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Abstract

Rationale and Objectives: In order to establish the range of normal for quantitative CT-based 

measures of lung structure and function, we seek to develop methods for matching pulmonary 

structures across individuals and establishing a normative human lung atlas.

Materials and Methods: In our previous work, we have presented a 3D image registration 

method suitable for pulmonary atlas construction based on CT datasets. The method has been 

applied to a populations of normative lungs in multiple experiments and, in each instance, has 

resulted in significant reductions in registration errors. This study is a continuation to our previous 

work by presenting a method for synthesizing a computerized human lung atlas from previously 

registered and matched 3D pulmonary CT datasets from a population of normative subjects. Our 

method consists of defining the origin of the atlas coordinate system; defining the normaclature 

and labels for anatomical structures within the atlas system; computing the average transformation 

based on the displacement fields to register individual subject to the common template subject; 

constructing the atlas by deforming the template with the average transformation; and calculating 

shape variations within the population.

Results: The feasibility of pulmonary atlas construction was evalued using CT data sets from 20 

normal volunteers. Substantial reductions in shape variability were demonstrated. In addition, the 

constructed atlas depends only slightly on a specific subject being selected as the template. These 

results indicate the framework is a robust and valid method for pulmonary atlas construction based 

on CT scans. The atlas consists of a grayscale CT data set of the template, a labeled mask data set 

of the template (i.e., lungs, lobes, and lobar fissures are labeled with different graylevels), a data 

set representing the population’s average shape, data sets representing the population’s shape 

variations (i.e., the magnitude of standard deviation), a data structure to contain the labels and 
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coordinates of major airway branchpoints, and the labels of the mask data set, and a reference 

coordinate system for each lung.

Conclusion: A computerized human lung atlas representing by the average shape of a 

population of twenty normal subjects was constructed and visualized. The atlas provides a basis 

for establishing regional ranges of normative values for structural and functional measures of the 

human lung. In the future, we plan to use the computerized human lung atlas to help detect and 

quantify early signs of lung pathology.
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1. INTRODUCTION

To reduce lung cancer-associated mortality, many CT-based new therapeutic interventions 

for lung disease have emerged. As one takes advantage of new methods for CT-based 

assessment of regional ventilation and perfusion [1–4], it becomes necessary to detect age 

and gender-based normative values for CT-based measures of lung structure and function. 

Therefore, there is a need to establish methods by which lung structure can be compared 

from person to person (inter-subject) [5]. A computerized atlas (or standard structural 

model) that defines a normal range of pulmonary variation can greatly facilitate the 

understanding of subject-invariant structure-function relationships. It can also provide 

standard, quantitative, and sensitive measures of chronic structural change due to aging or 

disease.

In our previous work [6–8], we presented an semi-automatic method for inter-subject 

registration and warping of volumetric CT datasets. Our method consists of the following 

steps. First, in all subjects, the lungs, lobes, and airways are segmented based on image 

graylevel information and 3-D connectivity of tissues. Next, the airways are futher processed 

by skeletonization technique to extract a set of reproducible airway branchpoints to be used 

as anatomical landmarks in the registration process. The airway branchpoints are labelled 

and matched across subjects by an automatic airway tree matching and labeling algorithm 

[9]. Third, image registration in general requires all images to be in the same coordinate 

system. This is achieved by a combination of rigid alignment, isotropic scaling, padding, and 

downsampling. This step results in the segmented lungs, lobes, and matched airway 

branchpoints, all in the coordinate system of the template image. Finally, a landmark and 

intensity-based consistent image registration technique [10] is used to register a template 

image volume with the remaining lung volumes in the population. Results from clinical 

studies showed that our proposed method was able to reduce the average landmark 

registration error and average relative volume overlap error from 10.5 mm and 0.70 before 

registration to 0.4 mm and 0.11, respectively, after registration. The results indicate the 

method is suitable for pulmonary atlas construction based on CT datasets.

