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Abstract

Causal interactions within complex systems such as the brain can be analyzed at multiple spatiotemporal levels. It is widely
assumed that the micro level is causally complete, thus excluding causation at the macro level. However, by measuring
effective information—how much a system’s mechanisms constrain its past and future states—we recently showed that
causal power can be stronger at macro rather than micro levels. In this work, we go beyond effective information and
consider additional requirements of a proper measure of causal power from the intrinsic perspective of a system:
composition (the cause–effect power of the parts), state-dependency (the cause–effect power of the system in a specific
state); integration (the causal irreducibility of the whole to its parts), and exclusion (the causal borders of the system). A
measure satisfying these requirements, called UMax, was developed in the context of integrated information theory. Here,
we evaluate UMax systematically at micro and macro levels in space and time using simplified neuronal-like systems. We
show that for systems characterized by indeterminism and/or degeneracy, U can indeed peak at a macro level. This
happens if coarse-graining micro elements produces macro mechanisms with high irreducible causal selectivity. These
results are relevant to a theoretical account of consciousness, because for integrated information theory the spatiotemporal
maximum of integrated information fixes the spatiotemporal scale of consciousness. More generally, these results show
that the notions of macro causal emergence and micro causal exclusion hold when causal power is assessed in full and
from the intrinsic perspective of a system.
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Introduction

The causal structure of physical systems can be analyzed at var-
ious spatial or temporal levels, from the most fine-grained mi-
cro level to any coarse-grained macro level. For example, the
brain can be analyzed, in space, at the level of neurons, neuro-
nal groups, macro-columns, and areas; and in time, over tens,
hundreds, and thousands of milliseconds (Sporns et al., 2005).
Practical considerations, lack of detailed data, and heuristic
strategies usually dictate the spatiotemporal scale at which a
system’s causal structure is actually studied, which is often
very coarse-grained. Thus, neuroimaging studies of effective
connectivity in the brain examine interactions at the spatial
level of voxels, which contain millions of neurons, and at the
temporal level of blood-oxygen fluctuations, on the order of sec-
onds. While such coarse-grained investigations are useful, it is

widely assumed that the causal structure of a system is only
fully captured by the most fine-grained causal model. This “mi-
cro” assumption is ubiquitous in science and underlies ambi-
tious programs that aim at collecting and modeling data at the
finest scale possible (Markram, 2006).

At a theoretical level, this reductionist “micro” bias is based
on the following assumptions (Kim, 1993): (i) once the properties
of micro-level physical mechanisms are fixed, macro-level
properties are fixed too (supervenience); (ii) causal power re-
sides fully at the microphysical level (micro causal closure); and
(iii) if all the causal work is done at the micro level, there is no
room for any causal contribution at the macro level (macro
causal exclusion). This view of causal power denies the possibil-
ity of genuine causal emergence. It also rules out any sort of
“mental causation” (Kim, 2000), since consciousness is thought

Received: 19 January 2016; Revised: 27 May 2016. Accepted: 9 July 2016

VC The Author 2016. Published by Oxford University Press.

1

Neuroscience of Consciousness, 2016, 1–13

doi: 10.1093/nc/niw012
Research article

Deleted Text: `
Deleted Text: causation' 


to supervene upon its physical substrate (PSC) and its features
are undoubtedly “macro” rather than “micro,” both spatially
and temporally.

In this article, we address the issue of causal emergence and
question the “micro” assumption about causal power by resort-
ing to the theoretical framework provided by integrated infor-
mation theory (IIT). IIT is a theory of consciousness that starts
from the essential properties of phenomenal experience and de-
rives the requirements that must be satisfied by its PSC.
Specifically, IIT argues that the PSC must be a maximum of in-
trinsic cause–effect power (Tononi, 2004, 2008, 2012, 2015;
Oizumi et al., 2014; Tononi et al., 2016). A direct implication of
the theory is that the spatiotemporal grain of the physical ele-
ments and intervals constituting the PSC must be the one that
maximizes cause–effect power.

The spatiotemporal scale of experience is clearly of a macro
kind—an “instant” of experience is on the order of tens to hun-
dreds of milliseconds, rather than microseconds (Bachmann,
2000; Holcombe, 2009). Hence, IIT predicts that the PSC must
have maximum intrinsic cause–effect power at the level of
macro elements and macro intervals, rather than at the level of
micro elements and micro intervals (Tononi, 2004; Marom, 2010;
Chalmers, 2013). This prediction implies that the reductionist
“micro” assumption with respect to causal power must be
wrong, i.e. that “the macro can beat the micro” (Hoel et al., 2013).

The quantitative assessment of cause–effect power is a pre-
requisite for determining whether and under what conditions
the macro can indeed beat the micro. Importantly, IIT provides
the conceptual and mathematical tools to fully assess cause–ef-
fect power, at least for idealized, simple systems that can be
manipulated, observed, and partitioned systematically. In re-
cent work, we provided a first proof of principle that, once
causal interactions are quantified, causal power at the macro
level can surpass that at the micro level (Hoel et al., 2013).
However, this evaluation was done using an average measure
of causal interactions within a predefined system taken as a
whole. In this article, we aim to establish whether “the macro
can beat the micro” if causal power is assessed in full (Oizumi
et al., 2014), by considering: (i) the cause–effect power of a sys-
tem on itself (intrinsic existence, independent of external ob-
servers); (ii) the cause–effect power of the system’s parts within
the system (composition); (iii) the cause–effect power of the spe-
cific state the system is in (state-dependency); (iv) the require-
ment that the cause–effect power of a system must be
irreducible to that of its parts (integration); (v) the requirement
that cause–effect power must be definite, corresponding to the
particular set of elements and spatiotemporal grain that is max-
imally irreducible (exclusion; exclusion expresses the require-
ment that elements cannot contribute cause–effect power
multiple times to different sets, see “Theory” section).
According to IIT, these requirements (postulates) correspond to
the causal properties that must be satisfied by the PSC, in turn
are derived from the essential phenomenal properties of con-
sciousness (axioms): experience exists intrinsically, is struc-
tured, specific, unitary, and definite (Tononi, 2012, 2015; Oizumi
et al., 2014).

For simple systems, maxima of irreducible, state-dependent,
compositional, intrinsic cause–effect power can be evaluated by
measuring the non-negative quantity U (integrated information,
see “Theory” section). This measure of integrated information
has already been applied to classify the causal structure of dis-
crete dynamical systems, such as cellular automata (Albantakis
and Tononi, 2015), and to track how the causal structure of sim-
ulated organisms, called animats, evolves in a simulated

environment (Albantakis et al., 2014). Here, we systematically
evaluate U for simple, idealized systems considered at coarser
or finer spatiotemporal grains, and show that, depending on the
structure of a given system, U can in principle reach a maxi-
mum at a macro level, in space and time, rather than at a micro
level (UMacro>UMicro). Such demonstration constitutes a neces-
sary first step toward a principled account of the spatiotemporal
scale of consciousness. Moreover, it provides the theoretical
foundation for empirical studies aimed at characterizing the
neural elements and intervals constituting the neural substrate
of consciousness and at testing a key prediction of IIT. For ex-
ample, if in the brain a maximum of intrinsic cause–effect
power were to obtain at the more macro spatial scale of neuro-
nal groups, rather than at the more micro scale of neurons, IIT
would predict that only changes in the average activity of a
group of neurons, and not of individual neurons, should make a
difference to the content of experience (Tononi et al., 2016).

