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Lymphocyte innateness defined by transcriptional
states reflects a balance between proliferation and
effector functions
Maria Gutierrez-Arcelus 1,2,3,4, Nikola Teslovich 1,2,3, Alex R. Mola3, Rafael B. Polidoro3,

Aparna Nathan1,2,3,4, Hyun Kim 1,2,3, Susan Hannes1,2,3,4, Kamil Slowikowski 1,2,3,4, Gerald F.M. Watts3,

Ilya Korsunsky 1,2,3,4, Michael B. Brenner3, Soumya Raychaudhuri 1,2,3,4,5 & Patrick J. Brennan3

How innate T cells (ITC), including invariant natural killer T (iNKT) cells, mucosal-associated

invariant T (MAIT) cells, and γδ T cells, maintain a poised effector state has been unclear.

Here we address this question using low-input and single-cell RNA-seq of human lymphocyte

populations. Unbiased transcriptomic analyses uncover a continuous ‘innateness gradient’,

with adaptive T cells at one end, followed by MAIT, iNKT, γδ T and natural killer cells at the

other end. Single-cell RNA-seq reveals four broad states of innateness, and heterogeneity

within canonical innate and adaptive populations. Transcriptional and functional data show

that innateness is characterized by pre-formed mRNA encoding effector functions, but

impaired proliferation marked by decreased baseline expression of ribosomal genes. Toge-

ther, our data shed new light on the poised state of ITC, in which innateness is defined by a

transcriptionally-orchestrated trade-off between rapid cell growth and rapid effector function.
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W ithin the spectrum of immune defense, “innate” and
“adaptive” refer to pre-existing and learned responses,
respectively. Mechanistically, innate immunity is lar-

gely ascribed to ‘hardwired,’ germline-encoded immune respon-
ses, while adaptive immunity derives from recombination and
mutation of germline DNA to generate specific receptors that
recognize pathogen-derived molecules, such as occurs in T and B
cell receptors. However, the paradigm that somatic recombina-
tion leads only to adaptive immunity is incorrect. Over the past
15 years, T-cell populations have been identified with T-cell
antigen receptors (TCRs) that are conserved between individuals.
Many of these effector-capable T-cell populations are established
in the absence of pathogen encounter. Examples of such T-cell
populations include invariant natural killer T (iNKT) cells,
mucosal-associated invariant T (MAIT) cells, γδ T cells, and
other populations for which we have a more limited under-
standing1. These “donor unrestricted” T-cell populations have
been estimated to account for as much as 10–20% of human
T cells2, and have critical roles in host defense and other immune
processes. We and others now refer to these cells as innate T cells
(ITC).

ITC develop from the same thymic progenitor cells as adaptive
T cells, and each of these populations is thought to develop
independently. However, ITC populations share several impor-
tant features that distinguish them from adaptive cells. First, they
do not recognize peptides presented by MHC class I and class II.
iNKT cells recognize lipids presented by a non-MHC-encoded
molecule named CD1d3. MAIT cells recognize small molecules,
including bacterial vitamin B-like metabolites presented by
another non-MHC-encoded molecule, MR14. It is not known
whether specific antigen-presenting elements drive the develop-
ment or activation of γδ T cells. One major γδ T-cell population
bearing Vγ2-Vδ9 TCRs is activated by self- and foreign phospho-
antigens in conjunction with a transmembrane butyrophilin-
family receptor, BTN3A15,6. The antigens recognized by other
human γδ T-cell populations are not clear, although a subset of
these cells recognizes lipids presented by CD1 family proteins7. A
second shared feature of ITC is that their responses during
inflammation and infection exhibit innate characteristics, such as
rapid activation kinetics without prior pathogen exposure, and
the capacity for antigen receptor-independent activation.
Inflammatory cytokines such as IL-12, IL-18, and type I inter-
ferons can activate ITC even in the absence of concordant sig-
naling through their TCRs, and such TCR-independent responses
have been reported in iNKT cells8, MAIT cells9, and γδ T cells10.

Given the similar functions reported among different ITC
populations, we hypothesize that shared effector capabilities may
be driven by common transcriptional programs. Here, using low-
input RNA-seq and single-cell RNA-seq, we transcriptionally

define the basis of innateness in human ITC by studying them as
a group, focusing on their common features rather than what
defines each population individually. Using unbiased methods to
determine global interpopulation relationships, we reveal as a
primary feature an “innateness gradient” with adaptive cells on
one end and natural killer (NK) cells on the other, in which ITC
populations cluster between the prototypical adaptive and innate
cells. Interestingly, we observe a decreased transcription of cel-
lular translational machinery and a decreased capacity for pro-
liferation within innate cell populations. Innate cells rather
prioritize transcription of genes encoding for effector functions,
including cytokine production, chemokine production, cytotoxi-
city, and reactive oxygen metabolism. Thus, growth potential and
rapid effector function are hallmarks of adaptive and innate cells,
respectively.

Results
Human ITC immunophenotyping. To characterize the abun-
dance and variability of ITC in humans, we quantified four major
populations of ITC from 101 healthy individuals aged 20–58
years by flow cytometry, directly from peripheral blood mono-
nuclear cells (PBMCs) in the resting state. We assessed the fre-
quencies of iNKT cells, MAIT cells, and the two most abundant
peripheral γδ T-cell groups, those expressing a Vδ2 TCR chain
(Vδ2) and those expressing a Vδ1 TCR chain (Vδ1). MAIT cells
contributed from 0.1 to 15% of T cells (mean 2.4%), iNKT cells
from undetectable to 1.1% (mean 0.09%), Vδ1 cells 0.25–6.2%
(mean 1.25%), and Vδ2 from 0.08 to 22% (mean 4.7%). The sum
of these four cell types accounted for 0.9–25.7% of an individual
subject’s T cells (mean 8.4%) (Fig. 1a, Supplementary Data 1).
Vδ2 cells were more abundant than Vδ1 in 82% of subjects, with
the ratio of these two cell types ranging from 0.2 to 67.8 (mean
8.5). Age negatively associated with the total percentage of ITC
(P= 1.4e–05, Pearson correlation, t test). MAIT (r=−0.42, P=
9.9e–06, Pearson correlation, t test) and Vδ2 (r=−0.43, P=
4.7e–06, Pearson correlation, t test) populations drove this asso-
ciation (Supplementary Figure 1a, b), even after accounting for
the abundances of other cell types (P= 5.9e–04, P= 1.2e–04,
respectively, linear regression, t test), which is consistent with
previous findings11,12. We observed covariance between the fre-
quencies of MAIT and iNKT cells (P= 0.02, Spearman correla-
tion, t test), corrected for the other cell types and age
(Supplementary Figure 1c, d). We observed no significant asso-
ciations between ITC percentage and gender (P= 0.12, linear
regression, t test), body mass index (P= 0.31, linear regression, t
test), or smoking status (P= 0.04, individual cell types P > 0.2,
linear regression, t test) after accounting for age. Together, these
results show that human ITC contribute to a substantial portion
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of the peripheral T-cell repertoire, are variable between indivi-
duals, and decrease with age.