Our previous work was the first step towards the goal of developing a normative human lung 

atlas from a population of 3-D pulmonary CT datasets of normative subjects. However, 

several critical and practical questions still remain unanswered. Namingly, the computation 
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of the average transformation and the shape variations within the population, the proper 

selection of the origin of the atlas coordinate system, and the strategy to label and color-code 

the atlas system. As a continuation to our previous work, this study addresses these 

questions by presenting a method for synthesizing a computerized human lung atlas from 

previously registered and matched 3D pulmonary CT datasets from a population of 

normative subjects. Our method consists of selecting a normal subject as the template; 

defining the origin of the atlas coordinate system; defining the normaclature and labels for 

anatomical structures within the atlas system; computing the average transformation based 

on the displacement fields to register individual subject to the common template subject; 

constructing the atlas by deforming the template with the average transformation; and 

calculating shape variations within the population.

This paper is organized as follows. Section 2 describes the patient selection criteria, image 

acquisition protocol, and the details of the proposed method to construct the normative atlas. 

The experimental results and the constructed atlas are presented in Section 3. It is then 

followed by discussions and conclusions in Section 4 and 5.

2. MATERIALS AND METHODS

2.1 Image Acquisition

2.1.1 Participants—Prospective research participants were screened to determine their 

eligibility to participate in the research. In order to be deemed eligible to participate in the 

research, prospective participants had to indicate that they were 18 years old or older and 

had not smoked a pack of tobacco in their lifetime. They were asked to fill out an extensive 

questionnaire regarding their health and history, a baseline dyspnea index, and a chronic 

respiratory questionnaire, to make sure they did not have chronic respiratory diseases or any 

related health problems in the history. Their demographic information (age, gender, height, 

and weight, etc.) were also collected during the screening. In addition, all females of child 

bearing age must undergo a pregnancy test prior to CT scanning.

Furthermore, pulmonary function test (PFTs) data was collected prior to the CT scanning for 

this study to ensure that the participants did not have asthma. The following commonly used 

criteria were used in this research. If any of these tests come back abnormal, the CT scan of 

the subject is cancelled.

1. FVC% of the predicted greater or equal to 80%,

2. FEV1% of the predicted greater or equal to 80%,

3. FEV1/VC% of the predicted greater or equal to 75%,

4. DLCO% of the predicted greater or equal to 75%.

2.1.2 Selecting An Template—A carefully selected normal subject is used as the 

template. The criteria involved in the selection of this subject are listed below:

1. Non-smoker.
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2. Normal subject as evidenced by the PFTs. The standards for considering a 

subject is normal appear in Section 2.1.1.

3. Complete, normal airway tree segmentation available for the subject. This was 

done by visually checking the segmented airway tree and comparing with a 

topological model of the human airway tree (Figure 1). Details concerning this 

model was discussed in our previous work [6,7].

4. Complete, normal pulmonary blood vessel tree segmentation available for the 

subject. This was done by visually checking the segmented blood vessel trees.

5. Body mass index (BMI) is between 18.5 and 24.9, following the guideline 

published by the National Institute of Health (NIH) for adults.

Of the twenty participants included in this study, there were eight female subjects at their 

twenties. Among them, three subjects were selected as the initial candidates for the template. 

It was decided to exclude other five subjects because of out-of-range body mass indices or 

because of the missing airway branches in their airway tree segmentation.

The graylevel CT images of the three candidates were reviewed by two experienced 

pulmonary experts to determine which candidate is the best as the template. They used a 

non-commercial pulmonary software package called PASS© [11,12] to examine the CT 

images. PASS provides a slice-by-slice display of three orthogonal views (transversal, 

sagittal, and coronal) of a CT data set, which allows the experts to pan through all CT slices 

in one view while looking at the other two views at the same time. It was found that three-

dimensional surface renderings of the segmented lungs were also helpful during the review 

process.

A 22-year-old “perfectly normal” female subject with an excellent airway tree segmentation 

was finally selected as the template in this research.