Theory
IIT

A detailed description of IIT 3.0 can be found in Oizumi et al.
(2014) and Tononi (2015). In the following, we first outline the
IIT 3.0 algorithm to find the physical system with the maximal
amount of integrated information (UMax). A “physical” system is
defined as a set of elements, each of which has at least two
states, inputs that can affect its state and outputs that are af-
fected by its state. The elements are “physical” in the sense that
each individual element can be perturbed and observed, and
sets of elements partitioned. Individual elements that cannot
be partitioned, spatially or temporally, are “micro” elements.
Given a collection of such micro elements in a particular state,
the IIT 3.0 algorithm performs a search across all possible physi-
cal systems that can be constituted of these elements, to find
the system with maximal U. Due to computational constraints,
we restrict our examples to those where the micro elements are
small collections of binary logic gates.

For a given physical system S, we first perturb the elements
of S into all possible states with equal probability (Tononi et al.,
1999) and the resulting state transitions are observed. These
state transitions define the transition probability matrix (TPM)
of the physical system, from which all IIT measures can be de-
rived. Perturbing a physical system into a state means to physi-
cally intervene on the system, and to explicitly set its elements
into that state. While perturbing the elements of the physical
system under consideration, all exogenous elements are treated
as background conditions: they are held fixed (“frozen”) in their
current state (Oizumi et al., 2014). This procedure is akin to the
calculus of interventions and the do(x) operator introduced by
Pearl (2000), to identify causal relationships.

Cause–effect structure of a system

In order to calculate U for a given physical system, we must first
determine its intrinsic cause–effect structure: how the parts of
the system, by being in a specific state, constrain the potential
past and future states of the system itself. A part of the system
is a set of elements in a state mt that is a subset of S. To deter-
mine the cause–effect structure of a system, we consider every
part of the system as a candidate mechanism. It is not neces-
sary for a mechanism to constrain the past and future states of
the entire system, it is sufficient that it constrains the state of
any subset Zt 6 1 of the elements in the system, termed the

2 | Hoel et al.

Deleted Text: `
Deleted Text: macro' 
Deleted Text: `
Deleted Text: micro'
Deleted Text: ,
Deleted Text: paper
Deleted Text: micro' 
Deleted Text: physical substrate (PSC)
Deleted Text: cause-effect
Deleted Text: cause-effect
Deleted Text:  &ndash; 
Deleted Text: `
Deleted Text: instant' 
Deleted Text: cause-effect
Deleted Text: `
Deleted Text: micro' 
Deleted Text: ,
Deleted Text: `
Deleted Text: micro' 
Deleted Text: cause-effect
Deleted Text: cause-effect
Deleted Text: paper
Deleted Text: `
Deleted Text: micro' 
Deleted Text: cause-effect
Deleted Text: cause-effect
Deleted Text: cause-effect
Deleted Text: cause-effect
Deleted Text: cause-effect
Deleted Text: cause-effect
Deleted Text: Theory
Deleted Text: cause-effect
Deleted Text: -
Deleted Text: cause-effect
Deleted Text: Integrated information theory (
Deleted Text: )
Deleted Text: `
Deleted Text: physical' 
Deleted Text: `
Deleted Text: physical' 
Deleted Text: -
Deleted Text: cause-effect
Deleted Text: cause-effect


mechanism’s purview. The way a candidate mechanism con-
strains the potential past and future states of a purview is de-
scribed by its cause–effect repertoire (Tononi 2015). The cause
repertoire is a probability distribution over the states of a past
purview (Zt�1) conditioned on the current state of the candidate
mechanism, pcause(zt�1jmt). Similarly, the effect repertoire is the
probability distribution of a future purview (Ztþ 1) conditioned
on the current state of the candidate mechanism, peffect(ztþ1jmt),
where Ztþ1 can differ from Zt�1.

To contribute to the intrinsic cause–effect structure of a physi-
cal system, the candidate mechanism must be integrated, that is,
its cause–effect power must not be reducible to its parts. To as-
sess the irreducibility of a cause or effect repertoire and assess its
integrated information (uÞ; the repertoire is partitioned into two
parts, P ¼ m 1ð Þ

t ;Zð1Þt61; m 2ð Þ
t ; Zð2Þt61

n o
, such that the connections be-

tween parts (1) and (2) have been “cut” (injected with noise;
Oizumi et al., 2014). The result is a partitioned cause or effect rep-
ertoire that is the product of the repertoires for each half of the
partition,

pP
cause zt�1jmð Þ ¼ pcause z 1ð Þ

t�1

���m1

� �
� pcause z 2ð Þ

t�1

���m2

� �
;

pP
effect ztþ1jmð Þ ¼ peffect z 1ð Þ

tþ1

���m1

� �
� peffect z 2ð Þ

tþ1

���m2

� �
:

The difference the partition makes is the distance between the
repertoire and the corresponding partitioned repertoire. In IIT,
distances D between probability distributions are measured us-
ing the earth-mover’s distance (EMD; Oizumi et al., 2014), which
quantifies the minimum cost of transforming one probability
distribution into another (Rubner et al., 2000; Pele and Werman,
2009). For a cause–effect repertoire to be irreducible, all possible
partitions must make a difference to the repertoire. The parti-
tion that makes the least difference to the repertoire is the min-
imum information partition (MIP), and the difference it makes
defines the irreducibility of the candidate mechanism over its
particular purview.

To find the integrated information of a mechanism, we first
separately assess the integrated cause and effect information.
For the integrated cause information (ucause), we search over all
possible past purviews to identify the maximally irreducible
cause repertoire, with its corresponding past purview, also
called the core cause of the candidate mechanism. The inte-
grated effect information (ueffect), along with the maximally irre-
ducible effect repertoire and core effect of a candidate
mechanism, is defined in an analogous way:

ucauseðmtÞ ¼max
Zt�1

min
P

D pcause zt�1jmtð Þ; pP
cause zt�1jmtð Þ

� �
;

ueffectðmtÞ ¼max
Ztþ1

min
P

D peffect ztþ1jmtð Þ; pP
effect ztþ1jmtð Þ

� �
:

The overall u value of the candidate mechanism is the mini-
mum between its ucause and ueffect values,

uðmtÞ ¼min ucause; ueffectð Þ:

In this way, if a candidate mechanism receives input but gives
no effective output, or vice versa, its u is 0, as it has no cause–ef-
fect power within the system.

If a candidate mechanism has integrated information u> 0
then it is a proper mechanism. The past and future purviews iden-
tified by this procedure are its “core cause” and “core effect”, and

the repertoires over these purviews are its “maximally irreducible
cause–effect repertoire”. If a mechanism in a state has irreducible
cause–effect power (by having u > 0), we refer to its maximally ir-
reducible cause–effect repertoire as specifying a “concept”. The set
of all concepts makes up the cause–effect structure of the physical
system CðSÞ. The cause–effect structure of a physical system re-
veals the compositional nature of the system’s intrinsic cause–ef-
fect power, identifying not only elementary mechanisms
(consisting of a single element), but also irreducible higher-order
mechanisms (consisting of multiple elements) that contribute
more than the sum of their parts. According to IIT, a concept
specifies a phenomenal distinction that contributes to what it is
like to be a physical system in its current state.