ITC populations rapidly release cytokines. We next tested
innate T-cell populations for two functional hallmarks of innate
effectors, rapid cytokine production and TCR-independent acti-
vation. To assess rapid cytokine production potential, we acti-
vated healthy donor PBMCs with phorbol 12-myristate 13-acetate
(PMA) and ionomycin for 4 h, followed by intracellular staining
for interferon-γ (IFN-γ) production. Between 35 and 85% of
MAIT, iNKT, Vδ1, and Vδ2 T cells produced IFN-γ under these
conditions, while a smaller percentage of adaptive CD4+ T and
CD8+ T cells produced this cytokine. While a significantly higher
proportion of ITC produced IFN-γ compared with adaptive
T cells, the difference in mean fluorescence intensity (MFI) did
not differ significantly, reflecting both high IFN-γ production
among a subset of CD8+ T cells and heterogeneity in the level of
IFN-γ production by ITC following activation with PMA and
ionomycin (Supplementary Figure 2a–c). To test the relative
capacity of these cell types to respond to inflammatory cytokines
alone, a hallmark of innate cells, we activated PBMCs with IL-12
+ IL-18 or IL-12+ IL-18+ IFN-α for 16 h, and assessed IFN-γ
production during the final 4 h of stimulation. Intracellular
cytokine staining measured by either percent positive or MFI
showed that iNKT, MAIT, Vδ2, and NK cells substantially pro-
duced IFN-γ under these conditions, while only a tiny portion of
adaptive cells responded (Fig. 1b, Supplementary Figure 2d–f).
Taken together, these studies show that ITC populations rapidly
produce IFN-γ, and can do so in response to inflammatory
cytokines even in the absence of TCR signals. Notably, we
observed the latter activation mechanism almost exclusively in
ITC populations.

RNA-seq reveals a continuous innateness gradient. To better
understand the biological properties of human ITC on a genome-
wide scale, we profiled their transcriptomes with RNA-seq. Low-
input RNA-seq profiling using 1000 cells per sample enabled
high-depth sequencing of even relatively rare human lymphocyte
populations. From six healthy individuals, we sorted in duplicate
four subsets of ITC: iNKT, MAIT (defined as MR1–5-OP-RU
tetramer+), Vδ1, and Vδ2 cells (Supplementary Table 1). From
the same individuals, we also sorted CD4+ and CD8+ T cells as
comparator-adaptive T cells and NK cells as comparator-innate
cells (Supplementary Figure 3). Using SmartSeq2 to create poly
(A)-based libraries, we generated 25-base-pair, paired-end
libraries sequenced at a depth of 4–12 million read pairs (Sup-
plementary Figure 4, Supplementary Data 2). After sequence
mapping, we calculated tpm (transcripts per million) values for
each gene. We considered 19,931 genes as expressed (tpm > 3
in ≥ 10 samples), including 12,730 protein-coding, 183 T-cell
receptor genes, 3261 long noncoding RNA (lncRNA), and other
lowly expressed genes (e.g., pseudogenes, Supplementary
Figure 4c).

Principal component analysis (PCA) identified the major axes
of variation in gene expression (Fig. 2a). The first principal
component separated the subsets by a continuous “innateness
gradient” with CD4+ and CD8+ T cells on one end, and NK cells
on the other end. Ordered from adaptive to innate along the first
principal component, MAIT, NKT, Vδ1, and Vδ2 clustered in-
between the adaptive cells and NK cells (Fig. 2b). We then
identified genes associated with the rank order of each
lymphocyte population in the innateness gradient (CD4+ T= 1,
CD8+ T= 2, MAIT= 3, iNKT= 4, Vδ1= 5, Vδ2= 6, and NK
= 7), using linear mixed models. This analysis revealed 1884
genes significantly associated with the innateness gradient (P <
2.5e–06, Bonferroni threshold, likelihood ratio test, see the
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Methods section). All subsequent P-values reported for associa-
tion with the innateness gradient are derived from linear mixed
models, likelihood ratio test), including protein coding and
lncRNA genes (Fig. 2c, Supplementary Data 3). Hereafter, we
refer to positive and negative associations with the ranked
gradient as associations with “innateness” and “adaptiveness,”
respectively. We quantified the level of innateness as the
magnitude of the change in expression level by an increase of
one in the gradient (the β of the gradient variable within our
linear mixed model).

Associations with innateness. The Gene Ontology (GO) terms
most associated with innateness included NK cell and lymphocyte
chemotaxis, NK cell-mediated immunity, cellular defense
response, and several additional terms related to leukocyte
migration and activation (Fig. 3a–d, specific GO terms indicated
in figure legend and Supplementary Figure 5a). Using flow

cytometry, we validated the expression of key genes, including
killer cell lectin-like receptor (KLR) family genes and killer cell
immunoglobulin-like receptor (KIR) genes (Supplementary Fig-
ure 5b). Cytotoxicity proteins, such as perforin, granzyme B, and
granulysin also associated with innateness (Fig. 3e, f, Supple-
mentary Figure 5b). Eight chemokines strongly associated with
innateness, including CCL3, CCL4, CCL5, XCL1, and XCL2 (P <
9e–12), consistent with a role for innate lymphocytes in recruiting
other inflammatory cell types to initiate inflammation.

IFNG (the gene coding for IFN-γ) showed a significant
association with innateness (P= 1.7e–06, Fig. 4a), and the
baseline IFNG levels in each cell population predicted their
production of IFN-γ upon stimulation (Supplementary Figure 2a,
b). Since ITC produce diverse cytokines and chemokines1,3, we
quantified the total cytokine and chemokine transcriptome
“mass” in each cell type at baseline. We observed that the
aggregate sum of the expression levels of the 37 cytokines and
chemokine genes expressed in our dataset followed the innateness

a c

0
5

10
15
20
25
30

−1.0 0.0 1.0 2.0

–l
og

10
 (
P

-v
al

ue
)

Innateness level (�)

GZMB
TYROBP

GNLY
PRF1

CX3CR1
KIR3DL1
KLRK1
KLRC2
NCR1
CD160

SH2D1B
KLRC3

KLRC4−KLRK1
SLAMF7
KLRC4
KLRD1

KIR3DL2
NCR3

CXCR2
KIR2DL4
KLRG1
STX11

RAB27A
TUBB4B
HLA−B
TCIRG1
SH2D1A
HLA−A
LSP1
MICB

HLA−G
PTK2B
HLA−E
VAMP7

SPN
TAP1

PRDX1
STAT5B

ITK
FCMR

LGALS3BP
TRAT1

−1.5 −0.5 0.5 1.5

Innateness level (�)

b

0
5

10
15
20
25
30

−1.0 0.0 1.0 2.0

Innateness level (�)

CCL4
XCL2

CX3CR1
KLRK1
CCL3

KLRC4−KLRK1
ITGAM

CD300A
CCL5
TBX21
XCL1

CXCR2
CMKLR1

LYN
CXCR1
ADAM8

SYK
FCER1G

ITGB2
CCL3L3
C3AR1
CD74
MSN

TNFSF14
PREX1
MYO1G

IFNG
ZAP70
CALR
RAC2
VAV3

PTK2B
STK10
RPS19

STAT5B
C1QBP
MMP28
PRKCA
IL23A

THBS4
IL6R

AMICA1
CCR7

−1.5 −0.5 0.5 1.5

Innateness level (�)

e

d

0.0

2.5

5.0

7.5

10.0

2.9 3.1 3.3

GZMB-PE log10(MFI)

G
Z
M
B

  l
og

2(
tp

m
 +

 1
)

4

6

8

10

4.0 4.5 5.0

PRF1-PE log10(MFI)

P
R
F
1 

lo
g2

(t
pm

 +
 1

)

