vector-borne diseases.

Transmission dynamics of these diseases arise from the

interaction of multiple species and the environment, probably

occurring over a variety of spatial scales, which makes it less

likely that predictors aggregated at a single spatial scale will

capture important variation, especially if the influences of

multiple scales are dependent on one another, and when few

data are available [20].

Plasmodium knowlesi malaria is a vector-borne zoonosis

in South East Asia, which usually infects long-tailed (Macaca
fascicularis) and pig-tailed macaques (Macaca nemestrina) [21].

Transmitted by the Anopheles leucosphyrus group of mosquitoes,

changes in forest cover impact vector habitats as well as macaque

and human distributions [22]. Identified as a potentially lethal

infection in humans and a major public health concern in 2004

[23], P. knowlesi is now the most common cause of malaria in

Malaysia and parts of Indonesia, global hotspots of tropical

deforestation [24–26]. It may be misdiagnosed or undiagnosed

across South East Asia, and the World Health Organisation has

advised it be incorporated into ongoing malaria elimination pro-

grammes [27]. Owing to this increasing public health concern,

P. knowlesi was proposed as a global priority for disease mapping

[4] and has since been mapped by BRT analysis, using historical

data to highlight priority areas for surveillance [6].
This study introduces a novel approach to spatial scale

analysis in disease occurrence prediction as a tool to identify

the key scales that define the relationship between a zoonosis

of serious public health concern (P. knowlesi malaria) and the

rapidly changing landscape implicated in its spillover from

macaques to humans in South East Asia. Where the highest

numbers of cases have been reported (Malaysian Borneo),

P. knowlesi incidence has been positively associated both

with forest cover and historical forest loss [28]. However,

the mechanisms of the proposed influence of deforestation

on P. knowlesi transmission are unknown; for example, this

could be owing to changes in macaque densities, vector bio-

nomics or human behaviour. For the purposes of control, this

precludes the assessment of which part(s) of the transmission

cycle to target and which kind of interventions are most likely

to be effective at which spatial scales. For example, if regulat-

ing land use change to reduce the proximity of macaque to

humans, how far should regulated zones extend from

planned or existing settlements? The spatial scales that

define P. knowlesi occurrence identified by this study provide

important hitherto missing information to inform such

spatially targeted control measures.
2. Methods
(a) Case and household data
Data on household locations of consenting polymerase chain reac-

tion-confirmed P. knowlesi cases (n ¼ 206) were obtained from a

case–control study carried out between 2012 and 2014 in Kudat

and Kota Marudu districts, Northern Sabah, Malaysian Borneo

[29] and used as presence points. In this study, control households

were selected in the vicinity of case households, making them

unsuitable for use as absence points owing to spatial sampling

bias. Instead, absence households were identified from the

sampling frame of a cross-sectional survey geo-locating all house-

holds within 180 randomly selected villages in four districts in

Northern Sabah (Fornace et al. [30]). Absence points were ident-

ified from households not reporting clinical P. knowlesi cases

within the two districts included in the case–control study.

These absence points were filtered so that there were no more

than five per village, with the first absence point in each village

sampled randomly, and the remainder chosen to maximize the

total distance between absence points within that village to

ensure spatial representativeness. Absence points were excluded

if they were further than 5 km from a presence point (to prevent

large areas being covered only by absences), nearer than 0.2 km

to a presence point, or did not have permanent residents. Presence

and absence points were excluded if they were located within an

urban area, determined using administrative boundaries, as

travel histories suggest cases reported in urban areas are unlikely

to have been contracted in urban areas [29]. These filters resulted

in a dataset including 206 presence points, 43 of which were

located on the island of Banggi, and 1324 absence points, 105 of

which were located on the island of Banggi. All household

locations were visited and geolocated using a handheld global

positioning system (GPS) (Garmin, USA).

(b) Landscape variables
Data on forest cover at 30 m resolution were obtained from Hansen

et al. [26], with annual forest cover defined categorically as over

50% canopy cover based on data derived from Landsat imagery.

