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Bats and birds are key providers of ecosystem services in forests. How

climate and habitat jointly shape their communities is well studied, but

whether biotic predictors from other trophic levels may improve bird and

bat diversity models is less known, especially across large bioclimatic gradi-

ents. Here, we achieved multi-taxa surveys in 209 mature forests replicated

in six European countries from Spain to Finland, to investigate the impor-

tance of biotic predictors (i.e. the abundance or activity of defoliating

insects, spiders, earthworms and wild ungulates) for bat and bird taxonomic

and functional diversity. We found that nine out of 12 bird and bat diversity

metrics were best explained when biotic factors were added to models

including climate and habitat variables, with a mean gain in explained var-

iance of 38% for birds and 15% for bats. Tree functional diversity was the

most important habitat predictor for birds, while bats responded more to

understorey structure. The best biotic predictors for birds were spider abun-

dance and defoliating insect activity, while only bat functional evenness

responded positively to insect herbivory. Accounting for potential biotic

interactions between bats, birds and other taxa of lower trophic levels will

help to understand how environmental changes along large biogeographical

gradients affect higher-level predator diversity in forest ecosystems.
1. Introduction
Biodiversity is a key driver of many ecosystem functions and services [1,2], par-

ticularly through the maintenance of functional trait diversity [3]. Despite the

long history of studies examining the local, regional and global drivers of biodi-

versity, it remains challenging to disentangle the relative importance of climate,

habitat and biotic factors [4–6]. An increasing number of studies is questioning

the role of multiple biotic interactions across various trophic levels in shaping eco-

logical communities. However, they usually focus only on local scales, while the

influence of these interactions on biodiversity across larger geographical extents
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Figure 1. Conceptual figure of hypothetical direct and indirect effects of climate (red panel), habitat (green panel) and biotic (yellow panel) predictors on bird
and bat diversity metrics. Black and white arrows indicate positive and negative effects, respectively; full and dotted arrows indicate direct and indirect effects,
respectively. (Online version in colour.)
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has rarely been explored [7–9]. Thus, incorporating multispe-

cies interactions in biodiversity response models is still

challenging, although it would improve our understanding

of large-scale biodiversity patterns when compared with clas-

sical studies focusing on single taxa [7–11]. The benefits of

considering multi-taxa interactions may be particularly

useful for species at higher trophic levels such as birds and

bats, which are affected by both direct effects of climate and

habitat changes, and their cascading effects across trophic

levels [9,12,13].

Importantly, the consequences of changes in bird and

bat communities for ecosystem functioning cannot be fully

understood by focusing only on changes in taxonomic diver-

sity [14–16]. The use of functional traits not only allows the

monitoring of changes in biodiversity response to land use

changes [14] but also the clarification of respective importance

of multiple assembly processes in shaping species commu-

nities along large environmental gradients, e.g. abiotic

filtering, competition or facilitation [15,17,18]. For example,

functional diversity can increase at opposite ends of resource

availability gradients, depending on whether the traits

involved are more related to abiotic filtering or to competitive

interactions [17]. Similarly, higher functional dispersion at low

productivity levels suggests increased competitive exclusion

with the loss of functionally redundant species [15].

Taxonomic and functional diversity also tend to show

distinct responses to global change [19]. Functional trait

diversity and composition, rather than species richness,

are often the most important biodiversity-related drivers of

ecosystem functioning [12,16]. The number and diversity of

species with any particular functional traits in a given commu-

nity has direct effects on ecosystem-level processes. Functional

diversity is, therefore, an indicator of resource use
complementarity and community responses to disturbance

[20,21]. A more efficient resource use by species in a given eco-

system can be inferred from higher functional evenness (FEve),

while strong niche differentiation and low resource compe-

tition within species assemblages lead to higher functional

dispersion [21–24]. Functional traits related to habitat and

resource use are particularly efficient at accounting for changes

in ecosystem-level processes such as productivity or trophic

interactions. While body mass is a relevant surrogate for bird

responses to environmental changes [25], the trophic niche

of bird and bat species allows prediction of their responses

to local habitat changes as well as energy input and food

availability along large biogeographical gradients [4,5,26,27].

