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Abstract

African savanna vegetation is subject to extensive degradation as a result of rapid climate and land 

use change. To better understand these changes detailed assessment of vegetation structure is 

needed across an extensive spatial scale and at a fine temporal resolution. Applying remote 

sensing techniques to savanna vegetation is challenging due to sparse cover, high background soil 

signal, and difficulty to differentiate between spectral signals of bare soil and dry vegetation. In 

this paper, we attempt to resolve these challenges by analyzing time series of four MODIS 

Vegetation Products (VPs): Normalized Difference Vegetation Index (NDVI), Enhanced 

Vegetation Index (EVI), Leaf Area Index (LAI), and Fraction of Photosynthetically Active 

Radiation (FPAR) for Etosha National Park, a semiarid savanna in north-central Namibia. We 

create models to predict the density, cover, and biomass of the main savanna vegetation forms: 

grass, shrubs, and trees. To calibrate remote sensing data we developed an extensive and relatively 

rapid field methodology and measured herbaceous and woody vegetation during both the dry and 

wet seasons. We compared the efficacy of the four MODIS-derived VPs in predicting vegetation 

field measured variables. We then compared the optimal time span of VP time series to predict 

ground-measured vegetation. We found that Multiyear Partial Least Square Regression (PLSR) 

models were superior to single year or single date models. Our results show that NDVI-based 

PLSR models yield robust prediction of tree density (R2=0.79, relative Root Mean Square Error, 

rRMSE=1.9%) and tree cover (R2=0.78, rRMSE=0.3%). EVI provided the best model for shrub 

density (R2=0.82) and shrub cover (R2=0.83), but was only marginally superior over models based 

on other VPs. FPAR was the best predictor of vegetation biomass of trees (R2=0.76), shrubs 

(R2=0.83), and grass (R2=0.91). Finally, we addressed an enduring challenge in the remote sensing 

of semiarid vegetation by examining the transferability of predictive models through space and 

time. Our results show that models created in the wetter part of Etosha could accurately predict 

trees’ and shrubs’ variables in the drier part of the reserve and vice versa. Moreover, our results 
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demonstrate that models created for vegetation variables in the dry season of 2011 could be 

successfully applied to predict vegetation in the wet season of 2012. We conclude that extensive 

field data combined with multiyear time series of MODIS vegetation products can produce robust 

predictive models for multiple vegetation forms in the African savanna. These methods advance 

the monitoring of savanna vegetation dynamics and contribute to improved management and 

conservation of these valuable ecosystems.
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1. INTRODUCTION

Savanna ecosystems cover about fifth of the Earth's land surface and just under half of 

Africa’s land area (Ciais, et al. 2011; Shackleton and Scholes 2011). These ecosystems 

provide pivotal ecosystem services including carbon sequestration, water filtration, soil 

stability, meat and dairy production, fuel wood provision, tourism, and recreation (Solbrig 

1996; Vågen, et al. 2005). In addition, African savannas harbor rich biodiversity and provide 

habitat and connectivity for far-roaming wildlife (Sankaran, et al. 2013). However, savanna 

ecosystems face degradation due to changes in land use, climate change, fire, and 

management regimes (Mathieu, et al. 2009; Mitchard and Flintrop 2013; Vogel and 

Strohbach 2009). Monitoring rapid changes in savannas requires a method that maintains 

sufficiently high temporal resolution over large spatial extents. Remote sensing is a viable 

tool to predict biophysical measurements of cover, density, and biomass of savanna 

vegetation (Ban, et al. 2015; Boschetti, et al. 2013; Choudhury 1992; Dube and Mutanga 

2015; Naidoo, et al. 2012; Rahimzadeh-Bajgiran, et al. 2012; Zhu and Liu 2015). For 

convenience, we use the term “prediction” hereafter to refer to the modeled relationship 

between reflectance data and field-based vegetation measurements.

Savannas are extensive, and often remote and inaccessible, complicating protocols for their 

monitoring. Field methodologies for measuring vegetation change are typically limited in 

extent, expensive, and time consuming. Therefore, the use of low and moderate resolution 

remote sensing, including Moderate Resolution Imaging Spectroradiometer (MODIS), has 

been applied to characterize savanna vegetation throughout Africa (Eisfelder, et al. 2012). 

Nonetheless, the sparse vegetation in these arid and semi-arid areas and high reflectance of 

soil background continue to present a major challenge to the use of remote sensing to predict 

continuous vegetation variables (Ali, et al. 2016; Ghulam, et al. 2007; Rahimzadeh-Bajgiran, 

et al. 2012; Svoray, et al. 2013). Moreover, savanna vegetation is senesced during prolonged 

periods of the year (Eisfelder, et al. 2012). Low chlorophyll content of senescent vegetation 

reduces the red-to-near infrared (NIR) spectral contrast, which impairs our ability to 

distinguish vegetation from background soil. These characteristics present additional 

challenges when using remote sensing to directly predict dry biomass (Homer, et al. 2013; 

Huete 1988; Mayr and Samimi 2015; Meyer and Okin 2015). One approach to addressing 
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these challenges is to use spectral products targeted at enhancing vegetation that use red, 

near infrared (NIR), and shortwave infrared (SWIR) wavelengths which are particularly 

sensitive to vegetation changes (Houborg, et al. 2007).

MODIS provides four preprocessed vegetation products. Two of these products are 

vegetation indices, Normalized Difference Vegetation Index (NDVI), and Enhanced 

Vegetation Index (EVI). The other two are vegetation quantities derived partly from spectral 

vegetation indices: Leaf Area Index (LAI), and Fraction of Photosynthetically Active 

Radiation (FPAR) (Knyazikhin, et al. 1999). We refer to these four MODIS-derived products 

as “Vegetation Products” (VPs). These MODIS VPs are freely available, atmospherically 

and geometrically corrected, and based on extensive field validation campaigns (Solano, et 

al. 2010). Therefore, these VPs are readily available to practitioners, and particularly 

valuable for savanna conservation applications (Li, et al. 2015a; Tsalyuk, et al. 2015).

NDVI has been widely applied to predict vegetation cover, above-ground biomass and 

greenness (Jacquin, et al. 2010). While the relationship between NDVI and above-ground 

green biomass is well established (Eisfelder, et al. 2012; Li, et al. 2012; Zhu and Liu 2015), 

research has indicated the limited capacity of NDVI to predict senesced vegetation (Xu, et 

al. 2014). Conversely, the EVI index is sensitive to a wider range of canopy cover than 

NDVI (Huete, et al. 2002). The EVI index includes the red and IR bands of NDVI, and 

additionally incorporates a blue band, soil adjustment factor, and atmospheric resistance 

terms, which correct the influence of aerosol on the red band (Sjostrom, et al. 2011). This 

correction is specifically useful in open canopies such as savanna and shrublands, where the 

background signal may have prominent effect on radiometric measurements of vegetation 

(Huete, et al. 2002). There is a strong correlation between EVI and gross primary 

productivity (GPP) in African ecosystem (Jin, et al. 2013; Sjostrom, et al. 2011). Li et al. 