Cause–effect power of a system

Having obtained the cause–effect structure of a given physical
system, the next step in the IIT algorithm is to determine
whether the cause–effect structure, as a whole, is irreducible to
its parts (integration). If some parts of a physical system make
no difference to other parts of the system, then its cause–effect
structure is reducible, and the system cannot be a whole from
its own intrinsic perspective. To assess the irreducibility of the
system, unidirectional bipartitions P! ¼ S 1ð Þ; S 2ð Þ� �

of the physi-
cal system S are performed, by cutting (injecting with noise) the
connections from a subset of elements S 1ð Þ to the remaining ele-
ments S 2ð Þ, which creates a partitioned system SP! (Oizumi et al.,
2014). We then calculate the cause–effect structure of the parti-
tioned physical system CðSP! Þ, and compare it to CðSÞ to evalu-
ate the difference made by the partition. A search over all
possible directed partitions is performed to identify the one that
makes the least difference to the cause–effect structure, its MIP.
Integrated information (U, “big phi”), measures the irreducibility
of a cause–effect structure, by quantifying the difference the
MIP makes to the concepts and their u values of the system,

U Sð Þ ¼min
P!

D C Sð Þ; C SP!
� �� �

:

The distance D between two cause–effect structures is assessed
using an extended version of the EMD: the cost of transforming
one cause–effect structure into another is the amount of u that
needs to be shifted, multiplied by the distance it needs to be
moved, where the distance it moves in cause–effect space is the
EMD between the concepts’ cause–effect repertoires. For full de-
tails and examples on the U calculation, see Oizumi et al. (2014).

The U values of all candidate systems are compared to find the
maximum (UMax). The set of elements with UMax is called the “com-
plex”. A complex, then, is a physical system that specifies a maxi-
mally irreducible cause–effect structure, also called a “conceptual
structure”. A complex has causal borders and exists as an “intrin-
sic” entity, from its own intrinsic perspective. This means that its
borders are set by its own intrinsic cause–effect structure, as op-
posed to being set by an external observer. Complexes cannot over-
lap, as this would imply that the cause–effect power of a shared
element would be multiplied for free (“causal exclusion”).
According to IIT, there is an identity between the conceptual struc-
ture specified by a complex in its current state and its subjective
experience—what it is like to be the complex (Oizumi et al., 2014).

Coarse-graining

A discrete, finite system constituted of elements in a state can
be considered at various spatiotemporal levels, from the most
fine-grained micro level (Sm) to a multitude of coarse-grainings
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(SM). The micro-level Sm is special because, when its features are
fully fixed, all its coarse-grainings SM are also fixed, a property
known as “supervenience” (Stalnaker, 1996). In this study, our
objective is to identify sets of elements that specify global max-
ima of integrated information (UMax) across elements and spa-
tiotemporal scales. To that end, we extend the algorithmic
search for UMax across all candidate systems to include all sets
of coarse-grained (“macro”) elements across all spatial and tem-
poral levels of the system.

Unless otherwise specified, the micro level is always com-
posed of binary first-order Markov elements {A, B, C . . .} with
possible states {0,1}. For simplicity, without loss of generality,
we confine our analysis to coarse-grains in which macro ele-
ments are also binary. Macro states will be referred to using
{OFF, ON} and macro elements using Greek letters {a, b, c . . .}.
The relationship between the micro level and any of its macro
levels can be formalized as a mapping, M : Sm ! SM. First, one
chooses a candidate system Sm of micro elements and its asso-
ciated bipartitions. Second, disjoint subsets of micro elements
from Sm are grouped into macro elements. Third, the associated
micro states are mapped into binary macro states. In order to be
a valid mapping, SM must be such that mappings of micro states
into macro states are limited to those in which the identity of
the individual micro elements within a macro element is irrele-
vant to determine the macro state (or else the macro level
would not be a true coarse-grain as micro-level information
would still be available at the macro level; moreover, from the
intrinsic perspective of the macro system this information is
not available). If, for example, two micro elements are coarse-
grained into one macro element, the micro states {01, 10} must
be mapped into the same macro state, as distinguishing be-
tween them would require information about which micro ele-
ment is which.

To obtain the TPM of the macro level, SM must be perturbed
into all its possible macro states with equal probability, in the
same way as done for the micro level. Perturbing a set of macro
elements (setting it to a macro state with the do(x) operator) is
done using a macro perturbation, which is the average over per-
turbations into all nmicro micro states that are grouped into the
respective macro state sM:

doðSM ¼ sMÞ ¼
1

nmicro

X
sm2sM

doðSm ¼ smÞ

The TPM of a candidate system is thus assessed indepen-
dently at each spatiotemporal level: perturbing SM into all possi-
ble macro states with equal probability typically corresponds to
a non-uniform distribution of all possible micro perturbations
(except if all macro states are composed of the same number of
micro states). This reshaping of micro perturbations at the
macro level is what makes the causal analysis sensitive to the
higher-level causal structure (Hoel et al., 2013). Macro cause–ef-
fect structures are then calculated from the macro TPM of a can-
didate system of macro elements SM as described above. To be
noted, even when coarse-graining, the overall irreducibility U of
the candidate set is assessed using bipartitions of the micro ele-
ments Sm rather than the macro elements SM. In this case, the
goal is to assess, through a “physical” cut of S, the overall
cause–effect power of S, above and beyond its “minimal physi-
cal” parts.

At the micro and each macro level, the U values of all possi-
ble candidate systems are evaluated and the system with
max(U) at each particular level is selected for comparison be-
tween levels, yielding the absolute maximum of integrated

information (UMax) across sets of elements and spatiotemporal
scales. For a given macro level, the set of all candidate systems
evaluated to optimize U includes all possible partitions of micro
elements into macro elements of the appropriate scale, as well
as all possible mappings between micro states and macro
states. If UMax is found at a macro level, we can conclude that
the system demonstrates “macro causal emergence”. In these
cases, max(U(SM))�max(U(Sm)) indicates how much integrated
information is gained by analyzing the system at the macro
level. Macro causal emergence is spatial, if the winning map-
ping groups multiple micro elements along with their states
into a macro element at a single micro timestep, and temporal
if the macro elements consist of only a single micro element but
the element’s states are grouped over multiple micro timesteps.

All binary coarse-grains of discrete systems of logic gates
were created with a custom-made Python program (PyPhi, see
Mayner and Marshall, 2015), available for download at www.inte
gratedinformationtheory.org. (The example systems used here,
along with the code required to calculate our results, are avail-
able online at https://github.com/wmayner/pyphi.) PyPhi also
calculated max(U) at each level. Data plots and images were cre-
ated using MATLAB. Specific examples of spatial and temporal
causal emergence are shown below in the “Results” section,
along with comparisons of macro concepts to their underlying
micro concepts.

Repertoire size, selectivity, and selectivity shift

As outlined above, u measures the difference that a parti-
tion P ¼ mð1Þt ;Zð1Þt61; m 2ð Þ

t ; Zð2Þt61

n o
of mechanism m makes to the

mechanism’s cause and effect repertoires over its purviews
Zt61. To better understand the causal ramifications of coarse-
graining, it is helpful to decompose this difference into three
components: (i) the repertoire size of cause or effect repertoires,
(ii) the change in how selective the mechanism is about its pos-
sible causes and effects post-partition, and (iii) the shift in
which states are selected as possible causes and effects post-
partition (Fig. 1A). The decomposition can be applied to inte-
grated information on both the cause (ucause) and the effect
(ueffect) side, but as with integrated information, it is only the
side with minimum u that counts for the mechanism.