Here, we hypothesize that biotic drivers (i.e. abundance

and activity of taxa from lower trophic levels) can complement

response models of bird and bat diversity, along a continental-

scale gradient (figure 1 and table 1). We first tested if:

(i) including a set of biotic predictors contribute to explain pat-

terns of bird and bat taxonomic and functional diversity, once

accounted for climate (temperature, heat load index and pre-

cipitations) and habitat variables (forest composition and

structure). We further hypothesized (table 1) that (ii) insect

and spider abundance would positively affect bird and bat

abundance and diversity, as key food resources; (iii) earth-

worm abundance would increase bird and bat diversity

either directly or by improving forest soil structure and favour-

ing high soil arthropod abundance; (iv) ungulate browsing

would negatively affect bird and bat diversity, by reducing

food resources and foraging niches provided by understorey

cover; and (v) bird and bat abundance would be positively cor-

related in mature forest habitats across Europe, as they partly

respond to the same biotic drivers (i.e. food resources) at

such a large scale.



Table 1. Main hypotheses tested regarding the role of biotic predictors for bat and bird diversity metrics. (Based on available data and previous works
compiled from the literature, we focused on the following four biotic predictors: (i) defoliating insect activity measured through canopy leaf herbivory rates; (ii)
spider abundance sampled by foliage-beating of selected trees and shrubs; (iii) earthworm abundance sampled by standard litter and soil extraction; and (iv)
wild ungulate browsing estimated through biomass removal on understorey vegetation (see the electronic supplementary material, S7 for sampling methods).)

defoliating insect activity spider abundance earthworm abundance ungulate browsing

birds

abundance increase increase increase no effect

species div. increase increase no effect no effect

funct. rich. increase increase increase decrease

funct. div. increase increase no effect decrease

body mass increase no effect increase decrease

main references [24,25,28,29] [30 – 32] [33,34] [35 – 37]

bats

abundance increase increase increase no effect

species div. increase no effect no effect no effect

funct. rich. increase increase no effect decrease

funct. div. increase increase no effect decrease

body mass increase no effect no effect decrease

main references [38 – 41] [38,42] [38,41] [35 – 37]
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For each biotic predictor, we tested specific hypotheses for

the positive, negative or null response of each bird and bat diver-

sity metrics, according to the literature (table 1). We expected an

increase in all bird and bat community metrics, including mean

body mass, with higher insect herbivore activity owing to

increased food availability [24–29,38–41]; an increase in bird

taxonomic and functional diversity with spider abundance,

but not in body mass [30–32]; an increase in bat abundance

and functional diversity with spider abundance (increased

specialized food resources), but neither in species diversity

nor body mass [42]; an increase in bird abundance, functional

richness (FRic) and body mass with earthworm abundance as

increased resources for large bird specialists [33,34]; no effect

of earthworm abundance on bats except on overall bat activity

[38]; a decrease on both bat and bird functional diversity and

body mass with ungulate browsing owing to reduction in

understorey cover and changes in shrub composition, but no

effect on abundance nor species diversity [35–37].
2. Material and methods
(a) Study sites
A network of 209 mature forest plots was established in 2011

across a latitudinal gradient in Europe ranging from 408 N to 638
N [28], in the framework of the FP7-FunDiv EUROPE project

(www.fundiveurope.eu). The network covered six regions within

Mediterranean, temperate and boreal forest biomes (Spain, Italy,

Germany, Romania, Poland and Finland; electronic supplementary

material, figure S1). The aim of this exploratory platform was to

quantify the effects of tree species richness on multiple forest ecosys-

tem functions. Within each region, plots were selected along a

gradient of tree species richness ranging from one to five tree species

per plot. Each region had a pool of three to five target tree species (for

a total of 16 target species across Europe) that are regionally common

and economically important. Each sampled forest plot covered an

area of 900 m2 and was surrounded by a 20 m buffer to avoid
edge effects. To maximize their comparability, all plots within a

country had similar ages, management and abiotic conditions [43].

