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Abstract

Thyroid-associated ophthalmoapthy (TAO) is the most common orbital disease. As an autoimmune disorder, it is caused by self-
reactive lymphocytes that escape immune tolerance, but the mechanism is not fully understood. The basic process of TAO is the
infiltration of immune cells in orbital tissues, the activation of orbital fibroblasts (OFs), and the proliferation and differentiation of
OFs and lymphocytes. Activated OFs secrete inflammatory regulators, growth factors, and chemokines, thereby maintaining and
amplifying the immune responses. The interactions between OFs and lymphocytes lead to the expansion and the remodeling of
the orbital tissues, presenting the clinical manifestations of TAO. This review will focus on the role of T cell subsets (Type 1,
Type 2, Type 17 helper T cells, and regulatory T cells) in the pathogenesis of TAO. However, we still need further studies to
unravel the pathogenesis, to confirm current hypotheses, and to provide novel ideas for appropriate clinical treatment of TAO.

Introduction

Graves’ orbitopathy (GO), named after its being the most
common extrathyroidal complication of Graves’ disease
(GD), also known as thyroid-associated ophthalmopathy
(TAO) [1, 2], is an autoimmune disorder, which is found in
25-50% patients with GD, 2% patients with chronic thyr-
oiditis, and some euthyroid cases [3]. Its main manifestations
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are eyelid retraction, diplopia (caused by extraocular muscle
dysfunction), protrusion, periorbital edema, conjunctival
hyperemia, exposure keratitis, and compressive optic neu-
ropathy [4, 5]. The physical discomfort caused by cranio-
facial deformity and visual impairment in TAO has a
continuous negative impact on patients’ quality of life [6].

Previous studies have shown that TAO is an organ-
specific disease, which is affected by multiple factors
including genetics, environment, and smoking [3, 7].
Meanwhile, the hypothesis that the T cell-mediated immu-
nity contributes to TAO development has been widely
accepted [8]. In order to gain a deeper understanding of the
immune mechanism responsible for TAQ, it is necessary to
analyze the function of different T cells and their cytokine
profiles. This review mainly focuses on the role of CD4" T
cell subtypes (Type 1, Type 2, Type 17 helper T cells, and
regulatory T cells) in the pathophysiology of TAO based on
previous and recent studies. The elucidation of T cell
immunity in TAO may provide thought-provoking ideas for
developing effective treatment.

T cells
Brief introduction

T cells are developed and differentiated from bone marrow-
derived lymphoid stem cells in the thymus, occupying
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65-75% of peripheral blood lymphocytes [9]. According to
the type of T cell receptor, T cells can be divided into
af T cells and yOT cells. The former ones account for the
vast majority of T cell population. In the thymus, T cells
undergo positive and negative selection and differentiate
into either CD4" T cells or CD8" T cells. The CD4™ T cells
are helper T cells (Th), playing a leading role in cellular
immunity and contributing to humoral immunity. They can
be used to assess the status of the immune system [10]. The
CDS8" T cells are cytotoxic T cells (Tc/CTL) that are pri-
marily responsible for immune defense against intracellular
pathogens and tumor monitoring [11]. Under normal con-
ditions, the stability and balance of CD4/CD8 ratio is an
important factor for the body’s immune function [12], while
the T cell subtypes remain at certain proportion.