2.1.3 CT Scan Protocol—The image data sets used in this work consist of twenty 

volumetric pulmonary CT images. The subjects were studied under a protocol approved by 

the University of Iowa IRB. Images were acquired using a multi-detector row CT (MDCT) 

scanner (Philips MX8000 – 4 rows) with accurate lung volume control (images acquired at 

85% total lung capacity). Each volume contained between 300 and 600 image slices with a 

slice thickness of 1.3 mm, a slice spacing of 0.6 mm and a reconstruction matrix of 512 × 

512 pixels. In-plane pixel size was approximately 0.6 × 0.6 mm2. Figure 2 shows two typical 

transverse slices of a 3-D pulmonary CT image (in this case, subject 9). The subject 

demographics are given in Table 1. Subject 9 was selected as the template based on the 

criteria described in Section 2.1.2; the remainder of the subjects are healthy based on the 

established study criteria (Section 2.1.1).

Because lung inflation level reflects different state of the lung in terms of pulmonary 

function and physiology (e.g. breathing, body posture, circulation level, disease, etc.), 

images acquired at the same lung inflation level across subjects were preferred in this 

research. A sophisticated gated programmable ventilator (Eric Hoffman et al., US Patent No. 
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US5183038) was used in image acquisition to achieve the accurate lung volume control at 

85% of total lung capacity (TLC).

The CT datasets were hereby registered and warped with respect to the template (subject 9) 

using the method described in our previous work [6–8].

2.2 Atlas Coordinate Systems

In human pulmonary system, the left and right lungs are relatively independent functionally 

and structurally. Moreover, it has been shown that the two lungs can deform independently 

during respiration [13]. This has posed unique challenge for the high dimensional 

registration algorithm to capture the extremely large and irregular shape deformations. To 

construct the atlas reliably, we decide to build separate atlas (as well as coordinate system) 

for each lung.

There were two criteria considered in selecting the origin for the reference coordinate 

system of the lung atlas. First, the feature point selected as the origin should be easy to 

identify, so it can be detected repeatedly and reliably. This requirement is particularly 

important in the inter-subject registration. Second, the origin should be part of lung anatomy, 

so it does not depend on the imaging system and scan protocol.

Like the anterior commissure to the brain atlas, the end of right mainstem bronchus 

(EndRMB) and the end of left mainstem bronchus (EndLMB) are small but easy to spot 

regions, making them ideal origins for the coordinate systems (Figure 1). In this coordinate 

system, each location in the lung is represented by three coordinates, describing the 

distances in millimeters (or pixels) from the origin: X is the right/left dimension, Y is the 

anterior/posterior dimension, and Z is the cranial/caudal dimension. Therefore, the position 

0×0×0 is precisely at the origin, while −32×21×10 is right (32mm), posterior (21mm) and 

cranial (10mm) from the origin. In this atlas axial slices are referred to by their Z coordinate, 

coronal images are referred to by their Y coordinate, and sagittal slices are referred to by 

their X coordinate.

2.3 Labeling the Template Data Set and Atlas Nomenclature

We have pointed out in Section 1, nomenclature is an integral part of an atlas system. In 

medical images, a common form of nomenclature is to represent anatomic labels with pixel 

graylevels [14–16]. Therefore, in this research, we seek to label the template data set using 

different graylevels to represent different anatomic units.

There are four groups of anatomic regions under consideration: the lungs, lobes, major 

airway branches up to sixth generations, and major airway branchpoints. For the first three 

groups, the labels and the corresponding graylevels are unique identifiers. Airway 

branchpoints are associated with airway branches where the branchpoints mark the end of 

the branches. However, for the airway branchpoints, the labels and corresponding voxel 

coordinates are unique identifier. In this research, we limited ourselves to those major airway 

branches (and branchpoints) that could be reliably identified and matched [9].
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There are 256 (28) labels available for a 8-bit graylevel image. Table 2 shows the suggested 

allocation of these 256 labels and their corresponding graylevels. Labels 1–28 are used by 

lungs, lobes, and sub-lobes; 29–59 are populated for major airway branches up to the sixth 

generations. Labels 81–83 are occupied by lobar fissures. Labels 60–80 are currently not 

used and reserved for the additional airway branches beyond the sixth generation. The 

remaining labels are not used and may be used for pulmonary arteries and veins, and/or 

disease-specific labels for nodules, etc. Label 0 (black) always represents the background.