NK

Vδ1

CD4+ T

MAIT

iNKT

CD8+ T

Vδ2

NK mediated immunity and
cellular defense response

Leukocyte chemotaxis
and migration

–l
og

10
 (
P

-v
al

ue
)

f

Fig. 3 Genes and pathways associated with innateness. a Volcano plot showing associations with the innateness gradient. Yellow, genes with P < 0.05; red,
genes with P < 2.5e–06 (Bonferroni threshold); blue, genes with GO terms involving NK-mediated immunity and cellular defense response (GO:0006968,
GO:0002228). b Innateness level (β) for individual genes in a with P < 2.5e–06. c As in a but with blue showing genes from GO terms involving leukocyte
chemotaxis and migration (GO:2000501, GO:0035747, GO:1901623, GO:0030595, GO:2000401, GO:0097530, GO:0097529, GO:0048247,
GO:0072676, GO:1990266). d Innateness level (β) for individual genes in c with P < 2.5e–06. e GZMB and f PRF1 flow-cytometric validation, showing
protein levels (x-axis), and transcript levels with RNA-seq (y-axis)

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08604-4

4 NATURE COMMUNICATIONS |          (2019) 10:687 | https://doi.org/10.1038/s41467-019-08604-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


gradient (Fig. 4b). Although we could detect mRNA for cytokines,
intracellular staining did not reveal baseline cytokine protein
production in ITC or adaptive T-cell populations. We hypothe-
sized that preformed mRNAs might contribute to rapid cytokine
production across ITC. To test this hypothesis, we activated
PBMCs with PMA and ionomycin for 2 h in the presence of
actinomycin D, which blocks new transcription, or cyclohex-
imide, which blocks translation. Early IFN-γ production by all
lymphocyte subsets was nearly completely blocked by cyclohex-
amide, but only partially blocked by actinomycin D (Fig. 4c, d).
These experiments show that preformed mRNA contributes to
early cytokine production by ITC, adaptive T cells, and NK cells.
Our data suggest that translation of preformed effector mRNA
may be one of the mechanisms that enable the characteristic rapid
response of ITC populations.

Metabolic pathways are well-known to vary among immune
cell subsets and influence their functions13. Among metabolic
programs, the pentose phosphate pathway was nominally
positively associated with innateness (P= 0.036, gsea() liger
package, Supplementary Figure 6a). G6PD, the gene that codes for
the rate-limiting enzyme in the pentose phosphate pathway,
showed the strongest positive association with innateness in this
pathway (β= 0.29, P= 3e–14, Supplementary Figure 6b, c). This

enzyme produces NADPH, which in turn can be used for
glutathione biosynthesis, protecting against damage caused by
ROS. Two critical enzymes for buffering the damaging effect of
ROS, GCLM, and GCLC, also nominally associated with
innateness (P= 2e–04 and 1e–03, respectively, Supplementary
Figure 6d,e). We quantified ROS by flow cytometry using
CellROX green, and found that total cellular ROS levels were
higher in adaptive T cells than in ITC, suggesting that elevated
G6PD might provide a baseline buffer counteracting ROS
(Supplementary Figure 6f, g). Overall, these results suggest that
ITC are prepared to buffer ROS at baseline, a useful adaptation
for effector cells expressing chemokine receptors, such as CCR1,
CCR2, and CCR5 (Supplementary Figure 9) that direct them to
the same sites of infection or inflammation as monocytes and
neutrophils.

Associations with adaptiveness. When we applied gene set
enrichment to adaptiveness, “cytosolic ribosome” (GO:0022626)
emerged as the most-associated term (P= 4.7e–28, hypergeo-
metric test, Fig. 5a, b, Supplementary Figure 7a, b). This
enrichment was not driven by a small percentage of genes very
strongly overexpressed among ITC (Supplementary Figure 7c).
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Translation initiation factors were also consistently associated
with adaptiveness (Fig. 5c, Supplementary Figure 7d), suggesting
that the translational machinery, and not just the ribosome
complex, was associated with adaptiveness. MYC, which coordi-
nately regulates ribosomal RNA genes14, was the transcription
factor with the highest fold change associated with adaptiveness
(P= 3.8e–22, Fig. 5d). As an independent assessment of ribosome
synthesis, we used quantitative polymerase chain reaction (qPCR)
to assess expression of the earliest uncleaved ribosomal RNA
(rRNA) precursor. The expression of precursor 47S rRNA asso-
ciated with adaptiveness (Spearman rho=−0.57, P= 9e–05,

t test, Fig. 5e), suggesting that ITC have a relative decrease in
ribosome biogenesis.

Since new ribosome production is necessary for proliferation,
and MYC expression is generally associated with proliferative
capacity, we hypothesized that proliferation potential might
associate with adaptiveness. We assayed proliferation in primary
human T cells in response to anti-CD3/CD28-coated beads, by
measuring carboxyfluorescein succinimidyl ester (CFSE) dye
dilution. NK cells were omitted from this analysis, since they do
not respond to anti-CD3/CD28-coated beads. Like MYC and
ribosome biogenesis, proliferation was associated with
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adaptiveness and innate T cells proliferated less than adaptive
T cells (Spearman rho=−0.73, P= 5.8e–04, t test, Fig. 5f, g).
These results recall the well-described regulation of ribosomes in
prokaryotes, where ribosome biogenesis is the major energetic
control point, is suppressed in conditions under which growth
and division are deprioritized15, and can be fine-tuned to ensure
maximal occupancy of active ribosomes16.

To address the possibility that innate cells might be
translationally quiescent, we assayed ribopuromycylation to
quantify total active translation17. Ribopuromycylation was
positively associated with innateness, suggesting that innate cell
types are engaged in more active translation than the adaptive
T cells at baseline (Fig. 5h, i). This suggested that despite having

lower expression of the ribosomal mRNA and rRNA, innate
T cells were not translationally quiescent, but rather that they
deprioritized ribosome generation. Consistent with this model,
RNA polymerase I component POLR1D, which is responsible for
rRNA transcription, was associated with adaptiveness. On the
other hand, RNA polymerase II components POLR2G, and
POLR2K, which transcribe mRNA, were significantly associated
with innateness (all P < 8e–07, Supplementary Figure 8). Taken
together, these results suggest that adaptive cells use their
ribosomes to make more ribosomes, thus prioritizing the
production of factors required for cell growth and division, while
innate cells may suppress transcription of ribosomal genes to
optimize the usage of available ribosomes for other RNAs, such as
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mRNAs encoding effector functions, including the rapid produc-
tion of cytokines (Fig. 4).

Transcriptional regulation of innateness. We identified 142
transcription factors that varied significantly between cell types
(P < 5.8e–05, f test aov() R, Bonferroni threshold). The expression
of these transcription factors across cell types clustered into four
major groups (Fig. 6a). Cluster 1 showed a gradual increase that
closely matched the pattern of the innateness gradient. Cluster
2 showed a pattern opposite to that of cluster 1, with an increase
in expression toward adaptive cellular populations. Cluster
3 showed high levels of expression in iNKT, MAIT, Vδ2, and NK
cells, with relatively lower levels in adaptive T and Vδ1 T cells,
and cluster 4 captured transcription factors with the opposite
pattern to cluster 3 (Fig. 6a). In PCA of these transcription fac-
tors, the second principal component separated iNKT cells,
MAIT, and Vδ2 T cells, from adaptive and Vδ1 T cells (Supple-
mentary Figure 9a), similar to K-means clusters 3 and 4. These
same cell groupings were also captured by PC2 generated using
the overall most variable genes (Fig. 2a).