(b) Bird and bat sampling
We surveyed breeding bird communities using standardized point

counts performed by trained observers within a limited distance of

80 m around the observer in April–June 2012 (Italy, Germany and

Finland) and April–June 2013 (Spain, Romania and Poland). We

recorded all birds, except flyovers, which were heard or seen in

15 min, during the first 4 h after sunrise on days without strong

wind, snow or rain. We carefully mapped the location of every

recorded individual bird on circular plot fieldsheets to avoid

double counting the same individuals. The total number of bird

individuals recorded per species in each plot was used as an esti-

mate of bird species abundance. Species detectability was

considered to be comparable across the six regions because of

similar age and structure in all sampled forest habitat types [43].

Bat communities were sampled by passive acoustic monitoring

in April–June 2012 (Italy, Germany and Finland) and May–July

2013 (Spain, Romania and Poland) with an automatic ultrasound

recorder (Sound Meter SM2BAT, Wildlife Acoustics) located at

the centre of each plot. Recorders were calibrated to record all

bat calls from 1 h before sunset to 1 h after sunrise, during one

night per plot. Recordings were performed only when the ambient

temperature was greater than 108C, when there was no rain and

wind speed was less than 30 km h21. Bat echolocation calls were

identified to species level by a trained operator using dedicated

software [44]. Several groups of closely related species difficult to

separate based on their calls were merged for data analyses

when co-occurring in some countries: Myotis mystacinus/alcathoe/
brandtii; Myotis myotis/blythii; Plecotus auritus/austriacus; and

Pipistrellus kuhlii/nathusii. Bat activity was calculated as the total

number of 5 s sequences with two or more calls per species, as a

proxy for species abundance [45].

(c) Bird and bat taxonomic and functional diversity
We recorded a total of 76 bird species in the six regions after

excluding raptors and flyovers, and a total of 27 bat species,

http://www.fundiveurope.eu
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i.e. 72% and 79% of the total pool of forest-dwelling bird and

bat species in Europe, respectively [44]. We first calculated the

Shannon index of taxonomic species diversity per forest plot.

Then, we performed rarefaction and extrapolation curves for

Shannon species diversity using the Hill number of order 1, to

quantify species diversity patterns that were independent from

total community abundance across the six studied regions (elec-

tronic supplementary material, S2). Furthermore, we compiled

10 species life traits related to habitat and resource use to compute

functional diversity metrics for both birds and bats (electronic sup-

plementary material, S3) [24,44]. For birds, these 10 traits were

foraging guild, adult diet, nest site location, migration strategy,

mean laying date, home range size, clutch size, body mass, species

habitat specialization (SSI) and species thermal index (STI, in8C)

[19,46]. For bats, the 10 traits were selected to be as similar as poss-

ible to those used for birds, i.e. foraging guild, diet specialization,

nursery site, migration strategy, mean birth date, home range size,

female fecundity, body mass, STI and SSI. The latter four traits

were continuous for both taxa, while all others were categorical

(electronic supplementary material, S3). Bird and bat STIs were cal-

culated from European distribution maps as the average

temperature experienced by a species across its geographical

range during the breeding season (see the electronic supplemen-

tary material, S4). Bird and bat SSIs were calculated as the

coefficient of variation of species abundance across all habitats in

the European breeding bird survey [47], and in an independent

dataset provided by the French national bat monitoring scheme

[45], respectively (see the electronic supplementary material, S5).