There are some practical issues. It would be nice to integrate the segmentations with the 

dictionary into one system, in reality, it is often the case that different segmentation routines 

are used to extract different anatomies from graylevel CT images, and they do not 

necessarily assign labels to the anatomies according to the dictionary. So there is a need to 

combine the segmentation results together and re-assign the labels. This can be achieved by 

a look-up-table (LUT) method which maps the old labels from individual segmentation 

routines to the labels in dictionary. Table 3 is an example (portion) of such a label LUT.

Another practical issue may rise if different segmentation routines assign the same label to 

different anatomies - duplicated labels. For example, in Table 3, label #20 was assigned to 

the left lung as well as the airway branch RLL7 because two different segmentation routines 

were used. In this case, the label LUT may be divided into multiple sub-LUTs where no 

duplicated labels in each sub-LUT. The sub-LUTs are then applied in a sequence.

2.4 Computing the Average Shape

The lung atlas is constructed by computing the average shape of a population of normal 

lungs from CT images. This shape representation best captures the lung size and shape 

across the population and is on average closest to all of the individual lung shapes.

In this work, we compute the human lung atlas by computing the average shape of a 

population of lung images using the method described in [17–19] and summarized as 

follows. One image is selected from the population as the template. Using the consistent 

image registration method described in detail in our previous work [6–8], the Lagrangian 

transformations g(i),i = 1, 2,..., N, are computed to deform the template image into the shape 

of each image in the population. Next, the average Lagrangian transformation g is computed 

by

g = 1
N ∑

i = 1

N
g(i), (1)

and is applied to the template T to synthesize the average shape of the population as

T = T(h) = T g−1 . (2)

The above described procedure is illustrated in Figure 3.
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Prior to computing the lobar atlases, we segment the template image T for lobes, which 

yields a lobar mask image containing four lobes - right upper, right lower, left upper, and 

right lower lobes [20,21]. We then divide the lobar mask image into two subimages, where 

each subimage contains two lobes of each lung. The lobar atlas is constructed by applying 

the displacement fields computed from the registering the lung to the lobar subimage, i.e.

L = MT(h) = MT g−1 , (3)

where L represents the upper and lower lobar atlas and MT is the lobar mask subimage of 

the template.By this means, the upper and lower lobar atlas for each lung is calculated at the 

same time. Alternatively, the upper and lower lobar atlases can be constructed separated. A 

detailed discussion on this matter can be found in Section 4.

2.5 Computing The Population Shape Variations

The average displacement distance measurement describes how far on average a voxel 

element in T(i) has to travel to get to its corresponding locations in the population. The 

average displacement distance is defined in terms of the pointwise distances between data 

sets given by the transformation. The distance from a point x ∈ Ω in the coordinate system of 

image T(i) (x) to its corresponding location y ∈ Ω in the coordinate system of T( j)(y) is 

defined by the displacement field w(i,j) described in Equation 4.

w(i, j)(x) = g(i, j)(x) − x (4)

The average displacement distance between images T(i) and T(j) in a region of interest 

ℳ ⊂ Ω where ℳ is an anatomical mask is defined as

DAD(i, j) = 1
vol (ℳ)∫ℳ

w(i, j)(x) dx (5)

where vol (ℳ) = ∫ ℳ1 ⋅ dx is the volume of the region of interest. The average displacement 

distance between image T(i) and the population of images T(j) for j = 1,..., N within the 

region of interest is defined as the average of the pairwise average displacement distances. 