Although this definition of forest may not differentiate between

forest and plantations, canopy cover has previously been associ-

ated with P. knowlesi incidence [28]. Cases were approximately



Table 1. The 10 scalable landscape variables classified from Landsat satellite imagery used in the analysis [26]. (Grid cells estimated as greater than 50% tree
crown cover density were defined as forested. Perimeter area ratio (P : A) was used as a proxy for fragmentation as variation in P : A was more evenly distributed
across variables than any other measure.)

variable name details composite year

cover ( previous year) proportion of forested grid cells 2014

cover P : A ( previous year) perimeter area ratio of forested grid cells 2014

cleared ( previous year) proportion of non-forested grid cells 2014

cleared P : A ( previous year) perimeter area ratio of non-forested grid cells 2014

loss ( previous year) proportion of grid cells that changed from forested to non-forested 2014

loss P : A ( previous year) perimeter area ratio of grid cells that changed from forested to non-forested 2014

loss ( previous 5 years) proportion of grid cells that changed from forested to non-forested 2010 – 2014

loss P : A ( previous 5 years) perimeter area ratio of grid cells that changed from forested to non-forested 2010 – 2014

gain (all years) proportion of grid cells that changed from non-forested to forested 2000 – 2012

gain P : A (all years) perimeter area ratio of grid cells that changed from forested to non-forested 2000 – 2012

NDVI normalized difference vegetation index, calculated from composite Landsat image 2014

NDVI SD standard deviation of normalized difference vegetation index, calculated from

composite Landsat image

2014

elevation metres above sea level (ASTER global digital elevation model (GDEM)) 2014

slope maximum rate of change in elevation, calculated from ASTER GDEM 2014

population density population density estimates 2010

aspect direction of the steepest down slope (in degrees), calculated from ASTER GDEM 2014
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evenly divided between 2013 (n ¼ 101) and 2014 (n ¼ 105), and as

the annual classified satellite data composition method tracks back

in time as far as necessary to find cloud-free imagery covering all

locations, a frequent issue in Borneo [26], forest data was extracted

from the 2014 annual composite as it was most likely to represent

the environment contemporaneous with case reporting.

Scalable variables were extracted from forest cover data,

including proportions of recent (previous year) and historical

(previous 5 years) forest loss and cleared areas (table 1). Data

on forest gain were only available aggregated over the period

2000–2012 and were included to represent types of land use dis-

tinct from straightforward forest persistence or clearance, such as

agroforestry. Perimeter area ratio (P : A) was used as a proxy for

fragmentation of these land cover categories, as variation in P : A

was more evenly distributed across variables than other

fragmentation measures.

Other environmental variables previously associated with

malaria [31] were included as predictors in BRT models, includ-

ing elevation, aspect and slope [32]. Average annual normalized

difference vegetation index (NDVI), which quantifies the green-

ness of vegetation, was calculated from the Landsat imagery

used as input for the Hansen et al. [26] 2014 classification.

Additionally, the standard deviation of NDVI (SD NDVI) was

also included, as variance in NDVI values in space may identify

habitat type contrasts and boundaries. To address the possibility

of reporting bias, the distance to the nearest clinic and the mini-

mum distance to any road were included in a subset of BRT

models. A list of clinics in the study area was obtained from

the Ministry of Health, Malaysia, and all clinics and roads were

geo-located using a hand-held GPS (Garmin 62s, Schaffhausen,

Switzerland). All variables were extracted at 30 m resolution.
(c) Spatial scales
Sixteen scalable variables (table 1) were summarized over buffer

areas determined by a maximum overland distance of 0.1, 0.2,
0.5, 1, 2, 3, 4, 5, 7.5, 10 and 20 km (‘spatial scales’) from each

household. Maximum overland distances (i.e. areas containing

all grid cells less than the threshold overland distance from the

focal household) were used rather than circular buffers to exclude

parts of the landscape separated from focal households by water.
(d) Ensemble boosted regression tree analysis
To balance the influence of presence and absence points [33] and

quantify uncertainty [8], models were run on 100 datasets, each

including all presence points (n ¼ 206) and an equal number of

randomly sampled (without replacement) absence points. To

describe variation in the contribution of variables to predictive

ability across scales, a model was fitted with all scalable variables

included at all spatial scales (11 spatial scales and 16 variables

giving 176 predictors). An additional model was fitted in which

two non-scalable variables (shortest distance to clinic and road)

were added (178 predictors). To compare overall predictive ability

across scales, 11 ensemble models were fitted, one for each spatial

scale (16 predictors each). A version of all models was fitted to data

from the mainland only, excluding cases not on the main island of

Borneo (e.g. on Banggi island) to examine whether these associ-

ations were impacted by the inclusion of households within

smaller land areas.

