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Alveolar type 2 progenitor cells for lung
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Abstract
Alveolar type 2 progenitor cells (AT2) seem closest to clinical translation, specifying the evidence that AT2 may
satisfactorily control the immune response to decrease lung injury by stabilizing host immune-competence and a
classic and crucial resource for lung regeneration and repair. AT2 establish potential in benefiting injured lungs.
However, significant discrepancies linger in our understanding vis-à-vis the mechanisms for AT2 as a regime for stem
cell therapy as well as essential guiding information for clinical trials, including effectiveness in appropriate pre-clinical
models, safety, mostly specifications for divergent lung injury patients. These important gaps shall be systematically
investigated prior to the vast therapeutic perspective of AT2 cells for pulmonary diseases can be considered. This
review focused on AT2 cells homeostasis, pathophysiological changes in the pathogenesis of lung injury, physiological
function of AT2 cells, apoptosis of AT2 cells in lung diseases, the role of AT2 cells in repairing processes after lung
injury, mechanism of AT2 cells activation promote repairing processes after lung injury, and potential therapy of lung
disease by utilizing the AT2 progenitor cells. The advancement remains to causally connect the molecular and cellular
alteration of AT2 cells to lung injury and repair. Conclusively, it is identified that AT2 cells can convert into AT1 cells;
but, the comprehensive cellular mechanisms involved in this transition are unrevealed. Further investigation is
mandatory to determine new strategies to prevent lung injury.

Facts

● Due to the fact that the production of surfactant in
rodent and human are unsimilar, hence
investigations on protein synthesis, phospholipid
synthesis and assembly in human AT2 cells are
interesting for further studies.

● Apoptosis of AT2 cell is associated with the
pathogenesis of lung injury

● It is promising that sustaining Notch signaling might
reduce effective lung repair by extending

inflammation, as well as by regulating progenitor
identity, while this remains to be exploited

● New approaches to treat lung injury can be further
unraveled by using AT 2 progenitor cells

Open questions

● The precise mechanism of AT2 apoptosis in ALI/
ARDS, COPD and IPF is still debatable

● Whether the increased PAI‐1 expression is liable for
AT2 cell senescence in fibrotic lung diseases and,
most essentially, how PAI‐1 promotes cell
senescence remain indistinguishable

● Distinguishing whether the transporter ABCA3 is
essential for lamellar body biogenesis and similarly
regulation of phospholipid import and specificity

● The causes controlling baseline of alveolar fluid
volume and pH remain unclear.
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● The importance of the sodium-phosphate
transporter situated on the apical membrane of AT2
cells and exactly how the other components of
alveolar fluid are processed are limited.

● Investigating the significance of EMT and
epigenetics to pulmonary fibrosis will be a
fascinating study.

● It is also interesting to investigate the effects of ROS
(hydrogen peroxides, nitric oxide, and hydroxide) on
induced DNA damage and repair through the
differentiation of AT 2 progenitor cells.

● The significance of mitochondrial complexes I and
III, NADPH oxidase isoform NOX4 during AT2 cell
differentiation and mechanisms underlying the
processes will be fascinating to study.

Introduction
Acute lung injury (ALI) and acute respiratory distress

syndrome (ARDS) are the major cause of death in critical
care, with a mortality rate of around 40%. In the US only,
there are 200,000 new cases per annum1. ALI/ARDS also
form a significant lasting illness and public health pro-
blem, with major neuromuscular, respiratory and mental
dysfunction found in 50–70% of survivors, and just 49%
able to work one-year post-discharge2. Notwithstanding
being a focus of current rigorous research determinations
over four decades, there are no effective specific except
supportive interventions for ALI/ARDS3. Extensive
clinical trials of several therapeutic strategies are all
failed, including nitric oxide, anti-oxidants4, surfactants5,
corticosteroids6, immunomodulating agents4, and
granulocyte-macrophage-colony-stimulating factor7.
To date, improvement in the management of ALI/ARDS