The “repertoire size” is the number of elements in the pur-
view. It reflects the degrees of freedom of potential causes or ef-
fects; all else being equal higher repertoire size corresponds to
higher u. Note that the definition of repertoire size given here is
a special case for systems of binary elements, and that in gen-
eral, one needs to consider the maximum EMD distance be-
tween repertoires, which depends both on the number of
elements in the purview and the distance between states of
those elements.

The “irreducible selectivity” of a mechanism describes how
much the mechanism constrains the past and the future above
and beyond its parts. Selectivity of a repertoire can be mea-
sured as the difference D (EMD) between the cause or effect rep-
ertoire p zt61jmtð Þ and the maximum entropy distribution pðHÞ
over all possible states of Zt61, normalized by “repertoire size”:

selectivity mt;Zt61ð Þ ¼ Dðp zt61jmtð Þ; p Hð ÞÞ
repertoire size

:

To capture the “irreducible selectivity” of a mechanism
above and beyond its parts, we moreover subtract the distance
between the partitioned repertoire pMIP zt61jmð Þ and pðHÞ. In this
way:
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irreducible selectivity m;Zt61ð Þ

¼ ðDðp zt61jmð Þ;pðHÞÞ � DðpMIP zt61jmð Þ; pðHÞÞÞ
repertoire size

Irreducible selectivity values can range between 0.5 and
�0.5, inclusively (negative values are rare but possible if the par-
titioned cause–effect repertoire is more different from p Hð Þ than
the intact one). Selectivity can be related to the notion of deter-
minism and degeneracy as described in (Hoel et al., 2013). There,
we demonstrated that the effective information (EI) in a causal
model depends on how deterministic and degenerate its mech-
anisms are on average. “Determinism” (causal divergence) indi-
cates how reliably the current state of a mechanism leads to
future states: determinism is 1 when the current state leads to a
single future state with probability p¼ 1, and is 0 when all future
states have equal probabilities (p¼ 1/n, where n is the number of
states).

“Degeneracy” (causal convergence) indicates how many
states converge to the same state: degeneracy is 1 when the cur-
rent state could have come from any previous state with proba-
bility p¼ 1/n, and is 0 when the current state could only have
come from a single previous state with probability p¼ 1. If

determinism¼ 1 and degeneracy¼ 0, then that mechanism in a
state is causally “perfect” in that it demonstrates maximum se-
lectivity over the states of its purviews (Fig. 1B). If determin-
ism¼ 0 and degeneracy¼ 1, then there is a total absence of
selectivity over the mechanism’s purviews (total noise, Fig. 1B).
Previously we showed that it is through increasing the deter-
minism and/or decreasing the degeneracy of causal relation-
ships that coarse-graining can result in higher cause–effect
power (Hoel et al., 2013). Since the selectivity of a mechanism M
in state m is always positive, it provides the upper limit for
the mechanism’s irreducible selectivity. If the minimum is
u ¼ uEffect, then irreducible selectivity is bounded by the deter-
minism of the mechanism, as the effect repertoire captures
divergence into multiple future states. If the minimum is
u ¼ uCause, then irreducible selectivity is bounded by the mecha-
nism’s degeneracy, as the cause repertoire captures the conver-
gence from multiple past states (Fig. 1B).

The third component of u, the “selectivity-shift”, captures
how the mechanism makes a difference to the system by select-
ing some specific past or future states over other specific ones
(see Supplementary Data S1 for a detailed explanation of “selec-
tivity-shift”). For example, consider a partition that results in 0

Figure 1. The causal components of integrated information (/). (A) Consider a hypothetical isolated system constituted of three interconnected
binary elements. The unpartitioned cause–effect repertoires of the system can change in several ways following a partition. There can be a
loss of selectivity, moving the partition closer to maximum entropy (top), a shift in which states are selected in the partitioned repertoire (mid-
dle), or a mix of both (bottom). (B) Consider a simpler system of just two connected binary elements (left). If the mechanism AB in state [11] at t

could only originate from [11] at t�1, and can only go to [11] at tþ1, then degeneracy is 0 and determinism is 1. (B, top left) If AB in state [11] at t

could have originated from any state at t�1, and could go to any state at tþ1, all with equal probability (B, top right), the mechanism in state [11]
has a degeneracy of 0 and a determinism of 1. Compare degeneracy and determinism to selectivity: the minimum distance of either the cause
or effect repertoires from the maximum entropy distribution (H). In both cases, selectivity accurately reflects determinism and degeneracy (B,
bottom).
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irreducible selectivity, but changes which states are specified by
the mechanism (Fig. 1A). In this (hypothetical) case, the result-
ing non-zero u value is due entirely to a selectivity-shift: the
rearrangement of probability mass post-partition without a
change in the distance from p(H). Selectivity-shift can be cap-
tured by the increase in distance (how much of a “detour” it is),
to pass through the partitioned repertoire on the way from the
unpartitioned repertoire to pðHÞ, as opposed to going there
directly:

selectivity-shift

¼
D p zt61jmð Þ; pMIPðzt61jmÞ
� �

�
� ��D pMIP zt61jmð Þ; pðHÞ

� �
� D p zt61jmð Þ; pðHÞð ÞjÞ

repertoire size

In summary, as proven in Supplementary Data S2, u can
be fully decomposed into these three quantities: repertoire size,
irreducible selectivity, and selectivity-shift:

u ¼ jirreducible selectivityj þ selectivity-shiftð Þ�repertoire size

Results

Finding the maximal value of U at a particular spatiotemporal
grain requires an algorithmic search across all possible subsets
of a given system. Here, this search is expanded to include all
possible binary coarse-grains. The figures for each example of
macro causal emergence show the result of this expanded
search: the macro level (SM) with UMax, along with the micro
level (Sm) with highest U for comparison.

An illustrative example of spatial coarse-graining
and macro causal emergence

To begin with a simple example, consider a four-element sys-
tem Sm¼ {ABCD} in state [0000], where each micro mechanism
operates as an AND gate (with two inputs) under noisy condi-
tions (Fig. 2A). In Hoel et al. (2013), this system showed spatial
causal emergence in terms of EI. The results of applying the ad-
ditional causal criteria required by IIT can be seen in Fig. 2B.
Each micro element is associated with a single micro concept,
for which u¼ 0.17. To visualize the cause–effect structure of the
system, each concept is plotted as a star in cause–effect space
(Fig. 2C). In cause–effect space, each dimension is a possible
past or future state of the system. The four concepts of Sm each
occupy a position based on the probability distributions of its
maximally irreducible cause–effect repertoires. The size of each
star represents how irreducible the concept is (its u value).
Observing the constellation of concepts for the micro-level sys-
tem, the concepts are small and clustered together in cause–ef-
fect space, with the concepts of A/B and C/D overlapping. U(Sm)
is only 0.11. The MIP noises the connections from {AC} to {BD}.