The average displacement distance between a data set and the population is given by

DADPOP(i) = 1
N ∑

j = 1

N
DAD(i, j) . (6)

The displacement variance distance measures the variance in the displacement distance 

between corresponding points in T(i) and the population. The displacement variance between 
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a point x ∈ Ω in the coordinate system of image T(i) and its corresponding locations in the 

population is defined as

V (i)(x) = 1
N − 1 ∑

j = 1

N
g(i, j)(x) − g(i, i )(x) 2

dx . (7)

In order to characterize this displacement variance as a distance measurement, the average of 

these pointwise displacement variances is computed. The displacement variance distance 

between image T(i) and the population for x ∈ ℳ where ℳ is an anatomical mask is defined 

as DDV(i) in Equation 8.

DDV(i) = 1
vol (ℳ)∫ℳ

V (i)(x)dx (8)

Therefore, the displacement variance distance DDV (i) is a measure of how variable the 

displacement between data set i and the population data sets is within the region of interest.

To make the atlas more useful, the average shape and shape variations in the population can 

be combined into a colorized atlas, where the colors correspond to the standard deviation 

displacement from the atlas to the population and thus visualize the normal range presented 

in the population on a voxel basis. A standard color map (i.e., jmartin3.ucm [22]) with seven 

color scales was used to color code the standard deviation displacement. A commercially 

available software package called Analyze (Analyze Direct, Inc., Lenexa, KS) was used to 

combine the color with the atlas data set and volume render the result.

3. RESULTS

An image-based lung atlas was computed from the twenty registered and matched CT 

datasets using the procedure described in Section 2 of this paper. Figure 4 shows the three 

orthogonal views of the graylevel CT data set of the template, the most representative 

subject of the population sampled. The major anatomy of this data set has been shown in 

Figure 5, which is a volume renderings of the template with labels supplied by the labeled 

mask. The user may examine a region of interest in the CT data set and get the 

corresponding anatomic label from the labeled mask, or vice versa. Therefore, this data set 

may be used as a reference for surgical planning, radiation therapy planning, or teaching.

To assess the dependency of the proposed method on a particular subject being selected as 

the template, we performed an experiment in which two additional subjects (subject 11 and 

19) were used as the template. This experiment resulted in three atlases and they are 

compared in Figure 8. Examination of the average shapes and shape variations suggests that 

the proposed atlas construction method depends only slightly on a specific subject being 

selected as the template.
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Figure 9 further demonstrates the effacy of the proposed method in the form of overlapping 

contours from axial CT images. The top row shows the shape variations among a set of 

(N=6) subjects involved in this study, while the botton row corresponds to the transformed 

CT datasets after transforming individual subject with respect to a common template subject 

(subject 9). Only six subjects were displayed here to avoid overcrowding the figure. The 

columns represent three axial image slices randomly chosen near the apex (top), the body 

(center), and the diaphragm (bottom). Significant reduction in registration errors can be seen 

with reduced variability.

These results demonstrate the robustness of our method described in Sections 2.4 and 2.5.

4. DISCUSSIONS

We have described in detail a method by which one can construct an atlas of the lungs and 

their internal structures from a population. This method consists of selecting a normal 

subject as the template; defining the origin of the atlas coordinate system; defining the 

normaclature and labels for anatomical structures within the atlas system; computing the 

average transformation based on the displacement fields to register individual subject to the 

common template subject; constructing the atlas by deforming the template with the average 

transformation; and calculating shape variations within the population. In this section, we 

discuss several practical considerations that have not been explicitly covered in previous 

chapters.

4.1 Construction of Lobar Atlas

In Section 3 we obtained the lobar atlas by first registering each left or right lung, then 

applying the deformation fields to lobe mask images. Alternatively, one could register the 

lobe separately to obtain the same atlas. There are advantages as well as drawbacks 

associated with both approaches:

1. Lobe slippage. During expiration, it has been shown that the upper lobes slip on 

the surfaces of the lower lobes. So it is advantageous to capture this motion in 

the registration thru the alternative approach. However, for inter-subject 

registration at a fixed inflation level (i.e. TLC), the advantage of a lobe-by-lobe 

approach is not obvious.