( 2012) show a strong relationship between EVI, Net Primary Productivity (NPP), and 

forage production in rangelands. Time series of MODIS EVI was successfully used to 

classify land cover in Northern China (Zhang Xia, et al. 2008), identify maize crop 

cultivation areas (Zhang, et al. 2014), and monitor global crop yield (Zhang and Zhang 

2016).

Leaf Area Index (LAI) provides information on plant canopy structure by measuring the 

total green leaf area per unit ground-surface area (Lotsch, et al. 2003). FPAR is a unitless 

fraction, measuring the proportion of radiation absorbed by the canopy out of the total 

available radiation in the photosynthetically active wavelengths of the spectrum 400–700 

nm. FPAR is an important measure of carbon cycling and energy budget (Huete, et al. 2002). 

Both LAI and FPAR have been measured in the field as prominent indicators of vegetation 

condition. Research has demonstrated that both these vegetation properties have higher 

correlations with senesced grass biomass than does NDVI (Asner, et al. 1998; Butterfield 

and Malmstrom 2009). FPAR was shown to correlate with both green grass biomass and 

litter canopy, indicating its ability to predict dry vegetation biomass (Machwitz, et al. 2015). 

Recently, LAI and FPAR have being used as satellite-derived products for calculating 

surface photosynthesis, evapotranspiration, land cover, and net primary productivity (Huete, 

et al. 2002; Knyazikhin, et al. 1999; LP DAAC 2002–2012; Myneni, et al. 2002).
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The MODIS-based algorithm of LAI/FPAR products was designed to use up to seven 

spectral bands of MODIS surface reflectance (648, 858, 470, 555, 1240, and 2130 nm) 

(Knyazikhin, et al. 1998). However, until recently only the red (648 nm) and infrared bands 

(858nm) were used (Yan, et al. 2016), similar to NDVI. The relationships among NDVI and 

LAI and NDVI and FPAR have received attention (Myneni, et al. 2010). However, these 

relationships are influenced by land cover and the vegetation canopy structure (Lotsch, et al. 

2003). To deal with this, MODIS LAI/FPAR algorithm uses NDVI bands and relies on world 

classification of six biomes together with extensive field validation to define vegetation 

structure (Lotsch, et al. 2003). The algorithm links surface bi-directional reflectance factor 

(BRT) to structural and spectral properties of vegetation and soil (Yan, et al. 2016). 

Importantly, LAI/FPAR in situ measurements show a good correlation with MODIS-derived 

values (Fensholt, et al. 2004; Zhao, et al. 2007).

An additional challenge in applying remote sensing in savannas is encompassing the high 

inter- and intra-annual variability of the vegetation in these ecosystems. Capturing seasonal 

and inter-annual variation is especially important in savannas, where vegetation biomass is 

highly dependent on variable rainfall (Scanlon, et al. 2005). Time series of VPs capture 

vegetation phenology over time; and, therefore, they can improve the prediction of 

vegetation variables (Rao, et al. 2015; van Hoek, et al. 2016; Zhu and Liu 2015). Indeed, 

integrated (summed) values and maximum annual NDVI and FPAR values over the growth 

year show strong correlations with above-ground herbaceous biomass (Li, et al. 2015a; 

Zhang, et al. 2016). Annually integrated VI data show better correlations with field 

measured herbaceous biomass than a single-date VI value (Verbesselt, et al. 2006; Yi, et al. 

2008; Zhou, et al. 2013). Time series information, such as times of green up and senescence/

dormancy onset and the length of the growing season have been used to describe vegetation 

phenology

(Lu, et al. 2014a; Lu, et al. 2014b; Zhang, et al. 2003), and to differentiate between growing 

cycles of trees or grasses (Archibald and Scholes 2007). Time series of MODIS-derived EVI 

predict maize (Zhang, et al. 2014) and winter wheat (Qiu, et al. 2017) cultivated areas across 

China with considerable accuracy.

In spite these recent developments, remote sensing of biophysical variables of savanna 

vegetation remains a challenge (Mayr and Samimi 2015; Meyer and Okin 2015). A major 

hindrance in the application of remote sensing data for monitoring and management is 

transferability of models between sites, when trying to apply models developed for one area 

to predict vegetation variables in others (Cutler, et al. 2012; Foody, et al. 2003; Sumnall, et 

al. 2016). Eisfelder et al. ( 2012) identified the transferability of remote sensing-based 

methods to measure biomass as a major challenge in semi-arid environments. The high 

spatial and temporal variability in savanna vegetation present a challenge to transfer 

established relationships between ground-based measurements and satellite information.

The aim of this study is to improve the application of remote sensing to predict vegetation in 

an African savanna in Etosha National Park, Namibia. We examine to what degree 

incorporating time series data of four Vegetation Products (VPs) derived from MODIS 

improves the prediction of vegetation biophysical variables in a savanna ecosystem. We 
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compare the ability of these VPs to predict the cover, density, and biomass of different 

savanna vegetation forms (grass, shrub, and trees), and assess the accuracy of each product's 

predictions. We hypothesize that since each VP has unique radiometric and analytical 

properties, each will be best suited to predict a specific vegetation variable. Finally, our 

study addresses the challenge of transferring remote sensing-based models across space and 

time by using extensive field data, multiyear satellite information, and using Partial Least 

Square Regression (PLSR) to carry out robust statistical modeling. Our goals are to:

1. Create reliable and accurate remote sensing models to predict density, cover, and 

biomass, of the three main vegetation forms in savanna ecosystems: trees, shrubs, 

and grasses;

2. Use time series of MODIS VPs to predict vegetation and quantify the 

improvements in prediction models with extended time periods;

3. Compare four MODIS-derived VPs – NDVI, EVI, LAI, and FPAR – in terms of 

their ability to predict accurately different vegetation form; and

4. Assess the transferability of our vegetation predictive models across space and 

time.

2. METHODS

2.1. Study Site

Etosha National park is a 22,270 km2 reserve, located in north-central Namibia (18o45′S, 

15o30′E) (Figure 1). It is a semi-arid savanna with a gradient of 200–450 mm of rainfall per 

year. Etosha experiences three main seasons: cold-dry (May–August), warm-dry 

(September–December), and warm-wet (January–April) season (Du Plessis, et al. 1998). 

Etosha is primarily flat, transitioning to hillier terrain in its far west. The main vegetation 

types in the reserve are grassland savanna, steppe, shrubland, Mopani (Colophospermum 
Mopane) tree savanna, and a mix trees savanna (Du Plessis 2001, Le Roux et al. 1988). 