In contrast, consider the macro-level SM¼ {a,b}, shown in
Fig. 2D. The micro-to-macro element mapping is of {AB} to {a}
and {CD} to {b}, while the state mapping for each macro element
is such that the micro states [00, 01, 10] are considered [OFF]
and [11] is considered [ON]. This mapping creates the macro ele-
ment tables seen at the bottom of Fig. 2D. The macro elements
are each associated with a macro concept, for which u¼ 0.46
(Fig. 2E). The conceptual structure of SM (the maximally irreduc-
ible cause–effect structure of S) is plotted in cause–effect space
(Fig. 2F). It shows that the two macro-level concepts are more ir-
reducible (larger stars) and less clustered than those in Sm. The
average distance (taking pairwise EMDs between the cause–

effect repertoires) between all the macro concepts¼ 1.91, while
the average distance between all the micro concepts¼ 0.9.
SM¼ {a,b} is the optimal binary coarse-graining with
UMax(SM)¼ 0.6; the MIP noises the connections from micro ele-
ments {AC} to {BD}. Accordingly, U does not peak at the micro
level, but at the macro-level SM¼ {a,b}.

How does the macro beat the micro?

Broadly, the macro beats the micro by grouping together redun-
dant or noisy elements to increase their cause–effect power, as
measured by u. As shown in the “Theory” section, u can be
decomposed into repertoire size, irreducible selectivity, and
selectivity-shift. Here, we show that while the size of the reper-
toire always decreases with coarse-graining, both irreducible se-
lectivity and selectivity-shift can increase to a degree that
outweighs the loss in size, which allows the macro to beat the
micro. Figure 3 shows an example of the unpartitioned and par-
titioned cause–effect repertoires of {A}, as well as of its super-
vening macro concept {a}. The size of the micro concept’s
repertoire is 2, while the size of the macro concept’s repertoire
is 1. However, at the micro level, both the unpartitioned and
partitioned distributions are very close to maximum entropy
(shown in blue) and thus the irreducible selectivity of the micro
concept is only 0.09. By comparison, the irreducible selectivity
of the macro concept is 0.37. The selectivity-shift changes from
0 at the micro level to 0.09 at the macro level. Thus, while the
macro loses 0.09 in u from the loss in repertoire size, it gains
0.28 in u from the increase in irreducible selectivity and an addi-
tional 0.09 in u from the increase in selectivity-shift. Note that
most of the gain stems from an increase in irreducible selectiv-
ity, rather than selectivity-shift. This gain in irreducible selec-
tivity is due to an increase in determinism (because for the
macro concept u ¼ uEf fect, so irreducible selectivity is deter-
mined by the effect-repertoire). This is in line with previous re-
sults from Hoel et al. (2013), showing that macro-level causal
relationships could have greater determinism and less degener-
acy than their underlying micro-level causal relationships. As
concepts with higher u generally contribute more to U, systems
with higher sums of u generally have higher levels of U

(Albantakis et al., 2014; Albantakis and Tononi, 2015). Thus, the
greater u of the macro concepts allows the macro to beat the
micro in terms of U as well.

Macro causal emergence in a highly degenerate system

Macro concepts can also have higher u than their underlying
micro concepts by having less degeneracy. Consider the deter-
ministic micro level of the system shown in Fig. 4A. The Sm ele-
ments {A–F} are a cycle of AND gates in state [000000]. As AND
gates in state [0] are highly degenerate (see Fig. 4A, table), each
concept has u¼ 0.167, despite having a repertoire size of 2. The
low irreducible selectivity of the concepts (0.083) reflects this
degeneracy. The selectivity shift for all micro concepts is 0. In
cause–effect space, the micro concepts are clustered (Fig. 4B),
and the MIP noises the connections from {A} to {BCDEF}, result-
ing in a value of U(Sm)¼ 0.19. The winning macro set is
SM¼ {abc}, where the pairs of {AB}, {CD}, {EF} are grouped into {a},
{b}, {c}, respectively. For each macro element, the micro states
[00, 01, 10] are considered [OFF] and [11] is considered [ON].
Thus, the cycle of AND gates at the micro level has been turned
into a cycle of COPY gates at the macro level (Fig. 4C). At the
macro level, the MIP noises the connections from {ABCDE} to {F},
resulting in UMax(SM)¼ 0.83 (Fig. 4D). For all macro concepts,
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Figure 3. How the macro beats the micro. A comparison of a micro concept of Fig. 2 to its supervening macro concept. (A) The core cause–effect
repertoires of element {A} which have been expanded over the whole system, with their respective MIP shown in the upper left corners. The
unpartitioned repertoires are in solid black, while partitioned repertoires are in red. The dotted blue line shows where the maximum entropy
distribution lies. (B) The expanded core cause–effect repertoires of element {a}, which supervenes on {A, B}. Comparing the macro cause–effect
repertoire to the micro, it is obvious that selectivity (distance of the distribution to maximum entropy) is much higher for the coarse-grained
mechanism, which ultimately leads to higher u for the macro concept.

A

D E F

B C

Figure 2. Spatial causal emergence of integrated information (increasing determinism). (A) The micro-level Sm is constituted of noisy elements.
(B) In state [0000], the four micro concepts all share the same u value. Shown are the core causes and effects; the format At/CDt�1 indicates that
the concept belongs to A in its current state (c) and has a purview of CD in their past states. (C) A 3D projection of the 32D cause–effect space.
The one past (blue) and two future (green) dimensions chosen were those with the greatest variance of probabilities (so the visualization maxi-
mizes the distances between concepts). The cause–effect structure of Sm appears as a clustered constellation of small (low u) concepts. (D) The
elements at the macro level of the system SM are less noisy than those in Sm. (E) The two macro elements each generate a concept. (F). The con-
ceptual structure of the macro-level system, plotted as a constellation in SM’s 8D cause–effect space, has larger stars (high u), indicating greater
irreducibility.
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u¼ 0.5. The average distance between the macro concepts is 2,
while the average distance between all the micro concepts is
1.33. While the size of the macro concepts’ repertoires is re-
duced to 1, their irreducible selectivity has increased to 0.5 (their
selectivity-shift¼ 0), meaning that the macro elements have 0
degeneracy. It is this reduction in degeneracy that allows the
macro to beat the micro even though the system is completely
deterministic.

Temporal coarse-graining and macro causal emergence

Macro groupings may be over time as well as space (Hoel et al.,
2013). In the temporal case, it is the micro timesteps (t) that are
coarse-grained into macro timesteps (T). All possible macro time-
steps are considered. The timestep over which the intrinsic
cause–effect power is maximal (UMax) is the timestep at which a
system operates causally from its intrinsic perspective. For exam-
ple, consider the system in Fig. 5A, {AB}, constituted of second-
order Markov elements. Analysis of the system at the micro
timestep (St), in state AB¼ [11], results in U¼ 0.07 (Fig. 5B), with
a MIP from {A} to {B}. Figure 5C shows the system analyzed at a
macro timestep (ST) wherein {At�1, At} are grouped together into a
single macro element over two micro timesteps {aT}, and with
{Bt�1, Bt} grouped into {bT}. In the mapping, the micro state
At�1At¼ [00] is considered aT¼ [OFF], while the micro states
At�1At¼ [01, 10, 11] are considered aT¼ [ON] and likewise for the
states of Bt�1Bt and bT. The system at the macro timestep has
UMax(ST)¼ 0.12, which means that from the intrinsic perspective
the system operates causally over that macro timestep (two

micro timesteps). The macro conceptual structure is shown in
Fig. 5D. The macro MIP is {At�1, Bt�1} to {At, Bt}. Because the micro
elements are second-order Markov, unlike in the previous exam-
ples, the system at the macro timestep does not supervene on
the system at a single micro timestep. This is why the repertoire
size at the macro timestep (average¼ 2.5) is not smaller than the
repertoire size at the micro timestep (average¼ 1). This also ex-
plains why the micro timestep is missing one of the concepts pre-
sent at the macro timestep. At the macro timestep, the average
irreducible selectivity¼ 0.16 and average selectivity-shift¼ 0.03;
at the micro timestep, average irreducible selectivity¼�0.125
and average selectivity-shift¼ 0.125. The average distance be-
tween macro concepts is 0.75 and between micro concepts is
0.58.

