Skip to main content
. 2019 Feb 7;9:1628. doi: 10.1038/s41598-018-38231-w

Table 3.

Comparison of predictive performance for AUC from three different approaches: RF, FRFL and FRF using CCLE data.

Drug Correlation MAE
KL divergence Hellinger Distance KL divergence Hellinger Distance
RF FRFL FRF FRFL FRF RF FRFL FRF FRFL FRF
Erlotinib 0.4408 0.4473 0.4620 0.4265 0.4643 0.0546 0.0544 0.0466 0.0552 0.0472
Nilotinib 0.3886 0.4263 0.4601 0.4475 0.5009 0.0465 0.0459 0.0375 0.0457 0.0373
PD-0325901 0.4716 0.5149 0.5775 0.4920 0.5633 0.1353 0.1330 0.1370 0.1352 0.1386
PLX-4720 0.2957 0.3168 0.4308 0.3314 0.4491 0.0494 0.0489 0.0398 0.0492 0.0397
TAE-684 0.2757 0.3245 0.3689 0.2860 0.3337 0.0728 0.0723 0.0688 0.0730 0.0697

For FRFL and FRF, node cost is calculated using f-divergences (KL divergence or Hellinger distance) of the response distributions at 8 different doses. Bold values indicate the best performances.