Within cluster 1 of innateness-associated transcription factors,
T-bet (TBX21, P= 2.4e–29), known for important roles in type 1
helper T cell (Th1) and iNKT-cell effector functions18,19, followed
the innateness gradient at both the transcript and protein levels
(Fig. 6b, c). The next two innateness-associated transcription
factors with the highest fold changes were HOPX and ZEB2
(Fig. 6d, e). HOPX (P= 7.2e–25), reported to be induced by T-
bet, has been shown to regulate persistence of effector memory
Th1 cells, with upregulation in terminally differentiated cells20.
ZEB2 (P= 1.8e–18) has been reported to cooperate with T-bet to
induce terminal differentiation of cytotoxic T lymphocytes21,22.
Two NFAT family proteins, NFATC2 (P= 2e–16) and NFAT5
(P= 1.1e–9), were associated with cluster 1 transcription factors.
IRF8 (P= 3.1e–14), TFDP2 (P= 5.9e–13), NFIL3 (P= 2.7e–13),
KLF10 (P= 2.1e–15), RUNX3 (P= 5.6e–18), LITAF
(P= 6.2e–24), ZSCAN9 (P= 9.4e–17), and ZNF600 (P= 4e–17)
were also in this cluster and significantly associated with
innateness. Within the adaptiveness-associated cluster 2, besides
MYC (Fig. 5d), we found TCF7, involved in the maintenance of
T-cell identity (P= 2.4e–21)23, BACH2 (P= 4.3e–10), NR3C2
(P= 1.8e–10), POU6F1 (P= 1.9e–10), and BCL11B (P= 2e–17).

The third cluster of innateness-associated transcription factors,
those enriched in iNKT cells, MAIT, Vδ2 T, and NK cells,
included ID2 (P= 8.8e–13, Fig. 6f), MYBL1 (P= 1.52e–10),
BHLHE40 (P= 8.1e–11), FOSL2 (P= 8.8e–14), and ZBTB16 (P
= 1.1e–5, Fig. 6g, h). Among these genes, BHLHE40, FOSL2,
ZBTB16 (encoding PLZF), and ID2 have been reported to
contribute to iNKT-cell development and/or activation in mice24–
28. Id2 is also a major regulator of ILC development29, and has
been implicated in the regulation of mouse iNKT30, ILC131, and
CD8+ T cell32 effector functions in the periphery. Published
transcriptional profiles of NK cells, ILC1, and influenza-specific
Id2-deficient mouse CD8+ T cells showed a striking concordance
of Id2-dependent expression with our innateness gradient genes,
highlighted by TBX21, ZEB2, IL18RAP, CCR7, TCF7, cytotoxicity,
and KLR genes31–33. TCF7, consistently downregulated in ITC, is
negatively regulated by Id2, suggesting that in part, Id2 may drive
the loss of adaptive T-cell identity observed in ITC. Taken
together, these data suggest that Id2 may drive many features of
innateness in human ITC, and may be a major transcriptional
node involved in maintaining their baseline innate state.

PLZF is a zinc finger transcription factor known to be
important for the development and function of iNKT cells34,35,
MAIT cells35, and innate lymphoid cells36. Mean PLZF protein
expression by intranuclear staining confirmed our mRNA

expression results (Fig. 6h). Human γδ T cells have previously
been reported to express PLZF37, but we did not detect elevated
PLZF expression in Vδ1 cells (Fig. 6g, h). Differential expression
analysis between PLZF+ ITC and adaptive T cells revealed
“cytokine receptor activity” as the most enriched term for
upregulation in PLZF+ ITC (P= 7.9e–05, hypergeometric test).
PLZF expression in T cells was also associated with the aggregate
expression of all cytokine and chemokine receptor activity genes
(Supplementary Figure 9b), and we validated the expression of
several of these receptors by flow cytometry (Supplementary
Figure 9c). We tested migration across a permeable membrane to
a panel of chemokines, including CCL19 that directs lymphoid
recirculation by CCR7 and CCL2, 3, 4, and 8 targeting chemokine
receptors shared between ITC (Supplementary Figure 9c) and
myeloid cell populations, such as monocytes. PLZF+ ITC readily
migrated in response to classical monocyte chemokines, and also
in response to CCL19, while migration of adaptive T cells and the
PLZF− Vδ1 population was limited to CCL19 (Supplementary
Figure 10).

For genes differentially expressed between PLZF+ ITC and
adaptive T cells, we found significant enrichment of PLZF target
genes identified in mouse thymocytes with ChIP-seq38 (P=
6.2e–07, χ2 test, Supplementary Figure 9d). In addition, PLZF+

ITC upregulated genes that were associated with the term
“circadian regulation of gene expression” (P= 4.2e–04, hypergeo-
metric test), with major clock transcription factor genes like
ARNTL (that codes for BMAL1), RORA, PER1, and CRY1
significantly upregulated in PLZF+ ITC compared with adaptive
T cells (P < 5e–08, linear mixed models, likelihood ratio test)
(Fig. 6i, j, Supplementary Figure 9e). Both BHLHE40 and ID2 also
have the capacity to regulate the circadian clock39–41. Notably,
although human NK cells express PLZF (mature mouse NK cells
do not express PLZF), many genes upregulated in PLZF+ ITC
and identified as PLZF targets in mouse38 showed low expression
in human NK cells, including CCR2, CCR7, CXCR6, RORC,
CCR5, CCR6, and LTK (Supplementary Figure 9c, d). These
results suggest that PLZF may regulate different sets of genes
depending on the cell type, likely working as part of a larger gene
network in determining ITC fate.

Innateness in other ITC populations. We next investigated the
innateness gradient in other candidate innate-like human T-cell
subsets. We chose two additional T-cell populations for analysis,
Vδ3-expressing γδ T cells and δ/αβ T cells, each of which can
constitute up to 1% of human peripheral T cells42,43. We sorted
Vδ3 T cells and δ/αβT cells in duplicate from one individual, and
profiled their transcriptomes with ultra-low- input RNA-seq. δ/
αβ and Vδ3 clones have been identified that, like iNKT cells,
recognize α-galactosylceramide presented by CD1d42,43, sug-
gesting that these cells might potentially play a similar role in
immunity to iNKT cells. However, PCA revealed that δ/αβ T cells
were closer to adaptive T cells, and closest to CD8+ T cells, rather
than segregating with iNKT cells and other innate T cells (Sup-
plementary Figure 11). This suggests that δ/αβ T cells may have
an adaptive-like phenotype. Vδ3 T cells, on the other hand, seg-
regated closer to innate T cells by PCA, among the other γδ
T cells (Supplementary Figure 11). Neither δ/αβ T cells or Vδ3
T cells expressed PLZF.

Innateness in adaptive populations. Cytotoxicity genes and NK
markers are expressed by a subset of adaptive T cells. We found
that this class of genes was expressed by CD8+ T cells, and in
some cases at higher levels than in ITC. Interestingly, the devel-
opment of innate-like Th1 effectors from adaptive cells has also
recently been demonstrated in mice44. To assess expression of
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innateness gradient genes in human adaptive effector T cells, we
re-analyzed a human expression dataset generated using MHC
class I tetramer-sorted, HCMV-specific CD8+ T cells45 (poly-
clonal human CD8+ T-cell datasets would likely be substantially
“contaminated” with ITC). To quantify the total level of innate-
ness in each sample, we generated an “innateness score.” For this
metric, we used the PC1 weights (loadings) for genes included in
our PCA (Fig. 2a) and multiplied them by the expression levels of
these genes in the query dataset. This integrates the signals that
come from both innateness and adaptiveness genes into a single
score, which essentially reflects a projection into our PC1
(Fig. 2b). HCMV-specific effector memory CD8+ T cells had a
higher innateness score than HCMV-specific memory CD8+

T cells, which in turn had a higher score than naive CD8+ T cells
(Fig. 7a). The same patterns are captured if we look at expression
levels of innateness genes, and the opposite trend is observed with
expression levels of adaptiveness genes (Supplementary Fig-
ure 12a, b).