Based on the functional traits, we computed abundance-

weighted functional diversity metrics, using log-transformed

bat species activity as a measure of bat abundance per plot, and

the number of bird individuals recorded as a measure of bird

abundance per plot. We calculated FRic, FEve and functional

entropy (Rao’s Q) as three complementary measures of the multi-

variate functional trait space using the ‘FD’ R-package [48]. FRic

measures the convex hull volume of the functional trait space,

while FEve measures the regularity of trait abundance distribution

within this functional space, and Rao’s Q the dispersion of species

in functional trait space [21,48]. We further performed null models

to quantify functional diversity metrics corrected for species rich-

ness levels in order to disentangle the drivers of trait diversity

per se, independent from those of taxonomic diversity. To this

end, we reshuffled trait sets among species (i.e. by random permu-

tations of the rows of the species-trait table) without replacement.

We then recalculated FD metrics for artificial communities that

were equally species-rich as the observed communities and with

the same species compositions, but with random sets of traits.

We repeated this procedure 1000 times, and calculated the

standardized deviation of FD (FDdev) values as:

FDdev ¼
FDobs � FDexp

sdðFDexpÞ
,

where FDobs is the observed FD value, FDexp is the average of

the 1000 randomized (i.e. expected) FD values and sd(FDexp) is

the standard deviation of the 1000 randomized (i.e. expected)

FD values. Thus, FDdev is independent from species richness,

and if values are greater than 0, observed FD value was higher

than expected based on the taxonomical species richness,

whereas values below 0 indicate the opposite (see the electronic

supplementary material, S6).
(d) Climate, habitat and biotic predictors
Using the WorldClim database (http://www.worldclim.org/)

and the geographical coordinates of plots, we derived climatic

variables for each forest plot (i.e. mean annual temperature and

precipitation at a 30 s resolution) and calculated a unitless heat

load index based on equations correcting for aspect [49].
According to preliminary analyses [44], the variation of forest habi-

tat structure and composition across all sampled plots could be

summarized by a limited number of vegetation attributes, includ-

ing deciduous tree proportion, tree functional diversity (Rao’s Q),

understorey species richness and vertical stratification index. In

addition, we selected other key taxa sampled in the same plots

to build the set of biotic predictors (see detailed hypotheses in

table 1 and sampling methods in the electronic supplementary

material, S7). We sampled spider abundance and monitored

insect herbivory as a proxy for defoliating insect abundance, to

assess overall availability of bird and bat preferred prey in tree

canopies, i.e. caterpillars, moths and spiders [28,29,38–40].

We further sampled earthworm abundance as food resources

for some specialist ground-probing birds, as well as ecosystem

engineers having potential bottom-up effects on both bat and

bird communities [33,34]. Finally, ungulate browsing was also

quantified, as it can negatively affect both forest birds and bats,

whose foraging habitat and behaviour might be affected by any

browsing-induced changes in understorey density [35,36].

(e) Data analysis
The importance of biotic drivers for bird and bat diversity metrics

was evaluated using a hierarchical model fitting framework, com-

paring a set of competing models with an information-theoretic

approach (Akaike’s information criterion (AIC)-based model selec-

tion). For each of the 12 metrics tested (bat and bird abundance,

species diversity, three indices of functional diversity and mean

body mass; table 2), we increased model complexity in three

steps (figure 1) by successively including: (i) three climate predic-

tors (mean annual temperature, mean annual precipitation and

heat load index); (ii) four habitat predictors (deciduous tree pro-

portion, forest stratification index, understorey species richness

and tree functional diversity); and (iii) four biotic predictors from

multiple trophic levels (defoliating insects, spiders, earthworms

and ungulate browsing). At each step, the best set of predictors

(those in the model with the lowest AIC value) was selected

before the predictors of the next step were added to the model.

We checked for the absence of multicollinearity among climate,

habitat and biotic variables using variance inflation factor corre-

lation diagnostic tests to exclude potentially collinear predictors.