Complexes are maxima of irreducible, intrinsic
cause–effect power over both elements and
spatiotemporal grains

A complex is the set of elements that specifies a maximum of U

across all spatiotemporal scales and defines the elements and
borders of the physical system. The set of elements with maxi-
mal U at a particular spatiotemporal level may differ across spa-
tiotemporal grains. For example, consider the system in Fig. 6A
in state [000000]. If the analysis is restricted to the micro level,
the complex would be identified over the full set of elements
{A–F}, with a total of eight micro concepts (Fig. 6B). In this analy-
sis, U is only 0.15 since, despite the average size of their reper-
toires being 2.25, the concepts have low irreducible selectivity
(0.09), demonstrate little selectivity-shift (0.02), and are not very

Figure 4. Spatial causal emergence through degeneracy. (A) A highly
degenerate but deterministic Sm is constituted of AND gates (ana-
lyzed in state [000000]). (B) The micro-level cause–effect structure is
highly clustered and the concepts’ irreducibility is low. (C) SM is still
deterministic but is no longer degenerate. (D) The conceptual struc-
ture is less clustered and more irreducible at the macro level.

Figure 5. Temporal causal emergence. (A) Sm is constituted of second-
order Markov elements. (B) Analysis at the micro timestep, in which
AB¼ [11], specifies a cause–effect structure with two clustered con-
cepts with low irreducibility. (C) The macro timestep {a,b}¼ [On, On]
is a grouping over two micro timesteps. (D) The macro conceptual
structure, which is more irreducible than the micro conceptual
structure, is less clustered and has an additional concept (see text).
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distant in cause–effect space (average¼ 1.27). The MIP is from
{EF} to {ABCD}. However, extending the search for UMax across all
candidate sets at all possible coarse-grainings finds the true
complex consists of the macro elements {ab} with UMax(SM)¼ 0.6.
Note that this is a grouping of micro elements {ABCD} that does
not include {EF}. The state grouping is the same as in Fig. 2, with
the same macro repertoire size (1), irreducible-selectivity (0.37),
selectivity-shift (0.09), and average distance (1.91). According to
IIT, only the maximum of U over both elements and levels
qualifies as a complex (other elements and levels are excluded).
That is, UMax represents the absolute maximum over all values
of U of all possible groupings found at each spatial and temporal
scale. Therefore, from the intrinsic perspective a system “self-
defines,” independent of an external observer, both its borders
(the set of elements that are included in the complex) and its
spatiotemporal level.

The example in Fig. 6 highlights that evaluating macro
causal emergence by assessing cause–effect power in full, using
a measure of integrated information U that takes into account
composition, integration, exclusion, and state-dependency, is
more accurate than using EI (Hoel et al., 2013). For this system,
EI fails to show causal emergence (EI(Sm)¼ 2.73>EI(SM)¼ 2.6).
One reason for this is that EI cannot identify causal borders (ex-
clusion), so EI is always over the whole system (ABCDEF or a

coarse-graining thereof). Another reason is that, while EI is a
state-independent measure, U is state-dependent: for example,
in state [000000] the system demonstrates macro causal emer-
gence as shown above, but in state [111111] the micro level has
UMax (UMax(Sm)¼ 1, U(SM)¼ 0.21).

Trends of integrated information across spatiotemporal
grains point to the level at which maxima occur

In Fig. 7, we show U values at each possible binary spatial and
temporal level for the four example systems. The winning
macro levels appear as clear maxima for all of the systems. We
next examined the relationships between each level of the sys-
tem. That is, we tracked how higher level macros are coarse-
grains of coarse-grains. For example, consider a micro level
{ABCD}, for which the micro elements {AB} are grouped into a
macro element {a} with a state mapping of [00, 01, 10] into [OFF]
and [11] into [ON]. A further coarse-grain might group {CD} into
{b} with the same state grouping, and then the next coarse-grain
might group {ab} together into a single macro element. This
nesting of coarse-grains reveals paths of coarse-graining that
span all the spatiotemporal levels, from the finest to the coars-
est. Intriguingly, the maximal U value at each level of coarse
graining almost always lies on the path from the micro level to
the coarse-grain with UMax. Additionally, instead of being dis-
tributed randomly, U increases closer to the level at which UMax

occurs. These observations suggest that, in large systems, it
may be useful to assess integrated information by gradient as-
cent to more rapidly converge onto the optimal spatiotemporal
grain.

Discussion

In this article, we applied the mathematical framework of IIT
(Oizumi et al., 2014) to simple example systems at multiple lev-
els of coarse-graining across elements and timesteps. We have
presented several examples for which integrated information
(U) is highest at a macro scale, with spatial and/or temporal
coarse-grains, in systems that are either deterministic or sto-
chastic. In this way, we have provided a proof of principle that,
under certain conditions discussed below, the macro can beat
the micro in terms of U, a measure of intrinsic cause–effect
power, which takes into account the causes and effects within a
system that matter the most for the system itself. In line with
Hoel et al. (2013), our results thus show that the reductionist as-
sumption of greatest cause–effect power at the micro level is of-
ten unjustified. Moreover, our findings open up the possibility,
advocated by IIT, that there is a macro spatiotemporal scale at
which neural interactions within the brain have maximal in-
trinsic cause–effect power, corresponding to the macro spatio-
temporal scale of the neural substrate of consciousness.

How the macro can beat the micro

How can the macro be causally more powerful than the micro,
even though macro elements and intervals are constituted of
micro elements and intervals, and even though macro proper-
ties supervene upon micro properties—that is, no extra macro
causal property is introduced?