Models were fitted by 10-fold cross-validation, dividing the

dataset into 10 training sets with each comprising a unique com-

bination of nine subsets of the data with the remaining subset

withheld for independent validation [16]. Model predictive abil-

ity was assessed using area under the receiver operator curve

(AUC). The tree complexity parameter of the boosted regression

tree analysis was set at 5, so that each decision tree built as part of

the model included five nodes, allowing for complex interactions

between predictor variables. The learning rate, which determines

the contribution of each decision tree to a BRT model, was tuned

to between 0.0001 and 0.002 to minimize prediction error during

cross-validation [23]. Marginal effect curves, the effect of the
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Figure 1. (a – p) Relative variable importance (RVI) of all variable-scale combinations from BRT models of P. knowlesi occurrence (176 predictors). See table 1 for
variable definitions. Green points represent the whole-study-site, blue points the mainland-only model. Purple boxes indicate the 16 variable-scale combinations
with the highest RVIs, detail of which is shown in the electronic supplementary material, figure S1a.
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change in one unit of the predictor on the probability of disease

occurrence, were plotted for all predictors by scale.

(e) Relative variable importance
Profiles of relative variable importance (RVI) for landscape vari-

ables across spatial scales were derived from models that

included all scales simultaneously so that the importance of

scale variable-combinations could be assessed while accounting

for the contributions of all other variable-scale combinations

and interactions between them. RVI measures the number of

times a variable is selected for splitting during the construction

of a BRT model, weighted by the squared improvement of the

model owing to the split, averaged over all trees in the model

[16]. To aid the interpretation of RVI across scales within vari-

ables, Spearman rank correlation matrices comparing values

between all pairwise combinations of scales were plotted for

each variable.

To test whether peaks of RVI were driven by changes in

variance available to BRT models across scales, variance was

superimposed on RVI profiles. This is a necessary check, as if

RVI tracked variance across correlated scales within variables,

we could not preclude differences in RVI across scales arising

owing to an artefact of available variance alone. To aid interpret-

ation, variances were plotted as proportions of maximum

variance across scales for each landscape variable. Relative
variance was compared with median RVI using Spearman rank

correlation tests across the whole study site.

( f ) Case clusters
To investigate whether analysis across spatial scales could be used

to distinguish different sets of epidemiological circumstances driv-

ing P. knowlesi spillover, a cluster analysis was performed on the

model fitted (whole-study-site, scalable variables only) marginal

probabilities of occurrence for each scalable variable (n ¼ 176) for

all cases (n ¼ 206). Cases were clustered into two groups using

Ward’s minimum variance method [34].
3. Results
(a) Relative variable importance across scales
RVI was extracted from an ensemble BRT model of P. knowlesi
occurrence in Sabah, Malaysian Borneo, including 176 predic-

tors and 16 scalable landscape variables (table 1) summarized

at 11 spatial scales (figure 1). The emergent peaks in RVI profiles

show that the influence of several variables on P. knowlesi occur-

rence prediction is strongly dependent on the spatial scale of

their aggregation. The median relative importance of the

proportion of cleared land was more than threefold higher
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when aggregated over a radius of 1 km from households than at

any other scale in the mainland-only model, and more

than twofold higher in the whole-study-site model (figure 1c).

This was also the variable-scale combination with the highest

RVI of the 176 predictors included in the whole-study-site

model (electronic supplementary material, figure S1a). The

corresponding marginal effect curve shows that probability

of P. knowlesi occurrence was greater at lower proportions of

cleared land within 1 km of households (figure 2).