We selected significant predictors at each modelling step using

the function ‘drop1’ in ‘lme4’ R-package, which allows for a com-

parison of models based on AIC weights [50]. We performed a x2

test on DAICc to test for significant decrease in AICc when a given

set of predictors was included (table 2). We did not include inter-

action terms to avoid model inflation and fitted linear mixed

models (LMMs) for all 12 bird and bat diversity metrics, except

for total bird abundance, which was fitted with a generalized

linear mixed model (GLMM) with a Poisson error distribution

and a log-link function. We used a logit transformation for FEve

because it is constrained between 0 and 1 [48].

To account for pseudoreplication owing to spatial autocorrela-

tion and clustering of forest plots per region, region identity was

added as a random factor to the models. We further controlled

for differences in common target tree species identity across

regions with an additional random effect for target species compo-

sition, since not all tree combinations occur in all regions [43]. Bat

activity was log-transformed before modelling, and all model pre-

dictors were scaled and centred to allow a comparison of their

relative effects on bird and bat community metrics. We assessed

model performance by reporting marginal (for fixed effects) and

conditional (for both fixed and random effects) R2 at each model-

ling step [51]. We also tested for the direction of individual effects

by modelling univariate relationships between biotic factors and

bird and bat community metrics using a set of LMMs with the

same random effect structure as above. We systematically checked

all model residuals for normality and homoscedasticity in LMMs

and overdispersion in GLMMs.

http://www.worldclim.org/
http://www.worldclim.org/
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Figure 2. Univariate linear mixed models in response to insect herbivory for (a) bird abundance and (b) bat functional evenness. See table 3 for model coefficients,
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3. Results
Including biotic predictors significantly improved nine out of

12 final models of bird and bat community metrics compared

to those only including climate and/or habitat (table 2).

The mean gain in variance explained by fixed effects (R2m)

when biotic factors were added to fixed climate and habitat

predictors was 38.0% for birds and 15.4% for bats (range

14.4–71.8% for birds and 7.2–32.7% for bats). Tree functional

diversity was more influential for bird abundance and

species diversity while bat diversity responded more to

understorey structure (table 2).

All bird community metrics except FEve were positively

correlated to either spider abundance or insect herbivory (see

results from univariate LMMs in table 3 and figure 2a). Bird

abundance also significantly increased with earthworm abun-

dance (table 3). By contrast, only bat FEve increased with

insect herbivory (figure 2b). However, bat mean body mass sig-

nificantly increased with ungulate browsing, while earthworm

abundance had a positive effect on bat species diversity and a

negative effect on bat body mass (table 3). Moreover, bird

FRic and mean body mass, but not bird abundance, were

positively correlated with bat activity (LMMs with t ¼ 1.96,

p , 0.05; t ¼ 2.30, p , 0.02, respectively).

The results of the null model analysis for functional metrics

(FRic, FEve, Rao’s Q and community weighted mean (CWM)
body mass) are presented in the electronic supplementary

material, S6. We found consistencies in model predictor selec-

tion for bird Rao’s Q, bat FEve and bird and bat mean body

mass. By contrast, bird and bat simulated FRic differed in

model selection from the observed values, as well as bird FEve

and bat Rao’s Q (electronic supplementary material, table S6).
4. Discussion
In the present study, we confirm the importance of different

trophic groups, especially arthropod prey such as spiders and

defoliating insects, as important determinants for forest bird

and bat communities along crossed bioclimatic and habitat

gradients. Our results are thus in accordance with several

recent studies pointing out that local abundance of bird

and bat foraging guilds were best predicted when accounting

for interactions between vegetation structure and actual prey

abundance [9,26,27,52]. We also found a positive relationship

between bat activity and bird FRic, rather than taxonomic

diversity, across European forests. This suggests that a large

range of bird functional types are able to coexist in forests

with high levels of bat foraging activity, probably linked to

higher food availability [37,53].