T cells in TAO

According to previous studies, T cells and their cytokines
may participate in the pathogenesis of TAO through the
following pathways: (1) Activate B cells and stimulate
the production of autoantibodies. When autoimmune toler-
ance in TAO is disrupted, antigen-presenting cells that
recognize the autoantigen thyroid-stimulating hormone
receptor (TSHR) expressed on orbital fibroblasts (OFs)
activate T cells. Meanwhile, B cells migrate to the orbit and
recognize TSHR through B cell receptor, which is the first
signal of B cell activation. The second signal of B cell
activation is provided by activated T cells through the
combination of CD40L on T cell surface and CD40 on B
cell surface. This interplay also stimulates T cells to secrete
cytokines such as interleukin (IL)-4, which is essential for
further activation of B cells and antibody class switching
[5, 13]. Activated B cells undergo clone proliferation and
differentiate into plasma cells that produce autoantibodies.
These autoantibodies (including stimulating, blocking, and
neutralizing subtypes) recognize and attack adipose con-
nective tissues in the orbit. (2) Promote the expression of
adhesion molecules. The interaction of B7 on B cell surface
with CD28 on T cell surface provides the second signal for
T cell activation [5, 13]. Activated T cells, primarily CD4*
T cells, produce a variety of adhesion molecules. Together
with the chemokines and adhesion molecules secreted by
stimulated OFs, these factors mediate the recruitment of
more lymphocytes into orbital tissues and the further
interaction between OFs and T cells [14, 15]. (3) Produce
inflammatory cytokines. Cytokines produced by CD4"
T cells aggravate the immune responses of TAO by
amplifying and maintaining orbital inflammation. They also
promote the proliferation and differentiation of OFs, ulti-
mately leading to glycosaminoglycan deposition, orbital
fibrosis, and adipose hyperplasia, namely orbital tissue
remodeling.

Effect of cytokines and chemokines on TAO

Fibroblasts located in the connective tissues of orbit are
called OFs and have been identified as target cells in TAO
[16-19].

OFs play a vital role in lymphocyte infiltration and B cell
differentiation. Many studies have revealed the regulation of
OFs by various cytokines and growth factors in TAO. IFN-y
stimulates OFs to secret monocyte chemotactic factors such
as C-C motif ligand (CCL) 2 and T cell chemokines,
including C—X-C motif ligands (CXCL) 9, CXCL10, and
CXCL11 [20, 21]. In TAO, once the insulin-like growth
factor receptor-1 pathway is activated by IL-1p and IgGs,
OFs can produce IL-16 and regulated on activation, normal
T cell expressed and secreted (RANTES) [4]. IL-1p also up-
regulates the expression of cyclooxygenase-2 by enhancing
its gene promoter activity and mRNA stability in OFs [68].
The wup-regulation of cyclooxygenase-2 promotes the
synthesis of prostaglandin E, (PGE,) [70]. Leukoregulin
also stimulates the production of PGE, in OFs [69].

Binding of PGE, to the PGE, receptor expressed on OFs
stimulates the expression of a large amount of cAMP by
OFs, thus resulting in the secreation of IL-6 [71]. In TAO,
PGE, promotes the maturation of B cells and facilitates
antibody class switching. It also affects the differentiation of
T cells, activates the degranulation of mast cells, and
induces a Th2-type immune response [4, 15].

CD40L promotes the synthesis and secretion of hya-
luronic acid, IL-6, IL-8, and CCL2 in OFs [13, 14, 22]. IL-6
can facilitate the synthesis of immunoglobulins, the devel-
opment of plasma cells, the production of IL-4 and the
differentiation of T cell subsets into Th2 cells. CCL2 and
IL-8 are potent monocyte chemotactic factors that enhance
the infiltration of monocytes into orbital connective tissues
of TAO patients. Other cytokines such as TNF-a and
growth factors such as platelet-derived growth factor
(PDGF)-AA, PDGF-AB, and PDGF-AC also stimulate OFs
to express CCL2, CCL5, CCL7, IL-6, IL-8 and IL-16,which
are involved in the recruitment and activation of T cells, B
cells, and mast cells [15].

In orbital tissues, the infiltration and activation of lym-
phocytes depend not only on the concentration of chemo-
kines in orbital microenvironment, but also on adhesion
molecules and costimulatory molecules expressed on lym-
phocytes, endothelial cells, and histocytes. The expression
of intercellular adhesion molecule (ICAM)-1 on OFs can be
increased by IL-1a, IL-1p, IFN-y, and TNF-a. Early studies
have found that the level of CD40 in OFs of patients with
TAO are higher than in healthy controls, and can be further
elevated by IFN-y stimulation [14]. In TAO, the combina-
tion of CD40 and CD40L not only enhances the secreation
of CCL2, IL-6, IL-8, IL-1a, and PGE,, but also promotes
the expression of ICAM-1 [15].
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CD4" T cells