Etosha pan is a natural saline lake depression spanning 4,410 km2, which is dry most of the 

year and is seasonally filled with water (de Beer et al., 2006).

2.2. Vegetation Measurement

We collected extensive vegetation data across Etosha over two field seasons. During the dry 

season, June to August 2011, we measured 348 sites. The dry season is the suggested time 

for field validation of remote sensing data, since then the differences between the vegetation 

types are most pronounced (McCoy 2005). During the wet season of March to April 2012, 

we resampled 110 out of the original 348 sites. We performed wet season sampling to 

evaluate seasonal differences in vegetation measurements, and to evaluate how well remote 

sensing-based models developed for one season can be applied to predict vegetation in the 

other.

Sampling sites were at least 500 m away from each other to minimize spatial correlation. We 

sampled at least 50 m away from roads and at least one kilometer away from watering points 

to minimize sampling of possible edge effects of these features. To avoid off-road driving, 
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we sampled within a strip of 50–300 m away from roads. Within this buffer, we used 

stratified random sampling design to ensure equal representation of each vegetation class in 

Etosha. We stratified the region based on physiognomic vegetation classification derived 

from Landsat 5 TM that was created for Etosha in 1996 (Sannier, et al. 1996; Taylor, et al. 

1996). These vegetation classes are described in Table 1 and presented in Figure 2. Based on 

Sennier's classification map, we choose sampling sites located within at least 1 km2 of 

uniform vegetation class, to insure sampling within uniform 250 x 250 m MODIS pixels.

One of our goals was to create an efficient, accurate, and relatively rapid method for field 

sampling of vegetation in the vast landscapes savannas encompass. We compared and 

calibrated visual estimation with detailed field measurements. To avoid bias, all visual 

estimations were performed by the same observer. We compared the physiognomic 

vegetation class to visual cover estimation of bare soil, grass, shrubs, and trees. We then 

calibrated all visual estimations with field measurements of cover. Table 2 summarizes all 

vegetation variables and their measurement methods.

2.2.1. Woody Vegetation Measurements—We used the plotless point-centered quarter 

(PCQ) method to measure woody vegetation. PCQ is an accurate and labor efficient method 

for vegetation measurement that does not assume plants are randomly distributed (Engeman, 

et al. 1994; White, et al. 2008). At each site, we picked a random central sampling point 

around which we divided the area into four equal quarters. In each quarter we measured the 

two shrubs and the two trees closest to the central point, to obtain a set of eight distance 

values R1 to R8 (eight trees and eight shrubs in total). We measured the distance from the 

central point to the trunk, the canopy area, height, and the diameter at breast height (DBH, 

1.37 meters) of each individual plant. The species of each measured plant was recorder. Tree 

density D (trees per hectare) at each sampling site was calculated using the following 

equation (Pollard 1971) in terms of a correction factor (CF) and the eight distances R1 to R8:

D = 28 ∗ CF ∗ 104

π ∗ ∑i = 1
8 Ri

2 (1)

CF accounts for the proportion of missing individuals in each point (Warde and Petranka 

1981). The factor 104 converts density measurement from plants per square meter to plants 

per hectare. Same calculations were used to calculate shrub density.

Canopy cover C (m2/ha) was calculated for each sampling site as the average of eight 

measured canopy sizes multiplied by the density. Woody biomass B (in metric tons) at each 

sampling site was calculated, separately for trees and for shrubs, using the following 

equation formulated by Henry et al. ( 2011) in terms of trunk radius ri, tree height hi, and 

tree density D (as determined by Eq. 1.):

B = ∑
i = 1

8 (πri
2 ∗ hi ∗ 0.5 ∗ 0.7 ∗ 103)D

8 (2)
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We used average woody specific gravity = 0.7 Mg*m−3 as suggested for Etosha (Alleaume, 

et al. 2005), and average coefficient = 0.5 for conic trees suggested by Henry et al (2011).

2.2.2. Grass Measurements—We used a 1x1 m frame to measure herbaceous 

vegetation. We recorded percent cover of grass, soil, and forbs within the frame and 

identified the two dominant grass species and their cover. We used two complementary 

methods to measure grass biomass: assigning a visual biomass class of 1–7 (C) for each 1 

m2 frame, and measuring the height h (cm) of a Disc Pasture Meter (DPM) (Trollope and 

Potgieter 1986). We calibrated both methods by clipping and weighting dry biomass grass in 

a subsample of 75 points. Calibration of grass biomass showed strong, significant 

correlations between DPM measurements and direct biomass weighting (R2=0.94, p<0.001, 

n=75); and between visual class estimation C and field grass measurement (R2=0.87, 

p<0.001). We determined the grass biomass Btotal (gr/m2) at each sampling site by averaging 

the two methods over five measurements taken at each site.

2.3. MODIS Vegetation Products

For each vegetation form: grasses, shrubs, and trees, we compared models based on MODIS 

Vegetation Product (VP) that would best correlate with its field measurements of cover, 

density, and biomass (eight field variables in total). We used four MODIS-derived VPs: 

MODIS MOD13Q1 provides Normalized Difference Vegetation Index (NDVI) and 

Enhanced Vegetation Index (EVI); MODIS MOD15A2 provides Leaf Area Index (LAI) and 

Fraction of Photosynthetically Active Radiation (FPAR) (Table 3). We acquired MODIS 

data products for 2006 – 2012, collection 5, from NASA's Reverb website (EODIS 2013). 

We extracted the values of each VP in the pixel overlaying each sampling site, using the 

Spatial Analyst Tools in ArcGIS 10.2 (ESRI 2011).

MODIS images the earth daily. MOD13Q1 product for NDVI/EVI provides data as a 16-

days average in a 250 x 250 m resolution, while MOD15A2 product for LAI/FPAR provides 

8-day average with a 1 x 1 km resolution (Table 3). There is limited cloud cover over Etosha 

National park year round, providing good quality control (QC) values in most pixels, as 

indicated by the products' QC layers; we also removed null values (249–255). Marginal 

quality pixels occurred within the Etosha pan; therefore, we excluded this region from the 

analysis. Pixel gaps in the MODIS dataset were removed from the analyses to avoid 

introducing error that may result from the application of various extrapolation or smoothing 

methods (Weiss, et al. 2014). We resampled FPAR and LAI data to match NDVI’s 250 x 250 

m resolution using nearest neighbor assignment resampling technique through the 

application of the “Conditional” function in Spatial Analysis tools of ArcGIS 10.2 in batch 

mode (ESRI 2011). Table 3 summarizes the products used.