We also analyzed published RNA-seq data for CD4+ T-cell
subsets from healthy individuals46. CD4+ effector memory T cells
had a higher innateness score than CD4+ central memory T cells
(P= 0.008, Wilcoxon test), which had a higher innateness score
than CD4+ naive T cells (P= 0.032, Wilcoxon test, Supplemen-
tary Figure 12c–e). To investigate innateness in CD4+ T cells
during inflammation, we calculated the innateness score for

CD4+ T-cell populations profiled by low-input RNA-seq from
patients with arthritis47, which is thought to be driven in part by
CD4+ T cells48. The innateness score ordered T-cell populations
from naive to central memory to effector cells (Fig. 7b). The
subset that scored the highest in innateness, CD4+HLA-DR
+CD27− T cells, are the precise subset that is most expanded in
rheumatoid arthritis and correlate with treatment response47.

We next interrogated lymphocytes from a single-cell RNA-seq
dataset from patients with breast carcinoma49. As seen for
HCMV-specific CD8+ T cells (Fig. 7a) and CD4+ T cells from
rheumatoid arthritis (Fig. 7b), lymphocyte populations from
patients with breast carcinoma, as annotated in the original study,
recapitulated the innateness gradient (Supplementary Figure 13).
Further, T cells from within the tumor showed a higher
innateness score than those in healthy tissue (P= 2e–66,
Wilcoxon test), suggesting that T-cell innateness was enriched
at the site of disease (Fig. 7c).

Heterogeneity in ITC and adaptive populations. To assess
heterogeneity among the lymphocyte populations studied, we
applied single-cell RNA-seq to the same seven cell populations
studied above. We first sorted CD4+ T, CD8+ T, iNKT, MAIT,
Vδ1, Vδ2, and NK cells from two donors and then labeled each
population with DNA-barcoded antibodies, allowing us to
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identify the original cell populations using a cell “hashing” pro-
tocol50. We then assayed all populations together in a single-
pooled droplet-based assay, which obviated any batch effects that
might have occurred if the populations were assayed separately51.
After stringent quality control, we obtained 2036 high-quality
single-cell libraries with similar representation of each starting
cell population (Supplementary Table 2, Supplementary
Figure 14).

Before exploring heterogeneity, we wanted to ensure that the
broad trends seen in the bulk RNA-seq data were replicated in the
single-cell RNA-seq data. We first compared the single-cell and
low-input RNA-seq datasets on a gene-by-gene basis. From our
single-cell data, we calculated the level of innateness (β based on
the association with innateness rank order determined in low-
input RNA-seq) for the significant adaptiveness and innateness
genes identified in the low-input RNA-seq data. Unsurprisingly,
the single-cell gene expression associations with the innateness
gradient replicated our low-input RNA-seq data (Fig. 8a, Spear-
man rho= 0.82, 94% concordance in direction of effects). Key
innateness genes, such as GZMB, PRF1, KLRD1, NKG7, HOPX,
ZEB2, and ID2, and adaptiveness genes, such as RPL36, RPL22,
RPS19, EEF3E, and MYC were also significantly associated with
innateness in single-cell expression data (all P < 7e–18, linear
model, likelihood ratio test).

For dimensionality reduction and data visualization, we
applied PCA to the single-cell data using the top 1545 variable
genes. PCA of single-cell RNA-seq data (sc-PC1 and sc-PC2)
mirrored those obtained for low-input RNA-seq, with sc-PC1
separating adaptive cells from innate cells. Among the innate
populations, NK cells were on one end, iNKT and MAIT cells on
the other end, and γδ T cells in-between (Supplementary
Figure 15a). PC1 from the single-cell data (sc-PC1, Supplemen-
tary Figure 15b) largely recapitulated the innateness gradient
derived from low-input RNA-seq (Fig. 2b), with the position of
Vδ1 and Vδ2 reversed. The innateness order for Vδ1 and Vδ2
was different between the two donors included in the single-cell
study, suggesting possible donor-to-donor variability among γδ
T cells (Supplementary Figure 15c). The innateness score,
calculated for each single cell using PC1 loadings from the low-
input bulk RNA-seq data was highly correlated with sc-PC1
(Pearson correlation r= 0.9, Supplementary Figure 15d).

To better understand cellular heterogeneity, we embedded and
clustered single-cell data. We embedded single-cell data using the
top 20 principal components into a two-dimensional space with
uniform manifold approximation and projection (UMAP).
Adaptive T cells, followed by ITC and NK cells were spread
across the UMAP (Fig. 8b). Key innateness and adaptiveness
genes colored a gradient across the UMAP (Supplementary
Figure 16), as did the innateness score calculated per cell (Fig. 8c).
To define underlying innateness states at the single-cell level, we
applied shared nearest-neighbor modularity clustering which
identified four distinct clusters. We propose that these groups
represent four “states of innateness” that can be adopted by
lymphocytes. The most adaptive of the four clusters, Cluster 1
contained mostly CD4+ T and CD8+ T cells. Cluster 2 contained
mainly iNKT, MAIT, and Vδ2 T cells. Cluster 3, was even more
innate, and contained predominantly Vδ1 and Vδ2 T cells.
Finally, Cluster 4 was completely innate, consisting mostly of NK
cells (Fig. 8d).

For some cell types, we noted that sizeable subsets were present
in multiple clusters (Fig. 8e, Supplementary Figure 17). CD8+

T cells exhibited the most striking heterogeneity, showing
populations that clustered into three different states: CD8-1
clustered with adaptive CD4+ T cells, CD8-2 that was most
similar to iNKT and MAIT cells, and CD8-3 cells that were most
similar to γδ T cells (Fig. 8f). When we examined the genes that

separated each CD8+ T-cell cluster, we identified genes that were
part of the innateness and adaptiveness gene sets identified in our
low-input RNA-seq data (182 out of 237 unique genes that were
significant in any of the three one-vs.-all differential expression
comparisons, P < 4.4e–05, linear model, likelihood ratio test,
Bonferroni threshold). The CD8-2 population was characterized
by intermediate expression of innateness and adaptiveness genes,
rather than by expression of unique genes (Fig. 8g). Only four
genes, GZMK, TMSB10, CCL5, and GMC1 were significantly
differentially expressed in the CD8-2 population. Vδ1 T cells were
predominantly in Cluster 3 with Vδ2 T cells, although a
substantial Vδ1 population also populated Cluster 1 with adaptive
CD4+ T cells (Supplementary Figure 17). Ninety-four percent of
genes that distinguished this adaptive-like Vδ1 population (P <
5.2e–05, linear model, likelihood ratio test, Bonferroni threshold)
were adaptiveness and innateness genes, including downregulated
cytotoxic genes, such as PRF1 and KLRD1, and upregulated
ribosomal machinery genes, such as RPL34, RPL22, and EEF1A1.
This finding is consistent with recent reports on Vδ1 populations
being highly variable across donors, and with dynamic changes in
response to infection, suggesting that a naive Vδ1 state may be
part of their development52,53. Besides NK cells, and MAIT cells,
most of the lymphocytes assayed spanned multiple clusters.
Taken together, our single-cell RNA-seq data demonstrate that
the innateness cell-type hierarchy seen in low-input RNA-seq
reflects an average of multiple cell states, and that individual
innate and adaptive T populations variably populate these
innateness states.