It has been suggested before (Yablo, 1992; List and Menzies,
2009) that a higher-level description of a cause may be a better
account in cases where multiple lower-level conditions (coun-
terfactuals) could all count as sufficient causes. Under a notion
of causation as difference-making, it may then be appropriate

Figure 6. Macro borders versus micro borders. (A) Sm is constituted of
heterogeneous logic gates: {ABCD} act identically to those described
in Fig. 2, while {EF} each act as deterministic AND gates.
Additionally, if {E}¼ 1 at t�1, then the probability of {A}¼ 1 at t in-
creases from 0.3 to 0.9; the same rule applies for the connection
from {F} to {D}. In state [000000], the set of micro elements with high-
est U is {A–F} (dotted blue line). EI of Sm in red. (B) The maximally irre-
ducible cause–effect structure of Sm with eight concepts. (C) The
complex is at the level of SM¼ {a,b} (dotted blue line) and only super-
venes on a subset of the micro elements {ABCD}. The highest EI of all
possible coarse-grainings is shown in red. Note that EI is always over
the whole system (dotted red line). (D) The macro conceptual struc-
ture has UMax¼0.6.
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to reverse the reductionist exclusion principle, allowing higher-
level causes to exclude the lower-level ones (List and Menzies,
2009). In a recent study (Hoel et al., 2013), we provided the first
quantitative demonstration of this idea using “effective infor-
mation (EI)”, a measure that rigorously quantifies differences
that make a difference within a system under all possible

system perturbations (all counterfactuals). In simple examples
of physical systems, we assessed EI at the micro and all possible
coarse-grained macro levels, and could show that EI among a
system’s elements can indeed be greatest at a macro rather
than the micro level—a form of true causal emergence of the
macro over the micro. Despite the necessarily smaller state

Figure 7. Finding spatial and temporal maxima. (A) All possible spatial groupings of the four-element system from Fig. 2. (B) All possible spatial
groupings of the six-element system from Fig. 4. (C) All possible temporal groupings for the two-element system in Fig. 5. (D) All possible spa-
tial groupings for the six-element system in Fig. 6. For each of the four systems previously examined, the coarse grains at each possible spatio-
temporal level are plotted against their U values (y-axes) on the left of the figure. The x-axes represent the levels of the system: level 0 being
the micro level, level 1 being a single grouping of two micro elements and so on as the degree of coarse-graining increases until all the ele-
ments have been grouped into one macro element (which always has a U¼ 0). In the left plots, the solid color data points represent the maxi-
mum U value of all the groupings at that particular level. The relationships between levels are shown as arrows: each represents a further
grouping of a lower level. Note that in each example system the path from the micro level to the grouping with UMax (tracked by solid arrows)
includes the maximum U value at almost every level (except the example shown in B at level 4).
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space of the coarse-grained macro level, “the macro can beat
the micro” if the micro level has greater indeterminism and/or
degeneracy than the macro level (Hoel et al., 2013).

Integrated information (U) assesses several key features of
cause–effect power that are not captured by EI (Oizumi et al.,
2014): the dependence of cause–effect power on the specific
state the system is in (state-dependency); the cause–effect
power of the system’s parts (composition); whether the whole
system is causally irreducible to its parts (integration); and what
defines the system’s causal borders (exclusion). In measuring U,
the first step is to evaluate the cause–effect repertoires specified
by all subsets of elements within a system. Each subset of ele-
ments in a state (a “mechanism”) constrains past and future
states within its candidate system, and the extent of this con-
straint is the mechanism’s selectivity. The integrated informa-
tion of a mechanism (u), in turn, measures to what extent a
cause–effect repertoire specified by the mechanism is irreduc-
ible to that specified by its parts. Maximally irreducible cause–
effect repertoires are called concepts (see “Theory” section). The
present analysis distinguishes three features of the cause–effect
repertoire of a concept—repertoire size, irreducible selectivity,
and selectivity-shift. Repertoire size is a function of the number
of elements whose past and future states are constrained by a
concept. Since there are necessarily fewer macro than micro el-
ements (or intervals), macro-level concepts have an a priori
lower capacity for u. Coarse-grains are thus at a disadvantage in
terms of cause–effect power. However, in line with previous re-
sults (Hoel et al., 2013), we show here that macro mechanisms
can make up for their reduced repertoire size by achieving
higher selectivity.

As we moreover confirmed, this result holds even though
integrated information postulates the additional requirement
of irreducibility (integration): Macro-level mechanisms can
achieve greater irreducible selectivity. This means that the
macro can win if macro mechanisms constrain past and future
macro states irreducibly—above and beyond their parts—to a
far greater extent than micro mechanisms do. Selectivity-shift
further accounts for any change in the probability of past and
future states irrespective of changes in irreducible selectivity,
though its contribution in the examples presented in this article
is minor. Finally, the example of Fig. 5 shows that the winning
macro system can contain irreducible higher-order mecha-
nisms (composed of two elements) that have no counterpart in
the best micro system.

A system’s spatiotemporal scale from its intrinsic
perspective

As mentioned in the Introduction, integrated information cap-
tures several essential features of cause–effect power that go
above and beyond EI, namely state-dependency, composition,
integration, and exclusion. These features make U a measure of
“intrinsic” cause–effect power, which according to IIT is a re-
quirement for identifying the PSC of consciousness (Tononi,
2012, 2015; Oizumi et al., 2014). As previously shown, these as-
pects are also essential for understanding how the causal struc-
tures of simulated organisms evolve in a simulated
environment (Albantakis et al., 2014) and for the causal analysis
and classification of discrete dynamical systems, such as cellu-
lar automata (Albantakis and Tononi, 2015). Here, we show their
importance for establishing conclusively if and when macro
beats micro.

Unlike EI, U assesses the combinatorial contribution of the
system’s parts on its cause–effect power (composition), which is

significant in assessing coarse-grains given that a system has
vastly more parts, hence combinations, at the micro level.
Crucially, evaluating irreducibility at every spatiotemporal grain
ensures that we do not attribute cause–effect power to collec-
tions of elements that causally are nothing more than the sum
of their parts (integration). Moreover, assessing maxima of irre-
ducible cause–effect power ensures that we identify the borders
that define a causal system at each spatiotemporal grain (exclu-
sion). This is equivalent to requiring that the cause–effect power
of each element is counted only once (Oizumi et al., 2014). The
search for a maximum of integrated information (UMax) thus
identifies a definite spatiotemporal scale at which a set of ele-
ments “self-defines” as a complex—the grain size at which it
“comes into focus” causally from its own intrinsic perspective.
Such a grain size is determined by the intrinsic cause–effect
structure of the system itself, as opposed to being the most con-
venient or interesting scale for an external observer.

Since integrated information U evaluates not just average
cause–effect power, but additionally takes into account state-
dependency, composition, integration, and exclusion, it is a
much more sensitive measure of intrinsic cause–effect power
than EI. For example, an analysis purely in terms of EI (Hoel
et al., 2013) of the system in Fig. 6 would have concluded that
the overall system has maximum cause–effect power at the mi-
cro level. Instead, the present analysis shows that the system is
actually constituted of a macro-level complex (a,b) that super-
venes on (ABCD), but does not include the micro-level elements
(EF). As determined by UMax, the macro complex (a,b) is a system
from its own intrinsic perspective.

Assessing the intrinsic spatiotemporal scale of the
brain: limitations and heuristic strategies

An open question in neuroscience is whether there is a particu-
lar spatial and temporal grain at which the brain “works.”
Consider the many cognitive functions carried out by the cere-
bral cortex: does every neuron matter, or only groups of neu-
rons? Does every spike count, or only synchronous activity over
tens of milliseconds? From the extrinsic perspective of an ob-
server, the spatiotemporal scale of measurement drastically af-
fects whether an event is information rich or scarce (Panzeri
et al., 2010). The approach presented here suggests a principled
way of determining how the brain decomposes into causal sub-
systems and at which respective spatiotemporal grains from its
own intrinsic perspective. In other words, while a neurophysiol-
ogist can investigate the cerebral cortex at every level, from
quantal release of transmitters to the functional connectivity
among entire brain regions, from the intrinsic perspective there
is a privileged spatiotemporal grain at which cause–effect power
is exerted.