NDVI is calculated in terms of ρred and, ρNIR, which are the reflectance measured by the 

satellite sensor in the red (620–670 nm) and near infrared (841–876 nm) wavelengths, 

respectively, using Equation 3 (Tucker, et al. 1981):
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NDVI =
ρNIR − ρred
ρNIR + ρred

(3)

In addition to the red and the NIR wavelengths used above, EVI includes an atmospheric 

resistance term by adding ρblue which is the reflectance measure at the blue wavelength 

(459–479 nm). Addition of canopy background adjustment L, and aerosol correction factors 

C1 and C2, correct the blue and red bands relative to the NIR band. The correction and 

adjustment factors used in the MODIS EVI algorithm are: L=1, C1=6 and C2=7.5, using 

Equation 4 (Huete, et al. 2002):

EVI =
ρNIR − ρred

ρNIR + C1 ρred − C2ρblue + L (4)

The MODIS-based LAI/FPAR products currently use only the red (648 nm) and IR bands 

(858nm) of MODIS (Yan, et al. 2016). The algorithm then uses one of six biomes for each 

location to solve a radiative transfer equation to estimate LAI and FPAR values. LAI values 

range from 0–10 and FPAR ranges from 0–1 (Knyazikhin, et al. 1999; Myneni, et al. 2002).

2.4. Statistical Analysis

2.4.1. Summary statistics—We used six years of MODIS VPs data (October 2006 to 

October 2012) to incorporate inter- and intra-annual variations into our vegetation predictive 

models. Inspecting time series patterns of each VP revealed that there is one annual growth 

cycle in Etosha. The annual minimum values of all four VPs occur in the hot-dry season, 

around mid-October. Therefore, we used “growth year” for all the analyses, calculating one 

year from October 16th of the previous year to October 15th of the current year. For each 

year and each VP, we calculated summary statistics for all MODIS data points provided for 

one year, 23 data points per year for NDVI/EVI, or 46 points for LAI/FPAR. We calculated 

the following nine summary statistics values: annual minimum; annual maximum; annual 

median; annual sum defined as: sumvp = ∑
i = 1

n
VPi, where i is each date the VP is calculated 

by MODIS (n=23 for NDVI/EVI, or n=46 for LAI/FPAR); annual average calculated as: 

VPvp = 1
n · ∑

i = 1

n
VPi; and annual standard deviation calculated as: 

SDvp = 1
n − 1 · ∑

i = 1

n
(VPi − VPi)

2. Additionally, we identified the Julian date of annual 

minimum occurrence and date of annual maximum occurrence. The length of the growing 

season was calculated as the number of consecutive days that VP values were above the 50th 

percentile for that year. We multiplied value by 8 or 16, to match MOD15A2 or MOD13Q1 

time intervals, respectively. Finally, for each sampling point we extracted the VP values at 

the closest date to the field sampling.
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As a baseline analysis, we performed univariate regressions between each of the eight 

vegetation variables (density, cover, and biomass of grasses, shrubs, and trees) and a single 

VP value, calculated for the closest date to vegetation measurement in the field. We also 

calculated the correlation between each variable and each of the four VPs summary statistics 

for one year, 2011, the year when the primary field sampling took place.

2.4.2. Partial Least Square Regression (PLSR)—To create predictive models that 

incorporate up to six years of VP data while reducing the dimensionality of the data, we 

used Partial Least Square Regression (PLSR) (Darvishzadeh, et al. 2011; Hansen and 

Schjoerring 2003; Huang, et al. 2004). PLSR is a powerful regression technique that is able 

to handle datasets with multiple predictor variables that exhibit high levels of 

multicollinearity. The method generates orthogonal latent variables (components) that are 

linear combinations of the standardized predictor variables, such that each component 

explains the maximum covariance between the response and the predictor variables (Mevik 

and Wehrens 2007). The loadings are the regression coefficients, or relative weights, of each 

of the original predictor variables in the new component (Asner and Martin 2008; Hansen 

and Schjoerring 2003; Mitchell, et al. 2012; Ramoelo, et al. 2013; Schmidtlein and Sassin 

2004). PLSR is a good collinearity reduction technique for time series analysis, and was 

successfully used with multitemporal MODIS data (Lazaridis, et al. 2011). Woody 

vegetation measurements (shrubs and trees) appeared to be log-normally distributed; 

therefore, we used the natural log of these measurements as the response variable (Wold, et 

al. 2001). For grass and shrub measurements, we performed analysis using only sample 

points at open cover types (grassland, grass savanna, steppe, and shrub savanna). We 

performed these analyses using package pls in R (Mevik and Wehrens 2007).

To validate the statistical robustness of PLSR models, we performed leave-one-out cross-

validation and used the resulting root-mean-squared error of prediction (RMSEP) as a 

measure of model quality (Mevik and Cederkvist 2004). This method is regarded as the best 

estimation of error and model quality for PLSR, while avoiding over-fitting the model 

(Lazaridis, et al. 2011; Mevik and Cederkvist 2004). We used the exponents of RMSEP 

values for log models.

To choose the optimal number of PLSR components we plotted the leave-one-out cross-

validation RMSE as a function of the number of components for every combination of 

vegetation variable (density, cover, and biomass of grass, shrubs, and trees) and Vegetation 

Product (NDVI, EVI, LAI, FPAR) (supplemental materials Figure S1). We chose to use the 

first ten PLSR components because this number minimized the model error (RMSE) while 

optimizing the percent of variance explained (equivalent to R2) for all vegetation variables 

(Darvishzadeh, et al. 2008; Geladi and Kowalski 1986). We used the same number of 

components (10) for all the models, to be able to compare between them.

2.4.3. Time series analysis—We hypothesized that including time series of remote 

sensing data will encompass the temporal variability and phenological patterns of savanna 

vegetation, and therefore will better predict vegetation variables. To test this hypothesis, we 

compared the relationship between VP-based models and each vegetation variable at three 

time scales: 1) one VP date, closest to date of field sampling, 2) summary statistics of one 
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year of VP, and 3) multiyear VP data of two to six years. We assumed that a period of few 

years would incorporate average annual rainfall fluctuations that affect vegetation growth. 

We performed cross validation of the models by randomly separating the data 50-50, to test 

and prediction datasets, and assessed how well each model predicted the data, as estimated 

by R2 and RMSEP. We further performed continues analysis comparing models that 

incorporated one, two, and up to six years of VP data. We compared models quality using 

their R2 and RMSEP.