Discussion
MAIT, iNKT, γδ, and other innate-like T cells do not fit neatly
into traditional paradigms of adaptive or innate immunity. Each
population has been studied in depth individually, but rarely have
they been considered in aggregate. Here, we set out to study
human ITC as a group, addressing two important questions: (1) is
there a shared transcriptional basis for their functions in
immunity, and (2) how do ITC maintain their baseline “poised”
effector state? In quantitative, unbiased analyses using both low-
input RNA-seq and single-cell RNA-seq, we discovered that ITC
segregate along an innateness gradient between prototypical
adaptive and innate populations. We propose that the large
transcriptional programs positively and negatively associated with
this gradient represent the transcriptional basis of lymphocyte
innateness. Though they share the same lineage as adaptive
T cells, our data support that ITC are indeed a “family” in a sense,
with a common transcriptional basis for their similar functions in
immunity, including rapid cytokine and chemokine production,
chemotaxis to areas of inflammation, cytotoxicity, and TCR-
independent responses. The functional and transcriptional con-
servation of innate-like functions in ITC suggests that they
enhance evolutionary fitness. That humans dedicate such a large
part of their T-cell repertoire to the generation of innate-like
receptors is a testament to the teleological importance of innate
immune surveillance even after the evolution of adaptive
immunity.

Strikingly, we observed that this innateness program could also
differentiate adaptive effector populations in health and disease.
Analysis of published datasets demonstrated that naive, memory,
and effector-adaptive populations could be classified by their
innateness. Thus, the study of ITC highlights important pathways
used across innate and adaptive lymphocyte populations. Con-
sistent with this notion, our single-cell RNA-seq data identified
populations of CD8+ T cells and even some CD4+ T cells that
clustered within the two “innate states” that largely represent ITC
populations. The genes that differentiated these populations were
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the same genes identified in the innateness gradient. These data
suggest that lymphocytes can exist in defined states of innateness
whether achieved developmentally, as is thought to be the case
with ITC, or through experience, in the case of adaptive T cells.

The shared transcriptional programs associated with innate-
ness included cytokine/chemokine production, cytotoxicity, and
cytokine/chemokine receptor expression. For the genes positively
associated with the innateness gradient, this is essentially an
“effector gradient,” which strongly supports a role for ITC in host
defense. We found that human ITC rapidly produced IFN-γ after
activation through their TCRs (Supplementary Figure 2), as do a
smaller fraction of adaptive T cells. However, IFN-γ production
in response to IL-12, IL-18, and IFN-α, cytokines generated by
myeloid or stromal cells in response to danger signals, were
almost exclusively limited to ITC (Fig. 1b). This is consistent with
the role of ITC as innate responders where prior pathogen
experience is not required. Thus, T-cell innateness can regulate
the response to pathogen-associated molecular patterns. Of note,
human Vδ1 cells have been demonstrated to be variable in both
TCR repertoire and numbers, and likely respond to specific
infections52,53. Although they express much of the innateness
program, Vδ1 cells may not fit the ITC paradigm as neatly as the
more-conserved MAIT, iNKT, and Vδ2 populations. Indeed,
Vδ1 cells have greater TCR diversity, exhibit less cytokine-only
activation, do not express PLZF, and a portion of these cells
clustered with adaptive T cells in our single-cell RNA-seq
analysis.

Our identification that mRNAs encoding for ribosome sub-
units and other factors involved in translation associated with
adaptiveness (Fig. 5) also sheds light on what it means to be
innate. In a given cell, loss of rapid proliferative capacity may be
an inherent trade-off for enhanced effector function, a balance
previously observed for CD8+ T cells54. For an adaptive T cell,
population expansion is of central importance during immune
responses. ITC, on the other hand, are likely to function as sen-
tinels early during infection, acting to enhance ensuing immune
responses in response to microbial molecules. For such a role,
rapid effector responses are key, and proliferation may serve only
to replenish numbers at a later stage. Taken together, the effector-
focused transcriptional programs of ITC and proliferation-
focused programs of adaptive cells are ideally suited to
support their respective roles in immunity. It is notable that
effector gene programs in ITC and proliferative gene programs in
adaptive cells were present at rest. Our data showing that a
substantial portion of early IFN-γ is produced from
preformed mRNA (Fig. 4c, d), together with higher overall active
translation in ITC (Fig. 5i), support the concept of ITC being in a
poised state ready for a rapid and efficient effector response.
Similarly, we postulate that adaptive cells are poised for division,
with relatively higher RNA polymerase I, MYC expression, and
prioritization of ribosome formation that would be needed for cell
proliferation.

Finally, the innateness gradient reported here could be applied
in different scenarios in order to better understand human
immunology and human disease. A transcriptomic innateness
score could be employed as a unified T-cell metric to classify
individual single cells assayed with single-cell RNA-seq, providing
a better understanding of patient heterogeneity. We provide data
that innateness in the T-cell compartment increases with infec-
tion, inflammation, and in cancer. The “innateness score” (Fig. 7)
may be a useful prognostic indicator, and understanding the
molecular mechanisms associated with innateness may pave the
way for novel therapies aimed at modulating this coordinated
transcriptional response. We can also use our immunoprofiling
data and create an “individual innateness metric” for each indi-
vidual based on the abundance of each T-cell type weighted by

the innateness level of that cell type. This score is remarkably
variable between individuals, even after correcting for age (Sup-
plementary Figure 18). This single innateness metric in an indi-
vidual might be associated with genetic differences, human
diseases, including cancer, infection, and allergy, or therapeutic
responses to immunomodulating medications.

Methods
Glossary of innateness terms. “Innateness” and “adaptiveness” genes are those
that in the low-input RNA-seq were significantly associated with the rank order of
each lymphocyte population in the innateness gradient (CD4+ T= 1, CD8+ T= 2,
MAIT= 3, iNKT= 4, Vδ1= 5, Vδ2= 6, and NK= 7).

“Innateness level” is the magnitude of the change in expression level by an
increase of one in the gradient (the β of the gradient variable within our linear
mixed model in low-input RNA-seq or linear model in single-cell RNA-seq).

“Innateness score” is calculated per sample or per single-cell, by selecting the
genes used in the low-input PCA (Fig. 2a), multiplying their PC1 loading by the
scaled-expression value on the query sample, and summing all up. This integrates
the signals that come from both innateness and adaptiveness genes into a single
score, which essentially reflects a projection into our PC1.

“Individual innateness metric” is calculated per individual by integrating the
immune profiling data with the innateness gradient rank per cell type. Specifically,
we summed the abundance per cell type (proportion of T cells) multiplied by the
rank of that cell type in the innateness gradient.

Study design. To study the transcriptome of innate T-cell populations (MAIT,
iNKT, Vδ1, and Vδ2), we compared them with adaptive cells (CD4+ T, CD8+ T),
as well as NK cells as prototypical innate lymphocytes. Samples used for immu-
nophenotyping and RNA-seq analyses were from healthy individuals. All human
sample use was approved by the Brigham and Women’s Hospital Institutional
Review Board, including written consent for public deposition of RNA sequencing.

For low-input RNA-seq, a matched set of populations were sorted from each
individual to avoid batch effects. All blood draws were performed in the morning,
and cells were immediately stained and double-sorted directly into lysis buffer.
Based on previous RNA-seq analyses on the number of replicates and read depth
for optimal differential expression analysis55, we decided to sort cells from six
individuals in duplicate (total of 12 samples per cell type) at a read depth of 4–12
million read pairs (8–24 million reads). The goal of this study was to define the
shared transcriptional programs between cell populations rather than variability
between individuals. To avoid systematic technical error or batch effects, samples
were randomized within the plate for library preparation, and all samples were
sequenced together. Five samples were removed for low read depth (described
below).