2. Performance. The difference between the two approaches is subtle. A dedicated 

experiment has been conducted to assess the difference, where six data sets were 

used to construct a right upper lobe atlas using the current and alternative 

approaches. Figure 10 compares two typical slices from the two generated 

atlases. The results showed that the volume difference between the two generated 

atlases is only 2.6 percent.

3. Computational expenses. Since the lobe-by-lobe approach will require to 

perform the registrations N more times, where N = 2 for the left lung and N = 3 

for the right lung, it is very computationally expensive. For instance, considering 

to build the atlas from 20 data sets, the total number of pairs of registrations 
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needed will be (2 + 3) × (20 × 19/2) = 950, as opposed to 2 × (20 × 19/2) = 380 

for the proposed approach.

4. Lobe overlapping. In the lobe-by-lobe approach, the upper and lower lobe atlases 

are constructed separately. Without the boundary constraints, the lobar atlases 

will overlap with each other in volume around the lobe fissures. This undesired 

effect can be seen in Figure 11.

So in this work, we decided to use the proposed approach to compute the lobar atlases. The 

presented method for lobar atlas construction is also applicable to the horizontal lobar 

fissure when the segmented results are available.

4.2 The Impact of the Origin on the Shape Variation Measure

We have described our method to compute shape variations (by measuring the standard 

deviation displacement) in Section 2.4, and demonstrated the calculated shape variations 

among twenty normal subjects being studied in Section 3. It needs to be emphasized that the 

shape variation measured this way is origin dependent. In another word, the magnitude of 

the standard deviation displacement for a specific voxel will change if the origin of the 

underlying coordinate system is moved to a different location. This is because, by definition, 

the shape variation is always zero at the origin, and gradually increases as one moves away 

from the origin. Therefore, it is very important to state the location of the origin when 

talking about the shape variations in an atlas context.

An interesting perspective of this fact is how to choose the origins for one particular study. 

This decision will have a great impact on the experiment design, since the location of the 

origin affects the shape variation measure and thus affects how many subjects would be 

needed for the study. Based on our experience, we recommend to select an origin that is 

close to the anatomy to be studied. Of course, potential candidates as the origin have to meet 

the basic criteria set forth in Section 2.2. For example, to study interstitial diseases, it is 

maybe more appropriate to choose an origin near or at the center of the mass of the lung 

(which is about equal distance to all the peripheral regions) than at the end of the mainstem 

branchus (which is close to the mediastinal surface).

5. CONCLUSIONS

This study is continuation of our previous work [6–8] and an integral part of a research that 

investigated the construction of a normative human pulmonary atlas. The research was the 

first step towards developing a number of age, gender, and disease-specific atlases for future 

clinical applications. In our opinion, there are four major components common for building 

pulmonary-specific atlases: image acquisition, pre-processing, image registration and 

warping, and atlas construction. Our previous work has addressed the second and third 

components, while this study is concentrated on the first and fourth components. Altogether, 

they attempt to answer the clinical question: how can an image-based pulmonary atlas be 
constructed? Together discussed were some important practical issues: alternative 

approaches to build lobar atlas, methods to calculate shape variations, and expansion of the 

atlas by including new CT data sets as well as pulmonary function data. As an important part 

of this research, a pulmonary-specific system was developed to represent the atlas. This 
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system consists of a deformed grayscale CT data set of the template; a deformed labeled 

mask data set of the template (i.e., lungs, lobes, and lobar fissures are labeled with different 

graylevels); a data set representing the population’s average shape; data sets representing the 

population’s shape variations (i.e., x, y, z-components and the magnitude of standard 

deviation); a data structure to contain the labels and coordinates of major airway 

branchpoints, and the labels of the mask data set; a reference coordinate system for each 

lung (within a given coordinate system, any location is described as the distance (in pixels or 

millimeters) from the origin). The next step of the research is the construction of a total 