2.4.4. Comparing MODIS Vegetation Product (VPs)—We compared the ability of 

each VP to predict each vegetation form (grasses, shrubs, tress), and their measurements 

(cover, density, and biomass). For each vegetation form, we constructed separate PLSR 

prediction model, based on one of the four VPs (32 models total). For each vegetation 

variable, we compared four multivariate PLSR models, based on one of the four VPs. We 

assessed the quality and robustness of the model that each VP produced using four methods: 

First, to provide a more intuitive measure of error, we calculated percent error as Relative 

Root Mean Squared Error (rRMSE), by dividing the RMSEP of each model by the average 

value of the vegetation variable (Song, et al. 2013). Second, we compared which of the four 

VP-based models has the highest R2. We calculated the relative ability of each VP to predict 

each vegetation variable as: ΔRi
2 = (Ri

2 − Rmax
2 )

Rmax
2 , where i is one of the four VP-based 

models, and Rmax
2  is the R2 of the best model among the four. Third, we compare the VPs by 

plotting the R2 and RMSEP for the first 25 PLSR model components, of each of the four 

models, and assessing the number of components needed in each model to reach higher R2 

with the lowest model error. Finally, we assessed the models’ quality by cross validation: we 

trained the model on two-thirds of the data (randomly selected) testing it on the remaining 

one-third, and examining the RMSE of the predicted values. We compared the resulting 

predicted versus measured values and their RMSEP.

2.5. Transferability

We assessed whether our models could be transferred across space and time by applying a 

predictive model built using a training dataset to predict vegetation variables of a test 

dataset. The ability to transfer vegetation prediction models across space and time is also a 

strong measure of models' robustness and an indication that the variables were not over-

fitted (Sumnall, et al. 2016). We compared the RMSEP of predicted versus measured 

vegetation variables. We examined model transferability in space by dividing Etosha to a 

drier area, where the annual rainfall was below the reserve’s ten-year annual rainfall average 

(360 mm/year), and a wetter area. This roughly separated Etosha into the east versus the 

central/west parts of the reserve. We then applied predictive models trained using field sites 

from the wetter area to predict vegetation variables in the dried area, and vice versa. This 

analysis also examined whether precipitation had an effect on models’ prediction quality.

We examined model transferability in time, by applying models trained using field 

measurements from the dry season of 2011 to predict vegetation measured in the wet season 

of 2012.
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3. RESULTS

3.1. Using MODIS to Predict Vegetation Variables

Univariate regressions of vegetation variables on MODIS-VPs provided weak but significant 

predictions. (Please see Supplementary Tables S1–S12 for complete results of univariate 

models.) When we used only one VP date, from the date closest to field measurement, 

NDVI was the best predictor, with R2 ten-fold or more than the other three VPs. NDVI 

annual average was the best predictor of grass cover (R2=0.43, p<0.001), shrub cover 

(R2=0.3, p<0.00), tree density, tree cover (R2=0.34, p<0.001), and tree biomass (R2=0.37, 

p<0.001) (S1–S12).

Univariate regressions with VP summary statistics of one year (2011) improved the results 

(Figure 3). Here, again, NDVI gave better predictive models than the other VPs for tree 

density (R2=0.44, p<0.001), cover (R2=0.42, p<0.001), and biomass (R2=0.37, p<0.001) 

(S9–S12). Partial Least Square Regression (PLSR) significantly improved the models’ 

ability to predict measured vegetation variables. PLSR models using first 10 components 

predicted up to 84% of variability in grass cover (RMSEP=30% cover), and 91% of 

variability in grass biomass, but with high error margins (RMSEP=47 g/m2) (Table 4).

Using NDVI, LAI, and FPAR -based PLSR models we achieved robust prediction of shrub 

density and shrub cover (82–83% variance explained with <1% error, RMSEP=11 shrubs/ha 

for EVI model). All VPs produced similar quality prediction of shrub biomass (83% of 

variability explained), but the error was high (rRMSE=15%) (Table 5). NDVI PLSR model 

produced good prediction of tree density (79% variability explained, RMSEP=4.3 trees/ha). 

NDVI and FPAR gave similarly good prediction of tree canopy cover (79% variability, 

RMSEP=4.3 m2/ha). FPAR produced good model for tree biomass (76% variability, 

RMSEP=0.89%) (Table 6).

3.2. Optimal Time Span for Predicting Vegetation Variables

We assessed the contribution of integrating VP data over time to model prediction quality, 

comparing the predicted versus measured values of models built for three different time 

spans (Figure 3, Tables 4–6, S1–S12). Summary statistics VP values for one year (2011) 

gave 30% better predictions of vegetation variables than VP acquired at a single date. For 

example, NDVI-based model for tree density had R2=0.54 between measured and predicted 

values when using NDVI data of one year (mean of 23 biweekly NDVI data points), whereas 

NDVI at one date produced R2=0.41 (p<0.001). Furthermore, the PLSR model using six 

years of NDVI data provided considerable improvement (110%) in prediction of tree density 

(R2=0.89) (Figure 3).

The quality of PLSR prediction models continued to improve when adding from one up to 

six years of VP data to the analysis (Figure 4). Percent variance explained (R2) increased by 

about 40% over the range, for both tree and grass cover, while there was little to no increase 

in the error (Figure 4).

Both the time span and the timing (date) of VP values used in the PLSR models affected the 

quality of the predictions. While these results varied across different vegetation variables, we 
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observed the following common patterns. VP values from the rainy season (January – 

March) and the maximum annual VP values had the largest loadings on the PLSR 

components (Figure 5). Interestingly, rainy season values from two or three years prior to the 

field measurement had the highest model coefficients (Figure 5).

3.3. Comparing MODIS Vegetation Products (VPs)

We compared four PLSR models for each vegetation variable, where each model was based 

on one of the four VPs. Each vegetation form had a different VP that gave its best prediction 

(Table 7). However, often the differences between the VPs were not pronounced (Tables 4–6, 

supplemental materials Figure S1). In most cases, EVI was a good predictor of vegetation 

cover, while FPAR was the best predictor of biomass (Tables 4–7).

Grass cover was best predicted by an EVI-based model, since it explained the highest 

proportion of the variance (R2=84%). However, LAI/FPAR showed lower, but still high, 

model error for grass cover (rRMSE=43% vs. 55%). For grass biomass, FPAR gave a strong 

prediction of R2=91, but the error was high (rRMSE=48%) (Table 4).

Shrub density, cover, and biomass, were best modeled with EVI, but the difference from the 

other VPs was small (1–2%). FPAR and EVI produced similar predictions of shrub biomass 

(R2=0.83), though FPAR had a smaller error (rRSME=15%) (Table 5).

Tree density was best predicted by NDVI, with 3–7% higher R2 than the other models. Tree 

canopy was predicted equally well by FPAR and NDVI; the latter had slightly smaller error. 

Tree biomass was best predicted by FPAR (R2=0.76). These results were very close (1%) to 

the NDVI model, which also produced lowest error (Table 6).

3.4. Model Transferability

We examined model transferability in space and time: in other words, how well did a VP-

based model created in one region predict vegetation in a different region or in another 

season. Based on the models selected for each vegetation variable (Tables 4–6), we used 

NDVI to assess transferability of models for tree variables and FPAR to assess transferability 

models for grass variables.