The RVI profiles of five other variables included peaks at

similar scales (figure 1 and table 1): mean aspect (1 and

2 km), mean slope (0.5 km), gain all years (0.5 km), population

density (2 km) and loss previous year (0.5 km). The probability

of P. knowlesi occurrence was predicted to be highest on

west-facing slopes (higher aspect values, averaged over 1 and

2 km), which were relatively steep (averaged over 0.5 km),

that both gained a relatively high proportion of canopy cover

between 2000 and 2012 and lost a relatively high proportion

of canopy in 2014 (both averaged over 0.5 km), and where

(averaged over 2 km) few people lived (figure 2).

The fragmentation of forest loss was also an important pre-

dictor of P. knowlesi occurrence but only at relatively large spatial

scales (e.g. 4–5 km, figure 1f,h). A similar pattern was observed

both for the fragmentation of forest loss in the previous year

(peak at 5 km) and in the previous 5 years (peaks at 4 km and

5 km), with the highest probability of P. knowlesi occurrence pre-

dicted when the landscape distribution of forest loss was most

fragmented on these scales (figure 2).

The fragmentation of cleared land (as distinct from forest

loss, see table 1) in the previous year was important at 5 km
(figure 1d), as well as at three other scales (0.1, 0.2 and

0.5 km). The importance of three consecutive scales for one

variable is likely to be owing to correlation across scales, and

correlations were high in this case (electronic supplementary

material, figure S3d). However, the correlation between

small (0.1, 0.2 and 0.5 km) and large scale (5 km) aggregations

was substantially lower (electronic supplementary material,

figure S3d), which might suggest a real biological influence

of this variable on two scales simultaneously. However, as

the variance in this predictor variable was correlated with

RVI (electronic supplementary material, figure S4) at small

spatial scales, the possibility of their importance being artefac-

tual at these scales cannot be ruled out, as higher variance is

likely to lead to more frequent inclusion of variables in the

decision trees that make up BRT models. The same interpreta-

tional caveat applies to the standard deviation of NDVI at

0.1 km (electronic supplementary material, figure S4).
(b) Variance across scales
In general, the peaks of RVI (figure 1) do not arise from an arte-

fact of correlation with variance (electronic supplementary

material, figure S4 and table S1). However, in the case of the

fragmentation of cleared land in the previous year, some cau-

tion is required in the interpretation of the importance of the

smaller spatial scales. First, the comparison of variance with

RVI across scales (electronic supplementary material, figure

S4d) and their correlation (electronic supplementary material,

table S1) suggest that RVI may be influenced by variance avail-

able to the model. Second, as the grid cells that make up the
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Figure 3. The locations of all households included in the study, showing (a) occurrence probability predictions from the whole-study-site model (176 predictors);
(b) the prediction error from the same model; and (c) the location of the two clusters of case households.
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landscape variable layers are square, the perimeter length of

patches will be overestimated at small scales [35]. In addition,

the marginal effect curve for cleared P : A (previous year) at

5 km covers a greater range of predicted probability than

those at the smaller scales of 0.1, 0.2 and 0.5 km (figure 2).

Although the standard deviation of NDVI at 0.1 km

appears in the top 16 variable-scale combinations, the same

caveat relating to changing variance across scales applies as

above because RVI tracks variance (electronic supplementary

material, figure S4). Therefore, it is possible that 0.1 km

emerges as the most important scale owing to an artefact of

variance available to the model, rather than owing to the influ-

ence of an underlying biological process on this scale. In

addition, the marginal effect curve for SD NDVI 0.1 km does

not suggest a strong influence on P. knowlesi occurrence prob-

ability (figure 2). The same applies to the importance of

cover P : A at 0.1 km, as RVI tracks variance across scales

(figure 2 and electronic supplementary material, table S1),

and perimeters will be over-estimated at small scales.