For single-cell RNA-seq, cell populations were sorted from two healthy donors.
The same sorting strategy was used for single-cell RNA-seq as was used for low-
input RNA-seq, including the use of 5-OP-RU-loaded MR1 tetramers for MAIT
cell identification. After sorting, cells were stained with DNA-barcoded hashing
antibodies (Biolegend, directed against CD298 and β2-microglobulin) at 0.2 μg/
sample, one antibody for each cell type, and a second antibody to barcode each
donor. Cells from each donor were pooled in equal proportions, and then analyzed
by flow cytometry to ensure viability and representation of each population. Just
before loading in the single-cell fluidics device (10X Genomics), cells from the two
donors were mixed. Barcodes for cell type and donors are as follows: CD8+ T
(GTCAACTCTTTAGCG), CD8+ T (TGATGGCCTATTGGG), MAIT (TTCC
GCCTCTCTTTG), iNKT (AGTAAGTTCAGCGTA), Vδ1 (AAGTATCGTTT
CGCA), Vδ2 (GGTTGCCAGATGTCA), NK (TGTCTTTCCTGCCAG), Donor 1
(CTCCTCTGCAATTAC), and Donor 2 (CAGTAGTCACGGTCA).

RNA library preparation and sequencing. For low-input RNA-seq, Smart-seq2
libraries56 (poly-A selected) were prepared for the 90 flow-sorted samples (each
1000 cells). These samples were composed of seven main cell types (CD4+ T,
CD8+ T, MAIT, iNKT, Vδ1, Vδ2, and NK cells) from six healthy donors, and three
additional cell types (δ/αβ, Vδ3, and B cells) from one healthy donor. Each sample
had two duplicates. Samples were randomized within the plate. Twenty-five-base
paired-end sequencing was performed yielding 4–12M read pairs (8–24e6 reads,
Supplementary Figure 4).

For single-cell RNA-Seq, mRNA and hashing library preparation57 was
performed by the Brigham and Women’s Hospital Single Cell Genomics
Core using the Chromium Single Cell 3' v2 kit (10x Genomics). The following D7
index primer was used (sample barcode underlined): CAAGCAGAA
GACGGCATACGAGATGACTGACAGTGACTGGAGTTCAGACGTGTGC.

Low-input RNA-Seq gene expression quantification. For low-input RNA-seq,
we used Kallisto version 0.43.158 to quantify gene expression using the Ensembl 83
annotation. We included protein-coding genes, pseudogenes, and lncRNA genes.
As expected, protein-coding genes were the most highly expressed, followed by
lncRNAs and then pseudogenes (Supplementary Figure 4c). We removed five
outlier samples that had a low proportion of common genes detected (one MAIT,
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one CD8+ T, one NK, and two Vδ1 samples; Supplementary Figure 4d). We used
log-transformed tpm (transcripts per million) as our main expression measure,
which accounts for library size and gene size (specifically log2(tpm+ 1)). We
considered as expressed genes those with a log2(tpm+ 1) > 2 in at least 10 samples.
We further performed quantile normalization on the log2(tpm+ 1) values for our
differential expression analyses. Boxplots were created in R with either boxplot() or
ggplot2 geom_boxplot() functions. Unless stated differently in the figure legend,
boxes show the first to third quartile with median, whiskers encompass 1.5× the
interquartile range, and data beyond that threshold indicated as outliers.

CITE-seq gene expression quantification and cell hashing. For CITE-seq, we
quantified mRNA and antibody unique molecular identifiers (UMI) counts sepa-
rately and kept cells that passed QC in both modalities. We quantified gene
expression with CellRanger version 2.1.0, mapping reads to the human genome
(assembly GRCh38). We removed cells that expressed 500 or fewer unique genes,
or had at least 20% of UMIs mapping to mitochondrial genes. We counted cell-
hashing antibody UMI counts with CITE-seq count50, modified to filter out UMIs
with fewer than five reads. We removed cells that met any of three antibody
exclusion criteria for either the donor or cell-type antibody barcodes: 1, fewer than
10 total antibody UMIs; 2, UMI count for the second-most-abundant antibody
greater than 10% of UMI count for the most abundant antibody; 3, UMI count for
the most abundant antibody is less than 75% of the total antibody UMI counts. We
retained cells that passed the mRNA- and antibody-specific criteria. After filtering,
each cell was assigned a cell type and donor based on the most abundant hashing
antibody barcode from each set.

Gene expression UMI counts within each cell were normalized for library size
(total number of UMIs) and log-transformed (ln(counts per 1e04+ 1)). We
performed PCA on the top 1545 most variable genes, ranked by the coefficient of
variation, mean centered and scaled by their standard deviation. We performed an
L2 normalization to induce cosine distance between cells. Cosine distance has
previously been shown to be a more robust distance metric than Euclidean distance
for single-cell RNA-seq data59,60. We used the function prcomp_irlba()61 for PCA.
For visualization, we used the top 20 principal components to compute the two-
dimensional UMAP projection62. We ran UMAP with the following parameters:
n_neighbors= 30 L, metric= “correlation”, and min_dist= 0.1. Cells were
clustered based on the top 20 gene expression PCs using shared nearest-neighbor
modularity clustering (RunModularityClustering function in Seurat v263). The
clustering algorithm was run with a resolution parameter of 0.4 and yielded four
clusters.

Differential expression analyses. We used linear mixed models or linear models
for our differential expression and expression association analyses. For these
analyses, we used a likelihood ratio test between two nested models using anova()
in R, and a Bonferroni threshold to call significant cases (0.05 divided by the total
number of tests).

For low-input RNA-seq, the dependent variable was quantile-normalized log2
(tpm+ 1) expression values. Within our predictor variables, we used in all cases
donor ID as a random effect. For associations with the innateness gradient, we used
one fixed effect composed of integers from 1 to 7 (for CD4+ T, CD8+ T, MAIT,
NKT, Vδ1, Vδ3, and NK, respectively). In the differential expression between
adaptive cells and PLZF+ ITC, we used one fixed effect taking values of 0 or 1,
respectively.

For differential gene expression in single-cell RNA-seq, similar to low-input
RNA-seq, we fit a linear model per gene to identify genes associated with the
innateness gradient or differentially expressed between cell-type subsets. The
dependent variable was log-transformed library-normalized expression values. For
associations with the innateness gradient, we used one fixed effect composed of
integers from 1 to 7 (for CD4+ T, CD8+ T, MAIT, NKT, Vδ1, Vδ3, and NK,
respectively), and as covariates number of UMIs per cell (log-transformed), percent
of mitochondrial UMIs, and donor (0 or 1 values). Only genes with a nonzero value
in at least 100 cells were included. For differential expression between CD8+ T-cell
subsets or Vδ1 subsets, we used one fixed effect taking values 1 for the subset being
analyzed or 0 for the other two subsets (for CD8+ T) or one subset (for Vδ1). We
included as covariates the number of UMIs and the percent of mitochondrial UMIs
per cell. Only genes with a nonzero value in at least 60 cells were included.

Gene ontology term enrichment analyses. We downloaded Ensembl gene IDs
linked to Gene Ontology (GO) terms on April 201664,65. This included 9797 GO
terms and 15,693 genes. We tested for GO enrichment sorting genes by the β (effect
size) of our differential expression analysis. We used the minimal hypergeometric
test66 to test for significance. We confirmed significance of enrichment for the top
GO terms using an alternative method: the function gsea() of the liger package
(https://github.com/JEFworks/liger).