The CD4™ T cells can be divided into subtypes including T
helper (Th)l, Th2, Th17, T follicular helper (Tth), reg-
ulatory T (Treg), Th9, and Th22 cells. Thl cells mainly
mediate cellular immunity and delayed hypersensitivity
inflammation through the production of inflammatory
cytokines. Th2 cells drive B cells to produce antibodies in
humoral immune responses. Th17 cells, named for their
secretion of IL-17, are resistant to pathogenic microbial
infections and play a role in human autoimmune disease
attack [23, 24]. Treg cells are T cell subsets with immu-
noregulatory functions [24, 25]. Tth cells are named after
their location in lymphoid follicles. They promote B cell
differentiation and memory cell production [26]. Th9 cells,
mainly located in peripheral blood and skin tissues of
patients with hypersensitivity diseases, secret IL-9 [27].
Th22 cells produce IL-22 and infiltrate the epidermis of
patients with inflammatory dermatosis [28].

Th1 and Th2 cells

Previous studies have shown that at least two helper T cell
groups are involved in the development of TAO: Thl cells
and Th2 cells. The relationship between the imbalanced
Th1/Th2 ratio and human autoimmune diseases has been a
hot topic of research [29-31]. Many studies have focused
on Th1/Th2 subsets and their its related cytokines in the
pathogenesis of TAO. However, some findings are
contradictory.

Xia et al. [8] compared the difference of Th1/Th2 bal-
ance in the peripheral blood of TAO patients and GD
patients, and found that the proportion of Thl cytokines in
TAO patients was significantly higher than that in GD
patients, In addition, the frequency of Thl cells and the
Th1/Th2 ratio were positively correlated with the inflam-
matory activity score of TAO. Therefore, Thl type cyto-
kines are thought to play a Key role in inducing the
immunopathological mechanism of TAO. Pappa et al. [32]
studied 17 extraocular muscle specimens of TAO patients
and found that most of the infiltrating T cells were CD4"
and both Thl and Th2 cytokines were detected. Antonelli
et al. [33] analyzed cytokine secretion in orbital myocytes
and adipocytes cultured from TAO patients in vitro and
found that Thl type cytokines dominated both cells. Hir-
omatsu et al. [34] examined cytokine gene expression in
muscles and adipose tissues of TAO patients, and found that
the orbital muscle tissue were dominated by Th1 cytokines,
while cytokine types in orbital fat tissues varied from person
to person. In these studies, ifng expression was observed in
the extraocular muscles of all TAO patients, indicating that
Th1 type cytokines play an important role in the initiation of
TAO development.
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Wakelkamp et al. [35] cultured OFs from both active and
inactive TAO patients. They found that active TAO patients
was characterized by Thl type cytokines and there was no
direct correlation between Th2 type cytokines and disease
progression. Han et al. [36] further demonstrated that IFN-y
(Th1 type cytokines) and IL-4 (Th2 type cytokines) had the
same effect on the production of hyaluronic acid and PGE,
by OFs cultured in vitro. They also observed that the orbital
tissues of TAO patients with hyperthyroidism for less than 2
years were mainly infiltrated by Th1 cells, while those with
TAO for more than 2 years were predominately infiltrated
by Th2 cells. It can be speculated that the early stage of
TAO is mainly caused by cell-mediated immune responses,
while the late stage of TAO is a humoral-mediated immune
response, that is, Thl cells play a significant role in indu-
cing the pathological process of TAO, and the chronic
phase of TAO is dominated by Th2-type immune responses.

Th17 cells

Th17 cells is a newly identified CD4" T cell subset in recent
years, which are related to various autoimmune diseases,
including rheumatoid arthritis, multiple sclerosis, psoriasis,
inflammatory bowel disease, Behcet’s disease, systemic
sclerosis, systemic lupus erythematosus, and high IgE
syndrome [37]. These autoimmune diseases are regulated
by the IL-23/IL-17A axis. IL-23, secreted by dendritic cells
and macrophages, maintains the phenotype and function of
Th17 cells [38]. Retinoic acid receptor-related orphan
receptor-yt and signal transducer and activator of tran-
scription 3 are key regulators of the transcription of ill7a
and the differentiation of Th17 cells. Mature Th17 cells,
constitutively expressing IL-23R, mainly produce IL-17A,
IL-17F, and IL-22. IL-17A has been identified as an
important pro-inflammatory cytokine. Moreover, IL-17A
can also be produced by CD8" T cells, y8T cells, and
natural killer cells [38—40].

In GD, the frequency of Th17 cells and the level of IL-
17A in the peripheral blood of patients were significantly
increased [41], while the changes of single nucleotide
polymorphism of il/7a are related to GD susceptibility [42,
43]. In TAO patients, the level of IL-17A and the number of
IL-17A-producing T cells in the peripheral blood were
higher than those of healthy controls [44—47]. Furthermore,
a large amount of IL-17A was detected in the tears of TAO
patients [48, 49]. Taken together, these results indicated that
the CD4" Th17 cells may contribute to the immunopatho-
logical process of TAO. IL-17A was also shown to promote
inflammation and fibrosis of OFs derived from TAO
patients [47] and to promote the expression of regulated on
activation, normal T cell expressed and secreted (RANTES)
by OFs with the assistance of CD40L [50]. The study from
our group demonstrated the possible interplay between
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Th17 cells and OFs: Th17 cells stimulated the expression of
proinflammatory cytokines (IL-6, IL-8, MCP-1, TNF-«a, and
GM-CSF) and costimulatory molecules (CD40 and MHC
II) of OFs and regulated the fibrosis and adipogenesis of
OFs subsets; at the same time, OFs triggered Th17 cell
differentiation and function via PGE, secreion[51]. Recent
studies showed that CD34™" fibrocytes may penetrate into
orbital tissues, differentiate into CD34" OFs under inflam-
matory conditions, and participate in TAO autoimmunity
and tissue remodeling [5, 52]. We further found that in TAO
autologous C-C chemokine receptor type 67 Th17 cells
facilitated the inflammatory and antigen-presenting func-
tions of those CD34" fibrocytes and fibrocytes in turn
recruited Th17 cells in a macrophage inflammatory protein
3/C-C chemokine receptor type 6-dependent manner [53].
In autoimmune diseases, YO T cells have immunor-
egulatory properties and also secrete IL-17A [54]. A pre-
vious report showed that orbital infiltrating T cells were
primarily ydT cells, while the ofT helper cells were rare
[55]. Intriguingly, a confirmed subset of IL-17A-producing
yOT cells was detected in the circulation of TAO patients
[47]. Further studies are needed to explore which T cell
subset contributes to the elevated IL-17A levels in the cir-
culation, tears, and orbital tissues of TAO patients.

Treg cells

Treg cells account for 5-10% of peripheral blood CD4"T
cells. They are described as CD4"CD25" T cells, a subset
with immunoregulatory functions, playing a role in con-
trolling autoimmunity, tumor immunity, and transplantation
tolerance. As a Key transcriptional factor of Treg cells,
forkhead box P3 controls the development and function of
Treg cells [56]. Currently, Treg cell dysfunction has been
shown to be an important risk factor for the pathogenesis of
various autoimmune diseases, which also contributes to the
development of autoimmune thyroid disease [57-59].
However, the role of Treg cells in the development of TAO
remains unclear. A previous study analyzed the peripheral
blood of one TAO patient before and after treatment with
rituximab and found an increase in the number of Treg cells
after treatment, which might attribute to B cell depletion
partially [60]. Another study showed that patients with
improved TAO were more likely to have higher frequencies
of Treg cells than those with stable or deteriorated TAOs.
Thus the number of Treg cells in peripheral blood of TAO
patients can be used as a predictior of clinical course [61].
Kahaly et al. demonstrated that the proportion of Treg cells
in the peripheral blood leukocytes derived from TAO
patients increased after incubation with rabbit polyclonal
anti-T lymphocyte globulin [67]. These results indicate that
the number of Treg cells may be related to the severity of
inflammatory responses in TAO.

Cytotoxic T lymphocyte antigen 4 (CTLA-4), con-
stitutively expressed on Treg cells, is an immunological
checkpoint for negative regulation of T cell activation [62].
It has been previously reported that the mRNAs of CTLA-4
were lower in orbital tissues and peripheral blood of patients
with severe TAO compared with patients with mild TAO,
confirming the involvement of CTLA-4 in TAO auto-
immunity[63, 64]. However, forkhead box P3 mRNA levels
were higher in orbital tissue of TAO patients compared with
those from healthy controls and were positively correlated
with TAO severity. Altogether, the function abnormality of
Treg cells is observed in TAO patients, which may be
associated with the expansion of the orbital inflammation,
especially in patients with severe TAO.

CD8" T cells

Similar to CD4™ T cells, the CD8" T cells are heterogenous
and can be divided into Tcl secreting IFN-y, Tc2 secreting
IL-5, Tc9 secreting IL-9, Tc17 secreting IL-17, and CD8™
Treg secreting TGF-B. CD8" T cells mediate and suppress
cell-mediated immune responses [65]. It has been demon-
strated that the CD8" T cells participate in most auto-
immune disorders and post-transplantation [66]. Reduction
and dysfunction of CD8* T cells lead to impaired immune
surveillance and Th cells which respond to autoantigens
will increase and the autoimmune responses be amplified. A
previous study showed an increased ratio of CD4/CDS8 in
peripheral blood mononuclear cells of patients with GD [8§]
Another study demonstrated higher frequency of CD4" and
CD4/CDS ratio together with decreased CD8™ T cells in
early TAO and GD without orbitopathy [67]. An earlier
study from Grubeck-Loebenstein et al. examined six T cell
lines from the orbital tissues of TAO patients and found that
they were CD8" T with both of Th1 and Th2 type cytokines
in situ [17]. Considering that patients involved in Grubeck—
Loebenstein’s research had longstanding histories of GD,
the conflict between these results may be due to gluco-
corticoid therapy or the self-limitation of the disease.
However, little is known about the pathogenic mechanism
of CD8" T cells in TAO.

Conclusion

There are considerable obstacles in studying the role of
T cells in TAO. First, although peripheral blood of patients
with TAO is readily available, the proportion and function
of circulating T cells might not fully reflect the inflamma-
tory responses within the orbit. Meanwhile, due to the dif-
ficulty in obtaining orbital connective tissue specimens of
early or active TAO patients without immunomodulation
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Fig. 1 Pathogenesis of TAO. In TAO, T cells, B cells, and CD34"
fibrocytes infiltrate the orbit. Antigen- presenting cells present self-
antigens to T cells and activate T cells. Activated T cells differentiate
into subsets including T helper (Th) 1, Th2, and Th17 cells, producing
cytokines like IFN-y, TNF-a, IL(interleukin)-4, IL-13, IL-17A, and IL-
22, which exacerbate immune inflammatory responses, activate OFs
and stimulate proliferation and differentiation of orbital fibroblasts
(OFs). The self-antigen is the first signal to activate B cells and the
second signal is provided by activated T cells. Activated B cells dif-
ferentiate into plasma cells that secrete autoantibodies. Fibrocytes can
recruit Th17 cells in a macrophage inflammatory protein 3/C-C che-
mokine receptor type 6-dependent manner, and can also differentiate
into CD34™ fibroblasts, which coexist with the resident CD34~ OFs in

therapy and the lack of stable TAO animal models, the
analysis of T cells infiltrating the retrobulbar tissues is
usually performed using the specimens from longstanding
TAO patients or patients who have experienced multiple
treatments. The T cell lines cultured from orbital tissues are
limited and there exist certain biases after mitogen stimu-
lation in vitro. Despite these difficulties, researchers have
outlined the role of T cells in the pathogenesis of TAO in
recent decades. A summary of current models for the
pathogenesis of TAO is depicted in Figure 1, including the
major processes of disease progression, such as costimula-
tory signals, adhesion factors, and cytokines that drive
lymphocyte migration, activation, and immune responses to
TSHR. Treatment strategies targeting these processes could
provide new opportunities to improve the therapeutic effects
and prevention of TAO.
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in the volume of the orbital tissues and remodeling of the orbit, ulti-
mately leading to the clinical manifestations of TAO.
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