While several metrics of bird and, to a lesser extent, of bat

functional diversity were related to high abundances of lower
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trophic levels, some of these relationships were driven by taxo-

nomic diversity patterns, rather than by trait composition or

diversity per se. This was supported by the use of null models,

in which we calculated the deviation of observed functional

diversity patterns from simulated communities that differed in

their trait composition, but not in their taxonomic composition,

from observed communities. In particular, the significant pre-

dictors in the response models based on simulated values for

bird and bat FRic differed from the ones based on observed

values, because FRic is generally correlated to taxonomic rich-

ness [21]. On the other hand, we found consistencies in the

selection of biotic predictors in observed and simulated

models for four functional diversity metrics, namely bird

Rao’s Q, bat FEve and bird and bat mean body mass.

In the present work, spider, defoliating insect and earth-

worm abundances were positively correlated with either bird

abundance or functional diversity, as expected from our initial

hypotheses. This is consistent with the recognized importance

of defoliating caterpillars, spiders and earthworms as preferred

food items for forest birds [28–33,38,39,42]. Defoliating Lepi-

doptera larvae are key prey items for forest birds during the

breeding season, which usually matches the peak in caterpillar

abundance [25,29]. Caterpillars and moths are also major food

resources for forest bats in temperate forests [26,38–40]. How-

ever, contrary to expectations, we found that insect herbivory

was not affecting all bird and bat community metrics equally.

For bats, only FEve responded positively to herbivory, as

expected [44], while it was not the case for birds, although

we expected the strongest response to insect abundance for

this particular metric generally indicating an efficient resource

use by the predator community [21,24]. Spider abundance had

a widespread positive effect on bird taxonomic and functional

diversity, as well as mean body mass, while it had little effect

on bats, because only specialist gleaning bats feed on spiders

[30–32,38,42].

In contrast with our initial hypotheses, earthworm abun-

dance had no effect on bird FRic or body mass, but as

expected, earthworm abundance correlated positively with

bird abundance [33]. Earthworms also had additional effects

on bat species diversity and body mass, possibly through cas-

cading effects across trophic levels from forest soils to these

higher-level predators. The relationships of bird and bat diver-

sity with taxa from other trophic levels can thus partly be

explained by foraging niches and diet specialization of particu-

lar species or genera. Large ground-foraging birds such as

thrushes (Turdus spp.) and waders (woodcock Scolopax rusti-
cola, common snipe Gallinago gallinago and sandpipers Tringa
spp) specialize on earthworms during the breeding season

[33], while spiders are preferred prey items for bark-foraging

specialists such as treecreepers Certhia spp. [30]. By contrast,

only a few European forest bats, including some Myotis spp.,

can specialize on arachnids but bats do not feed directly on

earthworms [38,42]. However, earthworms increase soil bio-

geochemical heterogeneity and organic matter turnover, so

that their activity might lead to higher insect prey abundance

ultimately available for both birds and bats [34].

Contrary to our initial hypotheses, we did not detect any

negative effects of wild ungulate browsing on birds, but brows-

ing intensity was associated with a decrease in the dominance

of small-bodied bat species, as expected. Although these effects

were not detectable on birds along the sampled bioclimatic gra-

dient, this suggests that the negative effect of large herbivores

previously observed on many taxa also extend to smaller-
sized forest insectivorous bats [36]. Such a potentially negative

effect of browsing on bats is probably owing to indirect

changes in resource quality and availability provided by

understorey vegetation rather than a direct effect of wild ungu-

late disturbance [35]. However, how precisely bat species

respond to increased ungulate densities in European forests

remains to be investigated and should be highly guild-depen-

dent [37]. Smaller foliage-gleaning specialist bats might be

particularly sensitive to changes in understorey density and

associated food resources following increase in browsing inten-

sity from wild large ungulates, while larger aerial foragers

would be favoured by clearer forest understorey created by

increased browsing [26]. Most bats actually forage in the forest

gaps and only few specialists can use multi-layered forests

(e.g. Myotis nattereri or M. bechsteinii) [42], but species such as

M. myotis also need a low grass layer to forage on carabid bee-

tles. The observed increase in mean bat body mass with

ungulate browsing might also be an indication for more free

space that can be used by larger bat species in heavily browsed

shrub understoreys.