3.4.1. Transferability in space—When applying a model built with field data from the 

wetter area of Etosha to predict tree variables in the drier area, we achieved good correlation 

between predicted and measured values of tree density (RMSE=8.51 trees/ha), cover 

(RMSE=6.42 m2/ha), and biomass (RMSE=11.74 trees/ha) (Figure 6A, Table 6). There were 

also good correlations between predicted and measured tree values for models created for 

the drier part of Etosha and applied in the wetter part (RMSE = 7.57 trees/ha). Generally, 

there was a good fit between predicted and measured values for all tree variables, and 

particularly for tree biomass. A few values in the higher range of tree density were 

overestimates (Figure 6B).

For grass cover and biomass, prediction models trained for the wet area of Etosha 

overestimated measures in the drier area (RMSEP = 24% cover) (Figure 7A). Transferring 

models from drier to wetter area produced slightly better fit (Figure 7B). All RMSE values 

Tsalyuk et al. Page 12

ISPRS J Photogramm Remote Sens. Author manuscript; available in PMC 2019 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were quite high, around 50%. For all vegetation forms, the error was generally lower for 

models created the dry part of Etosha and transferred to predict data in the wet part, than the 

other way around (Tables 4–6).

3.4.2. Transferability in time—We achieved good model transferability in time: models 

that were built using field data from the dry season of 2011 gave robust predictions of tree 

density, canopy cover, and biomass in the wet season of the following year, 2012 (Figure 

6C). The RMSEPs were <1% for temporal transferability of models for shrubs and trees 

(Tables 5 and 6). The models created for grass in the dry season overestimated grass cover 

but underestimated grass biomass in the wet season (Figure 7C).

3.5. Vegetation Maps

Using the best PLSR model for each vegetation form (see section 3.2.) we created a series of 

maps to predict each vegetation variable for Etosha National Park. Figure 8 is one example 

of percent tree cover for Etosha, based on the NDVI PLSR model.

4. DISCUSSION

The prediction of vegetation variables using remote sensing is challenging in savanna 

ecosystems due to low vegetation cover, high background signal, soil reflectance, and 

senesced vegetation. Variability in space and time hinders the transferability of remote 

sensing models to other regions. Creating accurate and transferable predictive models is 

further challenged by limited availability of field data and by the reflectance properties of 

savanna ecosystems. In this paper, we addressed these challenges by combining four key 

components: (1) developing methodology for extensive field sampling, (2) using time series 

data to account for vegetation temporal variability, (3) comparing between four MODIS-

derived VPs that contain different radiometric information, (4) creating vegetation prediction 

models that are transferable through space and time, hence demonstrating that these methods 

are robust.

4.1. Field Sampling Methodology

Measuring vegetation for remote sensing validation in savanna ecosystems is often 

challenging and time consuming due to the vast landscapes and limited accessibility to these 

areas. In this research, we demonstrate an extensive and relatively rapid field methodology 

to measure multiple vegetation variables for field validation of remote sensing data. 

Calibration of remote sensing data is often performed either by coarse visual estimation or 

by detailed measurement in a relatively limited area (McCoy 2005). Here we combine visual 

estimation with detailed measurement of vegetation variables over large area and multiple 

sampling points. The point centered quarter (PCQ) method we use to measure woody 

vegetation proves to be a rapid and efficient technique for collecting large amount of data 

points. Indeed, PCQ has been suggested to be a good method that combines accuracy and 

efficiency (Engeman, et al. 1994).

Our extensive field sampling methodology enabled us to use remote sensing to predict three 

key vegetation variables: density, cover, and biomass. While these variables are somewhat 
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correlated, they are not identical. Each of these variables has complementary ecological 

importance, and contributes unique information to the overall understanding of the 

vegetation community structure (Abdallah, et al. 2016; Tsalyuk, et al.; Vander Yacht, et al. 

2016) . Moreover, we sampled three different vegetation forms: grass, shrubs, and trees. 

Each of these vegetation forms has a different ecosystem function; for example, in 

distribution of grazing versus browsing wildlife, fire intensity (Alleaume, et al. 2005; Sow, et 

al. 2013), protection of soil, and water retention. Therefore, the ability of our methodology 

to predict all three vegetation forms adds a valuable remote sensing-based tool for savanna 

vegetation monitoring. There was difference in the ability of different MODIS-based models 

to predict vegetation variables. Models predicted all tree measurements and shrub density 

and cover well, with high explained variance and low error (Table 5). During the dry season, 

shrubs and trees are clearly distinct from the surrounding grass and soil by maintaining some 

moisture and photosynthetic activity, and therefore can be better detected by remote sensing. 

Conversely, while models for grass cover and biomass gave high prediction (high R2 values), 

they exhibited high error (Table 4); possibly due to large variation in grass cover in different 

parts of Etosha and to limited ability to measure understory grass.

4.2. Time series data

Predictive models based on summary statistics of one year of VP data perform much better 

than a model based on only a single closest-date value. This coincides with a large body of 

research that has demonstrated that integrated or annual maximum VI values allow better 

mapping of biomass and cover, of both woody and herbaceous vegetation (Gaughan, et al. 

2013; Sannier, et al. 2002; Zhang, et al. 2016; Zhou, et al. 2013). Here, we further 

demonstrate that including time series data of up to six years significantly improves ability 

to predict vegetation variables. Individual dates of VP values had large coefficients in the 

prediction models, indicating that fine scale temporal VP information improves model 

predictive ability, beyond the annually averaged data. Interestingly, the maximum annual VP 

values had important role in the prediction (Figure 5). Indeed, previous research has shown 

that transition dates in vegetation phenological cycle can be useful in MODIS-based 

vegetation monitoring (Hmimina, et al. 2013; Lu, et al. 2014a; Lu, et al. 2014b; Zhang, et al. 

2003).

We show that VP values from two or three years prior to the time of field measurement had 

large coefficients in the prediction model (Figure 5). This might indicate a lag in vegetation 

response to previous climate conditions, which further confirms the importance of using 

time series in predictive vegetation models. In arid environments water availability, which is 

determined by mean annual rainfall, constrains vegetation cover (Sankaran, et al. 2005). Dry 

savannas respond rapidly to rainfall event and produce a signal that can be captured by 

remote sensing (Schmidt and Karnieli 2000). However, current biomass is also determined 

by the relative fraction of herbaceous and woody cover and by the distribution of moisture in 

the soil (D'Odorico, et al. 2007; Knoop and Walker 1985). Therefore, how vegetation growth 

responds to rainfall varies between years, which results in a multiannual lag between rainfall 

and the resulting biomass (Goward and Prince 1995). Integrating remote sensing information 

over few years incorporates these variations, hence providing a better prediction of 

vegetation cover and biomass (Scanlon, et al. 2005). Overall, our results demonstrate that 
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time series of MODIS data can significantly improve model prediction of vegetation 

variables.

