Skip to main content
. 2019 Feb 7;9:1628. doi: 10.1038/s41598-018-38231-w

Table 2.

Comparison of predictive performance for AUC from three different approaches: RF, FRFL and FRF with two different model constructions using CCLE data.

Drug Correlation MAE
RF FRFL FRF RF FRFL FRF
Model parameters: #Tree = 150, m = 10, minimum leaf size = 10
Erlotinib 0.4408 0.4498 0.4641 0.0546 0.0541 0.0464
Nilotinib 0.3886 0.4318 0.4564 0.0465 0.0464 0.0376
PD-0325901 0.4716 0.5057 0.5658 0.1353 0.1335 0.1377
PLX-4720 0.2957 0.3137 0.4365 0.0494 0.0487 0.0396
TAE-684 0.2757 0.3385 0.3743 0.0728 0.0717 0.0684
Model parameters: #Tree = 500, m = 50, minimum leaf size = 5
Erlotinib 0.4381 0.4420 0.4701 0.0563 0.0557 0.0474
Nilotinib 0.4216 0.4393 0.4288 0.0470 0.0471 0.0391
PD-0325901 0.5928 0.5929 0.6381 0.1287 0.1282 0.1322
PLX-4720 0.3738 0.4195 0.5352 0.0492 0.0480 0.0393
TAE-684 0.3645 0.3888 0.4211 0.0711 0.0708 0.0679

For FRFL and FRF, node cost is calculated using 8 dose regions. Bold values indicate the best performances.