Beyond the direct effects of food resources, these significant

biotic factors may thus not always imply a mechanistic inter-

action, but can also serve as surrogates for mechanisms

underlying diversity patterns in bat and bird communities

[6,9,13]. In line with our initial hypotheses, the abundance

and activity of several lower trophic levels were, across geo-

graphical scales, correlated with higher abundances and

diversity of birds and bats. On the other hand, some expected

relationships were not supported, or were relatively weak com-

pared to similar relationships documented at more local scales.

We therefore suggest that, while the effects of abundance and

activity of lower trophic levels are often strong enough to

improve models explaining bird and bat diversity at a conti-

nental scale, in some cases relationships were weaker or non-

significant, meaning that climate and habitat variables were

informative enough to model bat and bird responses at the

large spatial extents studied here. Moreover, the use of multi-

trait functional diversity metrics can somewhat obscure the

relationships between individual traits and environmental

gradients, which need further investigation to better infer the

exact mechanisms linking the abundance of taxa from distinct

trophic levels in diverse forest ecosystems [17,54].

The effects of forest structure on bat communities were

mediated by understorey richness and stratification, and

appeared largely negative. Bats use more specialized foraging

techniques (i.e. echolocation) than forest birds, which makes

them particularly sensitive to understorey vertical structure

[26,52]. Overall, we found that forest composition, especially

tree functional diversity and the proportion of deciduous

trees, was more influential for both bird and bat communities

than forest structure. However, the effects of forest composition

and structure were not independent, e.g. an increase in the

proportion of deciduous trees will also have an effect on struc-

ture, e.g. canopy architecture. This is consistent with the

hypothesis that increasing forest habitat heterogeneity through

higher functional diversity of tree species should increase the

abundance of taxa from higher trophic levels such as insecti-

vorous birds and bats [4,27,37]. The mechanism behind this

positive effect of tree species diversity on bats and birds is gen-

erally related to increased food and roost/nest availability, but

defoliating insect activity could be a key factor underlying the

effect of tree diversity, at least partly reflecting overall prey

availability for insectivorous vertebrates in mixed forests
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[29,37,39]. In addition, the buffering effect of deciduous forests

on climate-sensitive, cold-dwelling birds is more and more

acknowledged at both local and macro-scales [46]. Together

with a direct microclimatic buffering during the breeding

season, such an effect could also be linked to more abundant

and predictable food resources in deciduous forests compared

to conifer trees for forest-dwelling bats and birds [40,55].
ing.org/journal/rspb
Proc.R.Soc.B

286:20182193
5. Conclusion
Biodiversity loss is known to cascade across trophic levels in

complex ecosystems, with declines in some species affecting

the abundance and diversity of other, dependent trophic

groups [12,13]. Modelling bat and bird diversity across large

biogeographical scales thus requires taking into account not

only climate and habitat variables but also direct and indirect

multi-trophic interactions [7–10]. Our findings confirm that

we need to consider biodiversity changes at multiple trophic

levels and large spatial scales to predict the future dynamics

of biodiversity conservation and ecosystem functioning under

global change [56]. In such a context, upper trophic levels are

at a higher risk of decline, thus questioning the resilience of eco-

systems to global change [13,57]. There is, therefore, a critical

need to better understand and monitor biotic drivers, especially

those involving trophic interactions between bats, birds and
their prey to predict how climate and land use changes might

affect the diversity of these key predators in forest ecosystems.
Data accessibility. Data are available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.t48p8c0 [58]. Data tables for site
variables, bird species per sites, bat species per sites and bird and
bat species traits.
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6. Vollstädt MGR, Ferger SW, Hemp A, Howell KM,
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