4.3. Predictive Power of MODIS-derived Vegetation Products

We demonstrate that the four MODIS-based Vegetation Products (VPs) have complementary 

ability to predict different field vegetation variables. EVI produced the best model of grass 

and shrub cover, NDVI was the best predictor of tree density and cover, while FPAR was the 

best predictor of biomass (Tables 4–6). However, the differences between the VPs were 

rather small. We demonstrate good prediction ability of NDVI-based models for all 

vegetation forms (R2=75–84%), coinciding with previous literature (Li, et al. 2015a; Zhang, 

et al. 2016; Zhu and Liu 2015). However, for grass and shrub vegetation other VPs exceeded 

NDVI’s performance. As expected, EVI was a good predictor of savanna vegetation cover. 

EVI incorporates reduction in soil background and aerosol scattering, which particularly 

constitute a challenge in sparse vegetation cover (Jin, et al. 2013; Sjostrom, et al. 2011). EVI 

has been previously demonstrated to provide land cover information at a broad scale (Zhang 

Xia, et al. 2008).

FPAR was the best predictor of tree biomass (1–4% higher R2 than other VPs), and 

predicted grass biomass 7% better than EVI, with 10% lower error than the model using 

NDVI (Table 4). Although these differences of FPAR to the other VP-based models are not 

very high, we believe MODIS-FPAR has a strong potential to predict vegetation variables in 

savannas. FPAR may be superior predictor of vegetation biomass because while NDVI/EVI 

are good measures of green vegetation, FPAR measures structural and functional properties 

of vegetation, which are more relevant to senesced vegetation prevalent in savanna 

ecosystems (Knyazikhin et al. 1999; Myneni et al. 2002). FPAR measures the photosynthetic 

activity of vegetation, which continues, to some extent, in dry vegetation as well (Butterfield 

and Malmstrom 2009). Indeed, previous research demonstrated that FPAR has a strong 

relationship with both green and senescent grassland biomass (Malmstrom, et al. 2009; 

Tsalyuk, et al.).

The MODIS algorithm for FPAR includes the red and infrared wavelengths, the same as 

used in NDVI. In addition, MODIS FPAR uses information on the local biome and canopy 

structure, to create an accurate relationship between NDVI and the vegetation properties at 

each location, with extensive ground validation (Knyazikhin et al. 1999). These additional 

data sets may improve the correlation between FPAR and the ground-based measurements of 

vegetation (Fensholt, et al. 2004). Indeed, since MODIS-FPAR captures leaf structure and 

photosynthetic activity, it was demonstrated to correlate well with seasonal ecosystem 

productivity in Australian tropical savanna (Restrepo-Coupe, et al. 2015). FPAR is an 

important vegetation structural measures that are often collected in the field (Baret and 

Guyot 1991). In this paper, we demonstrate the ability of satellite-based FPAR to improve 

prediction of savanna vegetation, beyond the traditional use of NDVI. Improvements to the 

MODIS LAI/FPAR model in Collection 6 (MOD15A2H) may enhance the advantage of this 

product even further by increasing its accuracy and resolution (Yan, et al. 2016).

MODIS FPAR and LAI have higher temporal resolution than MODIS NDVI and EVI, while 

the latter have finer spatial resolution. MODIS FPAR and LAI are calculated as an 8-day 
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composite measure, while NDVI and EVI are calculated for every 16-days. The finer 

temporal resolution of FPAR may encompass fine-scale variability in the vegetation and 

therefore provide better prediction of field measurements. Nonetheless, temporal 

composition of vegetation indices over longer periods may produce better prediction of 

vegetation measurements by removing angular effects and using minimum aerosol 

contamination (Yi, et al. 2008; Zhou, et al. 2013). MODIS NDVI/EVI have a finer spatial 

resolution of 250 X 250 meters while MODIS FPAR and LAI are calculated for 1 X 1 km 

pixels. Coarser spatial resolution may increase vegetation prediction accuracy at a regional 

scale (Li, et al. 2015a). Conversely, higher spatial resolution can detect fine scale spatial 

heterogeneity in vegetation variables. Our results demonstrate that each vegetation type is 

best predicted by another MODIS vegetation product, in spite of the differences in the 

products’ spatial and temporal scales. Therefore, it is recommended that choice of vegetation 

product to use should be based on the vegetation variable in interest, while the imagery 

resolution should be dictated by the specific management need: a higher spatial resolution is 

necessary for small regions with high spatial heterogeneity, while higher temporal resolution 

is needed for regions with rapid environmental change(Boschetti, et al. 2013; Dube and 

Mutanga 2015; Li, et al. 2015a; Li, et al. 2015b; Lu, et al. 2014a; Zhou, et al. 2013).

4.4. Transferability

One of the primary challenges in using remote sensing for vegetation prediction in semiarid 

environments is transferability, the ability to use models created in one place for vegetation 

prediction in another (Cutler, et al. 2012; Eisfelder, et al. 2012; Lu 2006; Wenger and Olden 

2012). Different regions or times may have different probability distribution of the data, 

different variance, and, importantly, value ranges that extend beyond the data range of the 

model. Here we address the challenge of transferability between areas with different 

environmental conditions and between seasons.

Foody et al (2003) identified the necessary components to produce a transferable remote 

sensing model: accurate field data, clean remote sensing information, and a region-specific 

relationship between biophysical information and reflectance data. Our work supports their 

general rule. We achieved a good spatial transferability of shrub and tree models, with good 

correlation between predicted and measured data and low error. We were able to achieve 

these results because of extensive field validation combined with high dimensionality remote 

sensing data. PLSR models are able to use extensive information, which encompasses most 

variability of field measurement, while reducing collinearity in the data by creating new 

orthogonal latent variables (Mevik and Wehrens 2007). The successful transferability 

suggests that we were able to produce robust predictive model without over-fitting the data 

(Darvishzadeh, et al. 2011; Foody, et al. 2003).

Interestingly, transferring a model created in a drier area to predict vegetation in wetter areas 

provided better predictions than the reverse. In drier areas, the reflectance contrasts and the 

differences in greening periods among the savanna vegetation forms (grass, shrubs, and 

trees) are more pronounced, allowing better predictions of each form. A robust predictive 

model created in drier areas identifies the critical changing points of a narrower phenology 

cycle (Archibald and Scholes 2007), and therefore may produce better prediction for wetter 
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areas as well (Cutler, et al. 2012; Foody, et al. 2003).This suggests that it might be advisable 

to use a training dataset from areas with a lower precipitation gradient when calibrating 

remote sensing-based models.