(c) Non-scaled variables
The median prediction accuracy (AUC) of P. knowlesi occur-

rence across the whole study site was 0.76. The inclusion of

two non-scalable variables, the shortest distance from house-

holds to the nearest clinic and road were included, increased

this to 0.78. The shortest distance to road had the highest RVI

in this model (electronic supplementary material, figure S1b),

with the probability of P. knowlesi occurrence predicted to be

highest at households furthest from roads (electronic sup-

plementary material, figure S2). The addition of the two

non-scalable variables only increased median AUC by 0.02,

and gave rise to only minor changes in the most important vari-

able-scale combinations (electronic supplementary material,

figure S1) and negligible differences in their marginal effect

curves (figure 2 and electronic supplementary material,

figure S2). This suggests much of the variation explained by

distance to roads and clinics is explained by included land-

scape factors; for example, distance to roads is probably

highly correlated with population density and forest cover.

This model was used to generate P. knowlesi human case
occurrence predictions for all the households (figure 3a). The

corresponding plot of prediction error by household shows

there is little clustering of prediction error in space, and there-

fore that the model is not overly influenced by households in

one area (figure 3b).

(d) Case clusters
The division of case locations only (n ¼ 206) by the marginal

occurrence probabilities of the whole-study-site model into

two clusters produced one cluster of 93 cases (cluster A) and

another of 113 cases (cluster B). The two clusters appear to be

spatially distinct, with cluster A mainly occurring on the main-

land of the district of Kudat, and cluster B occurring on the

island of Banggi and in the south of the Kudat peninsula

(figure 3c). Exploration of the differences between clusters by

examination of the 15 variable-scale combinations with the

highest median marginal probability differences between clus-

ters showed that cases in cluster A were characterized by low

canopy cover, high proportion of cleared land and high popu-

lation density at large spatial scales (electronic supplementary

material, figure S5).

(e) Prediction accuracy across scales
The ability of single-scale BRT models to predict P. knowlesi
occurrence varied from an AUC of 0.55 (little better than a

random model) to a maximum of 0.82. Models fitted to the

smallest spatial scales had the lowest predictive power,

those fitted to intermediate scales had the highest predictive

power, and models that included all scales simultaneously

performed better on average than all single-scale models

(electronic supplementary material, figure S6).
4. Discussion
A key unanswered question about P. knowlesi transmission is

what mechanism(s) give rise to the observed association

between deforestation and human P. knowlesi incidence [28].

This study examines the influence of the absence of forest

(cleared land), the process of forest loss, and the landscape
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distribution of forest loss (fragmentation) by spatial scale.

This not only provides evidence that landscape fragmenta-

tion influences P. knowlesi spillover into humans, as it is

thought to for other zoonoses such as Lyme disease [36]

and Ebola [37], but also identifies the spatial scale of the influ-

ence of fragmentation on P. knowlesi transmission (within 4

and 5 km of households).

Consideration of the multiple spatial scales identified by

this new analytical approach with corresponding marginal

effect curves can suggest drivers of the observed patterns of

disease occurrence. The effects of human, macaque and

vector movement and density probably contribute to the

spatial scale at which different landscape factors are predictive.

For example, if individuals are exposed outside the house, the

large-scale influence of the fragmentation of deforested areas

(4–5 km) could emerge as a property of P. knowlesi spillover

if humans commuted to fragmented deforested areas over dis-

tances of up to 5 km, and/or were at risk while there because of

the nature of their work. This is consistent with the findings of a

case–control study undertaken in the same area, including an

increased risk of P. knowlesi (but not non-P. knowlesi) malaria in

those walking to or from work or school [29]. Alternatively,

macaque troops may respond to deforestation on this emergent

scale, because they move distances of up to 5 km in response to

fragmentation beyond a threshold, exposing households in

sink areas to an increase in macaque density, which would

be consistent with what estimates there are of M. fascicularis
home ranges [38]. The step-like marginal effect curve of the

fragmentation of deforestation on the probability of P. knowlesi
occurrence suggests such a threshold effect. In addition,

increasing values of the fragmentation of cleared land at

5 km predicted a similar step-like increase in occurrence prob-

ability. This suggests that the deforestation fragmentation

result is not only an effect of the immediate disturbance of

forest removal on P. knowlesi transmission, but one that is

rather (or also) influenced by the habitat geometry it leaves

behind [39]. Although 5 km was chosen as the maximum dis-

tance owing to village distribution and the small spatial scale

of this study site (including islands), future work could explore

whether landscape variables influence transmission at larger

distances or explore the mechanisms behind these associations.

The probability of P. knowlesi occurrence was highest when

the proportion of cleared land within 1 km of households was

low. This suggests that households isolated in patches of forest

or plantation (with less than 10% of the area within 1 km

cleared) may be at the highest P. knowlesi exposure risk. This

is in line with the traditional man-in-the-forest human P. know-
lesi risk profile, which suggests that individuals who work on

clearing forest or on plantations (usually adult men) are at

highest risk of P. knowlesi infection, and additionally consistent

with studies describing high vector densities in forest areas

[22,40]. When averaged over this same scale, aspect also had

an important influence on predicted P. knowlesi occurrence.

Aspect is associated with Plasmodium falciparum infection in

humans [31] but is identified here as a potential determinant

of P. knowlesi human infection risk to our knowledge, for the

first time. As households situated on west-facing slopes had

the highest probabilities of disease, this may plausibly be

because these households receive more sunlight in the after-

noon, resulting in higher temperatures. For P. falciparum,

increased temperature has been shown to shorten the duration

of the incubation period in the mosquito or the length of the

gonotrophic cycle, or speed up the development or increase
the survival probability [41,42]. Alternatively, this association

could arise through correlation between aspect and agricul-

tural practice, with the peak of aspect RVI at 1 km arising

from the way people modify (and the way both people and

macaques use) agricultural land near households. Plasmodium
knowlesi occurrence was also predicted to be higher at house-

holds on relatively steep slopes, which, as for aspect

discussed above, could be a result of the influence of tempera-

ture on mosquito life history and infection dynamics, and/or

the way that humans and macaques respond to slope. For

example, if relatively steep slopes are uncultivatable, they may

provide refuge from disturbance for macaques. That canopy

regrowth (gain all years, table 1) had high RVI at the same

scale as slope, suggests that peridomestic land use has an impor-

tant influence over this scale, and therefore that the latter

interpretation is more likely. Although this study has not equi-

vocally identified mechanisms by which land use change

influences human P. knowlesi infection risk, by mining the

extra information contained within the spatial scale signatures

of associations it has pared down the many plausible possibili-

ties to a manageable number for further investigation. Future

studies could additionally expand this analysis to evaluate the

impact of different land use or forest types.

A challenge to a synthesis of P. knowlesi epidemiology across

South East Asia is the considerable regional variation in infec-

tion patterns and risk profiles. The degree to which infection

risk is concentrated in men who work in forests or plantations,

the extent to which peridomestic transmission occurs, and

whether human–vector–human transmission occurs under

natural conditions are open questions [29,43,44]. Cluster

analysis partitioned cases occurring in this part of Malaysian

Borneo into two geographical groups, each with distinct risk

profiles. Cluster A cases occurred at households around

which there was relatively low forest cover, relatively high pro-

portions of cleared land, relatively high population density,

and that were immediately surrounded by fragmented forest

cover compared with cluster B cases. These differences may

reflect regional variation in the history of land use—the con-

version of forest on the island of Banggi from the coast

inwards, for example—and therefore the distinction between

two sets of drivers of P. knowlesi spillover from macaques to

humans. This novel approach to identifying transmission het-

erogeneities in disease occurrence datasets could be refined

through integration with other sources of data, such as travel

histories and human GPS tracking data, and developed into

an effective tool for the surveillance of epidemiological

transitions [45].
5. Conclusion
The consideration of multiple spatial scales can add value to

analysis of disease occurrence by delivering more accurate

spatial predictions, and identifying the key spatial scales of

transmission. In the case of P. knowlesi, the application of a

data mining approach has teased apart the potentially con-

flicting influences of forest cover and forest loss [28] on

disease occurrence, identifying the latter as an effect of frag-

mentation on relatively large spatial scales and the former

as an effect of the proportion of cleared land nearer to house-

holds. This could provide the key to the prediction of disease

risk under models of future land use, and the design of

spatially-targeted disease interventions. This new scale-focused
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approach could be widely applied to other zoonoses and

vector-borne diseases of public health concern.
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