pulmonary atlas that provides the baseline to classify normal subjects from diseased 

population, established statistically from homogeneous populations at different age, gender, 

and race. One of the limitations of this research is the limited availability of normal 

volunteers (N=20). Furthermore, the accuracy of inter-subject registration can benefit from 

improved airway segmentation and branchpoints detection, or even pulmonary vessel (veins 

and arteries) segmentation and branchpoint detection.
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Figure 1: 
A topological model of human airway tree developed in this research. Details concerning 

this model was discussed in our previous work [6,7].
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Figure 2: 
Two transverse slices of a 3-D pulmonary CT image from subject 9 from Table 1.

Li et al. Page 14

Acad Radiol. Author manuscript; available in PMC 2019 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
The procedure to build an image-based average shape for a homogeneous population.
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Figure 4: 
The three orthogonal views of the graylevel CT data set of the template, the most 

representative subject of the population sampled.
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Figure 5: 
The volume renderings of the labeled mask. User may click the structure of interest in the 

CT data set and get the corresponding anatomic label from the labeled mask, or vice versa.
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Figure 6: 
The surface-renderings of the calculated mean shape of the population. The different 

anatomies have been color-coded. It can be seen in the figure that this image-based atlas 

carries structural information such as the average location of the oblique lobar fissures.
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Figure 7. 
The standard deviation displacements (with respect to EndRMB or EndLMB) color-coded 

on the right lung (top row) and the left lung (bottom row). The standard deviation 

displacement is the indication of the shape variations in the population. The colorbars 

indicate the scale of variations (unit: mm).
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Figure 8: 
Computed lung atlases (averages + shape variations) from twenty subjects, using three 

different subjects as the template. (Top row) Subject 9 as the template. (Middle row) Subject 

19 as the template. (Bottom row) Subject 11 as the template. For each atlas, the left column 

represents the right lung and the right column represents the left lung. Examination of the 

average shapes and shape variations suggests that the proposed atlas construction method 

depends only slightly on a specific subject being selected as the template.
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Figure 9: 
The shape variability among a set of (N=6) subjects involved in this study is demonstrated 

by overlapping contours from axial CT images. The top row shows ithe shape variation 

among the subjects, while the bottom row corresponds to the transformed CT datasets after 

transforming individual subject with respect to a common template subject (subject 9). Only 

six subjects were displayed here to avoid overcrowding the figure. The columns represent 

three axial image slices randomly chosen near the apex (top), the body (center), and the 

diaphragm (bottom). Significant reduction in registration errors can be seen with reduced 

variability.
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Figure 10: 
Slice comparison of two typical slices from the right upper lobe atlases. The atlases were 

generated by applying two different approaches to six pulmonary CT data sets. (a)(b) The 

current approach. (c)(d) The alternative approach. The volume difference between the two 

atlases is only 2.6 percent.
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Figure 11: 
Overlapping regions around the lobar fissure can be seen in this synthesized data set by 

combining the right upper lobe atlas and the right lower lobe atlas. These two atlases were 

constructed separately from six pulmonary CT data sets. (a) The coronal view. (b) The 

transversal view.
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Table 1:

Demographics for the twenty subjects used in this study for atlas construction. Subject 9 was selected as the 

template based on the criteria described in Section 2.1.2.

Subject Number Age (years) Gender Weight (kg) Height (cm)

1 20 m   99.8   174

2 22 m   81   177

3 60 f   72   162

4 25 m   79   182

5 25 m   84   187.9

6 24 f   63.3   170

7 37 f   79.5   167.6

8 21 f   70.4   172.7

9* 22 f   60   165

10 20 f   54   162.5

11 22 f   65.7   184.5

12 25 m   91.8   187.9

13 29 m   80   172.2

14 46 f   61.3   155

15 20 f   69   172

16 21 f   67.7   167

17 24 f   63.6   177.5

18 43 f   53   161.3

19 23 f   70.45   180

20 40 m   109   185
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Table 2:

The suggested allocation of labels for the template data set. There are totally 256 (28) labels available for a 8-

bit graylevel image.