Given practical and computational constraints, using U to
evaluate the intrinsic spatiotemporal scale of the brain across
all its possible levels and sets of elements is infeasible. All the
examples discussed in this study are small, idealized binary
systems for which cause–effect structures and associated U val-
ues could be assessed rigorously at all spatiotemporal grains.
Even for such simple, completely characterized systems, calcu-
lating U across all levels is computationally demanding. For
larger systems, and certainly for real systems that are not com-
pletely characterized at the microphysical level, an exhaustive
assessment of U is problematic. Nevertheless, heuristic criteria
can be employed to identify a range of coarse-grainings with
high likelihood of yielding high U values. In the brain, this range
likely includes individual neurons or groups of neurons in
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space, and milliseconds to a few seconds in time, as it is un-
likely that finer grainings would yield substantial integration or
that coarser grainings would yield sufficient selectivity. Within
a population of neurons, assessing whether intrinsic cause–ef-
fect power is higher at the level of individual neurons or groups
of neurons would be difficult but not impossible given currently
available neurophysiological and optogenetic tools. Assuming a
coarse-grained state space, for example, in which each neuron
has three relevant states (“silent,” “firing,” and “bursting”), the
TPM of a population of neurons could be obtained by using
optogenetics to perturb elements and calcium imaging to ob-
serve their transitions. From this TPM intrinsic cause–effect
power (U) can, in principle, be evaluated across all levels of
coarse-graining (see “Theory” section).

If applying the full IIT computation were too prohibitive, one
could still assign neurons into distinct macro-groups guided by
heuristic criteria (e.g. similar receptive fields, etc.) and compare
the irreducible selectivity of their macro cause–effect reper-
toires against those of individual neurons. The present results
indicate that, in every example considered, there is a “path” of
coarse-grains such that tracing the highest U values at each
level eventually leads to the overall maximum value of U (Fig.
7). This suggests that, by performing iterative searches by gradi-
ent ascent, it may be possible to more rapidly converge onto the
optimal spatiotemporal grain, which would allow assessing a
greater number of potentially relevant coarse-grainings in the
brain. This would indicate whether the macro level could in-
deed make more of a difference from the intrinsic perspective
of the neuronal population itself.

At the more coarse-grained levels of smaller or larger brain
regions, neuroimaging studies can be used to evaluate two key
requisites for high U: the informational capacity of a system can
be approximated by measures that capture neurophysiological
“differentiation,” the repertoire of distinct neural states the sys-
tem can visit (Boly et al., 2015; Marshall et al., 2016); integration
can be assessed through measures of functional or effective
connectivity between brain regions (Seth et al., 2011; Boly et al.,
2012). Neurophysiologically realistic, large-scale computer sim-
ulations (Deco et al., 2014) are another, complementary ap-
proach to assess intrinsic cause–effect power as they enable
investigating the effects of perturbations at various levels of
coarse-graining.

The fact that the current framework can only be applied to
discrete systems is another limitation. However, even if truly
continuous systems were to exist, any causal analysis based
on perturbation and measurement would be necessarily
coarse-grained, as it is impossible to perturb a continuous
system into every state with equal likelihood. Even so, it may
still be possible to show that U values decrease when fine-
graining perturbation and measurement toward their physi-
cal limit.

Finally, in the present work, each macro element was de-
fined by coarse-graining micro elements, i.e. by averaging over
all their inputs and outputs (states). This approach may be ade-
quate when considering, for example, whether within some
parts of the brain neurons with similar response properties, in-
puts, and outputs have more cause–effect power taken as
groups or as individual neurons. Coarse-graining is not appro-
priate, however, for determining if a neuron, taken as a macro
element, has more cause–effect power than the set of specifi-
cally organized molecules (or even smaller micro elements) that
constitute it. To evaluate macro causal emergence in such
cases, instead of coarse-graining, one needs to “black box”
many micro elements within a macro element and consider

just a few inputs and outputs to/from the black box (e.g. the
neuron). Furthermore, the present work focuses on the role of
selectivity in understanding how the macro can beat the micro,
by strengthening the cause–effect power of mechanisms in the
system. Another possible way for the macro to beat the micro is
by specifying additional mechanisms (especially higher-order
mechanisms) at the macro level that are not specified at the mi-
cro level, a possibility not explored in the current work. These
topics will be the subject of a future publication (Marshall et al.,
2016).

The spatiotemporal grain of consciousness

Establishing the spatiotemporal grain at which intrinsic cause–
effect power peaks in the brain is not only important in its own
right but, according to IIT, it is directly relevant for characteriz-
ing the neural substrate of consciousness. In fact, measures of
integrated information were originally developed with the ex-
plicit purpose of characterizing the requirements for physical
systems to be conscious (Tononi, 2004, 2008, 2012; Oizumi et al.,
2014). Specifically, based on phenomenological axioms, IIT
claims that the PSC of consciousness is a set of elements in a
state, at a particular spatiotemporal grain, that specifies a
cause–effect structure having maximally irreducible, composi-
tional, intrinsic cause–effect power (Tononi, 2012; Tononi et al.,
2016). Currently, U-related measures (Barrett and Seth, 2011;
Oizumi et al., 2016) and other indices of causal effectiveness are
already being applied in both theoretical and empirical studies
of consciousness (Seth, 2008; Seth et al., 2011; Casali et al., 2013).
For this purpose, it is important to establish the spatiotemporal
grain of the neural elements constituting the neural substrate
of consciousness and thereby account for why consciousness
occurs at the particular spatiotemporal scale it does (Tononi,
2004; Marom, 2010; Chalmers, 2013).

It is not currently known whether neurons or groups of neu-
rons at coarser or finer grains of activity form the units corre-
sponding to phenomenological distinctions (Tononi et al., 2016).
In principle, using an approach similar to the one presented
here, it should be possible to assess at which spatiotemporal
grain integrated information reaches a maximum in the brain.
With experimental techniques like those outlined above, one
could now test IIT’s prediction that the neurophysiological max-
imum of cause–effect power corresponds to the spatiotemporal
scale of experience (Bachmann, 2000; Holcombe, 2009). If the ex-
perimental evidence indicates that neuronal groups rather than
single neurons constitute the scale of maximal intrinsic cause–
effect power in the brain, IIT would predict that changes in the
average activity of a group of neurons should make a difference
to the content of experience, while changes to individual neu-
rons that do not affect the average group activity should not
(Tononi et al., 2016).

Another interesting question that could be addressed is to
what extend the spatiotemporal grain and relevant activity
states of the elements with maximal integrated information
(UMax) vary across brain regions, time, different states of con-
sciousness (wake, dreamless sleep, anesthesia), and even differ-
ent tasks or attentional states.

Finally, if the prediction were validated by studies in hu-
mans, one could extrapolate to the spatiotemporal scale of ex-
perience in other species, at least some of which are known to
integrate sensory signals at a temporal scale that is different
from ours (Healy et al., 2013).
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Supplementary data

Supplementary data is available at Neuroscience of
Consciousness Journal online.
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Highlights

• Integrated information can be measured in systems at
different spatial and temporal scales.

• Integrated information is a state-dependent measure
of causal power from the intrinsic perspective of the
system.

• This approach provides a way to assess the spatiotem-
poral scale of the physical substrate of consciousness.
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