The relationship between remote sensing reflectance data and field vegetation variables 

depends on canopy structure and coverage (Schoettker, et al. 2010). The MODIS LAI/FPAR 

products are based on a radiance transfer model calibrated specifically for each biome (Yan, 

et al. 2016). Our results show that FPAR indeed improves model transferability for a wider 

range of data, as long it is within the same global biome.

A promising result we show here is the ability to use remote sensing models built for one 

year to predict vegetation variables in another. This has important practical implications for 

applying remote sensing-based models to monitoring vegetation change in savannas. To 

apply this method to quantify change over time, it should be further investigated whether or 

not temporal transferability can be applied in areas with larger variations in vegetation 

conditions.

5. CONCLUSIONS

In this paper, we have presented a rapid, low cost methodology for assessing savanna 

vegetation, using freely available and preprocessed MODIS satellite data. We showed that 

comparing few MODIS-derived Vegetation Products over time can produce reliable and 

robust models to predict a large suite of vegetation variables. Additionally, we demonstrate 

the ability of MODIS-based FPAR to predict vegetation biomass of all vegetation forms. 

Furthermore, we demonstrated reasonable model transferability across space and time. 

Based on our results, we created full cover maps for the density, cover, and biomass of 

grasses, shrubs, and trees for Etosha National Park (e.g. Figure 8). These maps can be used 

to further understand key ecological processes in savanna ecosystems, such as spatial 

patterns of Gross Primary Productivity (GPP), carbon sequestration, fire load prediction, and 

soil and vegetation degradation processes. Applying our approach to other large savanna 

landscapes, will allow researchers to use freely available, high quality remote sensing 

products, to manage and conserve ecosystems that provide livelihood to hundreds of 

millions of people and preserve the rich biodiversity upon which crucial ecosystems services 

depend.
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Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

AVHRR Advanced Very High Resolution Radiometer

DPM Disc Pasture Meter

EVI Enhanced Vegetation Index

FPAR Fraction of Photosynthetically Active Radiation

GIS Geographic Information Systems

LAI Leaf Area Index

MODIS Moderate Resolution Imaging Spectroradiometer

NDVI Normalized Difference Vegetation Index

NIR Near Infrared

NPP Net Primary Productivity

PCQ Point-Centered Quarter Method

PLSR Partial Least Square Regression

QC Quality Control

RMSEP Root Mean Squared Error of Prediction

rRMSE relative Root Mean Square Error

SPOT Satellite Pour l’Observation de la Terre (Satellite for observation of 

Earth)

SWIR Shortwave Infrared

VI Vegetation Index

’ VP Vegetation Product
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Highlights

• We compare the performance of four MODIS-based vegetation products 

(VPs) (NDVI, EVI, FPAR, LAI) in predicting vegetation structure.

• We demonstrate that integration of time series of VPs data significantly 

improves vegetation prediction models.

• We show that our woody and herbaceous cover, biomass, and density 

predictions for African Savannas are transferable across space and time.
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Figure 1. 
Map of the study area, Etosha National Park, Namibia. The locations of sampling sites 

(stars) and watering points (circles) are marked
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Figure 2. 
Six main physiognomic vegetation classes in Etosha, based on Sannier, et al. (1996).
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Figure 3. 
Model predicted versus field measured log values of tree density from predictive models 

based on NDVI data in three different time spans. Diagonal lines have an aspect ratio of 1. 

n=310. A. One NDVI value, closest date to field measurement; B. Average annual NDVI for 

2011, based on an average of 23 values (each value is a 16-day composite); C. PLSR model 

based on six years of NDVI data. Note that R2 values in this figure are somewhat higher than 

the results for the overall model, since the models presented here were created using a 

training dataset of 50% of the data selected at random.
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Figure 4. 
Model prediction quality as a function of length of time series used to fit the model. A. 
NDVI model for tree canopy cover (m2/ha). B. NDVI model for grass cover (%). CD = 

NDVI at the closest date to field measurement. Mean = NDVI annual average of the year of 

field measurement (2011).
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Figure 5. 
Loadings on the first four components of NDVI time series Partial Least Square Regression 

(PLSR) model to predict tree density. Each line denotes one component. Variables with the 

highest loadings are marked on the horizontal-axis.
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Figure 6. 
Transferability of NDVI-based models for tree variables, as assessed by model predicted 

versus field measured log values. Diagonal lines have an aspect ratio of 1. A. Transferability 

in space: from wet to dry areas; B. Transferability in space: from dry to wet areas; C. 
Transferability in time: from 2011 to 2012. t/ha=trees per hectare; mt – metric tons.
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Figure 7. 
Transferability of FPAR-based models for grass variables, as assessed by model predicted 

versus field measured log values. Diagonal lines have an aspect ratio of 1. n=83. A. 
Transferability in space: from wet to dry areas; B. Transferability in space: from dry to wet 

areas; C. Transferability in time: from 2011 to 2012. Upper panel shows grass cover (percent 

cover); lower panel shows grass biomass (gram/m2).
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Figure 8. 
Percent tree canopy cover in Etosha National park as predicted by NDVI PLSR model.
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Table 1

Vegetation classes

Class Name % Tree Cover % Shrub Cover % Dwarfed Shrubs Plant Height (Meters)

Bare Soil – – – –

Grassland – – < 1% –

Steppe < 1% < 1% > 1% < 0.5

Grass Savanna 1–5% 1–5% < 1% –

Shrub Savanna < 5% > 5% – 0.5 – 2

Low Tree Savanna > 5% – – 2 – 5

High Tree Savanna > 5% – – > 5

Adapted from (Du Plessis 1999)
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Table 2

Summary of the vegetation field measurements

Vegetation Form Variable Visual Estimation Measurement Method Comments

Vegetation class Visual estimation Calculation using measured cover of grass, 
shrubs, and trees

Dominant vegetation 
species recorded

Grass

Cover – Percent cover in 1m2 square –

Biomass Biomass class 1–7visual 
estimation

Disc Pasture Meter (height) Both methods 
calibrated by clipping 
and weighting dry 
biomass in 75 plots

Shrub

Density – PCQ1 Equation 1

Cover V Canopy size x density –

Biomass – Canopy size x height x diameter x density Equation 2

Tree

Density – PCQ Equation 1

Cover V Canopy size x density –

Biomass – Canopy size x height x diameter x density Equation 2

1
PCQ = point-centered quarter method
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Table 7

Summary of best MODIS Vegetation Product (VP) to predict each vegetation variables

Vegetation Form Variable MODIS Vegetation Product1

Grass
Cover EVI

Biomass FPAR

Shrubs

Density EVI

Cover FPAR

Biomass FPAR

Trees

Density NDVI

Cover NDVI

Biomass FPAR

1
Best VP for PLSR model selected by highest R2 and lowest error
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