Label (Graylevel) Nomenclature (Anatomy) Label (Graylevel) Nomenclature (Anatomy)

0 Background 1 Lung

2 Lung Left 3 Lung Right

4 Lung Left Upper Lobe 5 Lung Left Lower Lobe

6 Lung Right Upper Lobe 7 Lung Right Middle Lobe

8 Lung Right Lower Lobe 9 Lung LB1+LB2 Sub Lobe

10 Lung LB3 Sub Lobe 11 Lung LB4 Sub Lobe

12 Lung LB5 Sub Lobe 13 Lung LB6 Sub Lobe

14 Lung LB7+LB8 Sub Lobe 15 Lung LB9 Sub Lobe

16 Lung LB10 Sub Lobe 17 Lung LBA Sub Lobe

18 Lung RB1 Sub Lobe 19 Lung RB2 Sub Lobe

20 Lung RB3 Sub Lobe 21 Lung RB4 Sub Lobe

22 Lung RB5 Sub Lobe 23 Lung RB6 Sub Lobe

24 Lung RB7 Sub Lobe 25 Lung RB8 Sub Lobe

26 Lung RB9 Sub Lobe 27 Lung RB10 Sub Lobe

28 Lung RBA Sub Lobe 29 Airway Trachea

30 Airway LMB 31 Airway RMB

32 Airway LUL 33 Airway LLB6

34 Airway RUL 35 Airway BronInt

36 Airway LB1+2 37 Airway LB3

38 Airway LB4+5 39 Airway LB6

40 Airway LLB 41 Airway RB1

42 Airway RB2 43 Airway RB3

44 Airway RB4+5 45 Airway RB6

46 Airway RLL7 47 Airway LB1

48 Airway LB2 49 Airway LB4

50 Airway LB8 51 Airway LB9

52 Airway LB10 53 Airway RB4

54 Airway RB5 55 Airway RLL

56 Airway RB7 57 Airway RB8

58 Airway RB9 59 Airway RB10

60–80 Reserved 81 Right Horizontal Fissure

82 Right Oblique Fissure 83 Left Oblique Fissure

84–255 Not used
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Table 3:

An example (portion) of a label LUT which maps the old labels from individual segmentation routines to the 

labels in Table 2. Note that the actual LUT is determined by the labeling conventions of the segmentation 

algorithms.

Nomenclature Old Label (Graylevel) → New Label (Graylevel)

Background 0 → 0

Lung Left 20 → 2

Lung right 30 → 3

Airway LMB 5 → 31

Airway RMB 4 → 32

Airway LUL 8 → 33

Airway LLB6 9 → 34

Airway RUL 7 → 35

Airway BronInt 6 → 36

Airway LB1+2 26 → 37

Airway LB1+2 49 → 37

Airway LB3 27 → 38

Airway LB4+5 15 → 39

Airway LB6 16 → 40

Airway LLB 17 → 41

Airway RB1 12 → 42

Airway RB2 25 → 43

Airway RB3 24 → 44

Airway RB4+5 10 → 45

Airway … … → …

Airway RLL7 20 → 47

Airway … … → …

Airway RB8 68 → 58

Airway RB9 69 → 59

Airway RB10 100 → 60

Acad Radiol. Author manuscript; available in PMC 2019 February 08.


	Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	Image Acquisition
	Participants
	Selecting An Template
	CT Scan Protocol

	Atlas Coordinate Systems
	Labeling the Template Data Set and Atlas Nomenclature
	Computing the Average Shape
	Computing The Population Shape Variations

	RESULTS
	DISCUSSIONS
	Construction of Lobar Atlas
	The Impact of the Origin on the Shape Variation Measure

	CONCLUSIONS
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7
	Figure 8:
	Figure 9:
	Figure 10:
	Figure 11:
	Table 1:
	Table 2:
	Table 3:

