Skip to main content
. 2019 Feb 7;9:1628. doi: 10.1038/s41598-018-38231-w

Table 5.

Comparison of predictive performance on GDSC dataset for multiple drug sensitivity measures (AUC and 8 IC values) using both RF and FRF.

Drug Model MAE
AUC IC 10 IC 20 IC 30 IC 40 IC 50 IC 60 IC 70 IC 80 Mean
Erlotinib RF 0.0596 2.0831 1.7472 1.5039 1.3291 1.1948 1.0692 1.0133 1.0304 1.3714
FRF 0.0486 1.9813 1.6597 1.4382 1.2694 1.1357 1.0361 0.9867 1.0095 1.3146
Rapamycin RF 0.0640 4.3771 3.4771 2.9370 2.5294 2.2000 2.0355 2.0207 2.5359 2.7641
FRF 0.0636 4.3905 3.4525 2.8895 2.4642 2.1379 1.9446 2.0046 2.4707 2.7193
Sunitinib RF 0.0963 1.5494 1.5297 1.5542 1.6105 1.6518 1.7013 1.7750 1.8728 1.6556
FRF 0.0902 1.5306 1.5119 1.5378 1.5750 1.6276 1.6812 1.7428 1.8372 1.6305
PHA-665752 RF 0.0370 1.4403 1.2665 1.1492 1.0658 1.0002 0.9555 0.9539 0.9485 1.0975
FRF 0.0259 1.3522 1.2051 1.0999 1.0149 0.9546 0.9054 0.8954 0.9097 1.0422
MG-132 RF 0.1246 1.6207 1.6688 1.7445 1.7830 1.8549 1.9289 2.0313 2.1509 1.8479
FRF 0.1070 1.6062 1.6479 1.6968 1.7541 1.8117 1.8794 1.9619 2.0857 1.8055

For FRF, node cost is calculated using 8 different IC regions. Bold values indicate the best performance.