Pathway enrichment analysis. We downloaded genes pertaining to 12 KEGG
pathways67 from the Consensus Pathway Database-human http://cpdb.molgen.
mpg.de/68 in March 2017. First, we calculated the F statistic per expressed gene in
our dataset as a metric of variability between cell types. Then we tested whether the
F statistics in genes of a certain pathway were higher than the other expressed genes

using a Wilcoxon test. Three pathways had a P-value < 0.05. Since higher expressed
genes tend to have higher F statistics, we further tested whether these three
pathways had significantly higher F statistics than expected by controlling for gene
expression. Specifically, we chose a null set of genes with similar expression levels
by taking for each gene in a pathway, 30 random genes with mean level of
expression (across all cell types) within 10% of the standard deviation. After this,
only the pentose phosphate pathway had genes with F statistics higher than
expected (P= 0.018, Wilcoxon test). We further tested enrichment of this pathway
in genes associated with innateness gradient using gsea() in the liger package.

Immunophenotyping associations. Associations among cell types and clinical
traits were performed with Pearson correlation (t test for P-values), and when
accounting for different clinical variables (e.g.,, age), were tested with linear
regression using cell-type percentages in log scale (t test for P-values). For iNKT
cell abundance, there were two individuals with zero values, and these were con-
verted to the next minimal value of 0.01 before log transformation. Covariation
between cell types was performed with Spearman rank correlation (t test for P-
values).

PLZF target analysis. We downloaded PLZF ChIP-seq peaks from the Gene
Expression Omnibus (GEO) database from Mao et al.38 (accession number
GSE81772). We used genes from the mouse Gencode vM14 annotation. We
defined gene targets as mouse genes with a PLZF peak in the gene body or within 2
kb from the transcription start site (TSS). We downloaded mouse–human gene
homologs from BioMart69. We selected only genes with 1-to-1 orthologs. We then
checked from the mouse PLZF gene targets to which human ortholog they cor-
respond to. Finally, we performed logistic regression to determine whether gene
targets are enriched in differentially expressed genes between PLZF+ ITC and
adaptive T cells. Specifically, the response variable is 0 or 1 for nontarget or target
gene, respectively. The predictor variable was the β of the differential expression
analysis of PLZF+ ITC versus adaptive T cells. We also tested enrichment defining
gene targets if a peak was found only at the promoter region of a gene (–2 kb to+
1 kb from TSS) and found similar results.

Analysis of public datasets. From Hertoghs et al.45, we downloaded their pro-
cessed microarray expression matrix containing HCMV-specific CD8+ T-cell
samples. If multiple probes were present for a given gene, we calculated the average
expression of those probes. From Ranzani et al.46, we downloaded fastq files for
CD4+ T-cell subsets and processed them as our low-input RNA-seq data, quan-
tifying gene expression with kallisto and using log2(tpm+ 1) values. From Fonseka
et al.47, we used processed log2(tpm+ 1) expression values from all their CD4+ T-
cell subset samples. From Azizi et al.49, we used their processed single-cell imputed
expression data and their inferred cluster annotations for all T cells and NK-
annotated cells (Supplementary Figure 13) or annotated T cells from normal and
tumor tissues only (Fig. 7c). For each dataset, an innateness score was calculated
per sample or per single cell as described above in the Glossary of innateness terms
section of the Methods.

Flow cytometry and cell sorting. For immunophenotyping, Ficoll-isolated (GE
Healthcare) PBMCs were prepared within 2 h of overnight fasting with blood draw
between 8 and 10 AM, stained, and data were acquired the same day. For sorting,
freshly isolated PBMCs from donors that had at least 0.1% for each cell type were
processed in accordance with the ImmGen standard operating procedure70. Briefly,
after Fc receptor-binding inhibitor (eBioscience), cells were stained with surface
antibodies and dead cells were identified with 7-AAD (Biolegend). Using a FAC-
SAria Fusion sorter fitted with a 100 µM nozzle, 1,000 cells double-sorted in
duplicate directly V-bottom plates with TCL lysis buffer (Qiagen) and stored frozen
until processing. The gating strategy for sorting and validation studies is shown in
Supplementary Figure 3.

For validation studies, cryopreserved PBMCs were used from a total of 15
donors. The antibodies used for flow-cytometric validation are listed separately.
Data were acquired with a five-laser LSR Fortessa or three-laser FACSCanto II (BD
Biosciences) and analyzed with FlowJo (Treestar). A live–dead dye was used for all
staining, either 455UV (eBioscience) or ZombieAqua (Biolegend). For intracellular
cytokine production studies, cells were fixed with 4% paraformaldehyde, then
permeabilized with BD Perm/Wash (BD Biosciences), and stained with
intracellular antibodies. For intranuclear staining to assess expression of
transcription factors, cells were fixed and permeabilized using the FoxP3 buffer set
(eBioscience). For validation studies, MAIT cells were identified as Vα7.2+CD161+

T cells.

qPCR analysis. For 47S rRNA quantification, cells were sorted directly into RLT
buffer (Qiagen) before RNA extraction (Qiagen, RNeasy). Primers were designed to
span the first rRNA-processing site using the following sequences: forward:
GTCAGGCGTTCTCGTCTC, reverse: GCACGACGTCACCACAT. HPRT was
used as a housekeeping control (forward: CGAGATGTGATGAAGGAGATGG,
reverse: TTGATGTAATCCAGCAGGTCAG). qPCR was performed using the
Brilliant III Ultra-Fast SYBR QPCR Master Mix (Agilent), read on a Stratagene
MX3000P system.
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In vitro cellular studies. For cellular activation studies, PBMCs were cultured in
RPMI 1640 supplemented with 10% FBS (Gemini), HEPES, penicillin/streptomy-
cin, L-glutamine, and 2-mercaptoethanol. Cytokines were from Peprotech except
for IFN-α (R&D Systems). For assessment of cytokine production, PMA (200 ng
per ml, Sigma) and ionomycin (500 ng per ml, Sigma) were added along with
Protein Transport Inhibitor Cocktail (eBioscience) containing brefeldin and
monensin for 4 h (Fig. 1) or 2 h (Fig. 4). Actinomycin D (Sigma), cycloheximide
(Sigma), or DMSO vehicle (Sigma) were added in some experiments at 1 μM 30
min before activation. IFN-γ transcriptional blockade was confirmed by quanti-
tative PCR. Cytokine production in response to IL-12 (20 ng per ml), IL-18 (50 ng
per ml), and IFN-α (50 ng per ml), PBMCs were cultured for 16 h with these
cytokines, with eBioscience Protein Transport Inhibitor Cocktail added for the last
4 h of culture. For measurement of cellular ROS, PBMCs were thawed, rested
overnight in complete media without added cytokines, followed by the addition of
CellRox Green (Thermo Fisher) for 1 h. For proliferation, cells were labeled with
CFSE (5 μM for 5 min in PBS), and then cultured at a 2:1 ratio with anti-CD3/
CD28-coated beads (Dynabeads, Thermo Fisher). Division index was calculated as
(cells divided once+ (cells divided twice/2)+ (cells divided ≥ 3 times/2.67))/
(undivided cells+ (cells divided once/2)+ (cells divided twice/4)+ (cells divi-
ded ≥ 3 times/8)) (FlowJo, TreeStar). Migration assays were performed over 3 h
using 3 μM Transwell inserts (Corning), with quantification of cell number
migrated to the lower chamber.

Ribopuromycylation. To assess ribosomal activity, we adapted a microscopic
technique, ribopuromycylation17 for use by flow cytometry. Puromycin was added
for 5 min in the presence of emetine (100 μg per ml), followed by fixation with 4%
paraformaldehyde, permeabilization with BD Perm/Wash, and staining with an
antibody that recognizes puromycin (EMD Millipore).

List of antibodies. See Supplementary Data 4.

Code availability. The R source code used in key analyses is available at Github.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this Article.

Data availability
RNA-seq data that support the findings of this study have been deposited in GEO, with
the accession code GSE124731. Data can also be viewed using an interactive browser at
https://immunogenomics.io/itc.
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