rarely relies on general supportive measures, e.g., pre-
ventive mechanical ventilation3, regulative intravenous
fluid management8, and prone position of seriously
hypoxaemic patients9. While these maneuvers have
decreased mortality in ICU patients10, the disappointment
of pharmacologic therapies proposes the necessity to
contemplate novel methods for ALI/ARDS. ALI/ARDS is
exceedingly heterologously pathogenic diseases with mul-
tiple phenotypes. Previous concepts of distinct disease
phases, from an early ‘proinflammatory’ to a later ‘fibrotic’
phase, now seem to be an over-simplification. These ‘phase’
abundantly exist, with the denotation of pro-inflammatory
effect resulting to host injury. In the ALI/ARDS, there is
the presence of an incapacitated immune response to
pathogens, regeneration, and fibrosis. Hence, the different
strategies used for therapeutics have been unsuccessful.
Generally, many of the lung injury diseases are related

to aging11 (Fig. 1). Chronic obstructive pulmonary disease
(COPD) has elevated to become the fourth prominent
reason for morbidity globally. There is an emergent dis-
covery that aging is associated with the pathogenesis of a

number of chronic lung diseases; really, most lung dis-
eases are either mostly limited to the elderly. The
occurrence of COPD was likely at 3.2% among those aged
25–44 years and 10.3% among those 65–74 years in the
United States12. Likewise, the death related to COPD and
pneumonia13 and the occurrence of idiopathic pulmonary
fibrosis (IPF) all nurture with aging and has been linked
with elevated vulnerability to both viral and bacterial
pneumonia. Development of ARDS is more visible in
older patients. The major risk factors for ARDS are
pneumonia and sepsis which occur majorly in old
patients14.
Lung has the AT2 progenitor cells which are involving

in the crucial role in ALI/ARDS repair. The mature lung
comprises four main biologically different portions
including, the trachea, bronchi, bronchioles, and alveoli,
and respectively has a specific stem/progenitor popula-
tion15. Alveolar type 1 (AT1) and alveolar type 2 (AT2)
cells are majorly found in the gaseous alveolar surfaces16.
AT1 cells are more sensitive to injuries than AT2 cells17.
Once AT1 cells are injured, adjacent AT2 cells are sti-

mulated to multiply and transdifferentiate into AT1 cells.
Consequently, in the alveoli the AT2 cells have long been
thought to function as progenitor cells18. Current studies
on rodent models have recognized stem/progenitor
populations for alveolar epithelial cells, and have dis-
covered that the stem/progenitor populations have an
essential function in lung repair and tumorigenesis19. The
healthy human lung comprises of the cuboidal AT2
pneumocyte (15%) of total cells20. The surfactant protein
(SP) C-expressing embryologic precursor is majorly found
in AT2 cell21. In most small-animal species (with the
remarkable exclusion of the morphologically advanced
guinea pig22, alveolarization occurs after birth. More
investigation is needed in the mechanisms regulating the
transition of primitive saccules to mature alveoli.
AT2 cells cycle every 28–35 days in the adult rodent

lung, and this slow mitotic rate is also presumed to occur
in humans23. This rate of biochemical reaction is
improved in response to lung injury24 and growth factors
such as keratinocyte growth factor (KGF)23. Investigations
of adult AT2 cells arising from cells other than AT2 cells
themselves were conducted in the last few years. These
include SPC, Clara cell secretory protein (CCSP) cells at
the bronchoalveolar junction (bronchoalveolar stem
cells)25, and extensive diversity of cells derived from the
circulation26. Furthermore, an analogous population is
still to be discovered in humans. The investigation
including cre-lox lineage tracing in mice shows only a
slight involvement of bone marrow to the AT2 cell pool27.
This type of nuclear rearrangement leads to morpholo-
gically and karyotypically aberrant cells that seem to have
come through cell–cell fusion28. The biological impor-
tance of this finding in the healthy lung is viewed as
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minimal, given current data. The contribution of AT2
phenotype and bone marrow cells to the pathogenesis of
lung injury is still debatable. This indicates the necessity
to reckon unique therapeutic strategy at minimizing early
injury while protective host immune capability and
improving lung regeneration and repair. Hence, it is a hot
topic to answer the question of whether alveolar epithelial
progenitor stem cells-AT2 could fit this new therapeutic
model. We herein briefly summarized the key progress of
this field and discuss future directions.

Pathophysiological alteration of lung injury
ALI is also named as chronic inflammation which found

in the alveolar-capillary membrane. The molecular con-
stituents such as microvascular endothelium, alveolar
epithelium, and specialized fibroblasts occur at the initial
phase. The magnitude of alveolar epithelial damage is the
significant prognosticator of consequence29 (Fig. 2).

Distinctive pathohistological appearances contain wide-
spread necrosis of AT1 cells and the presence of protein-
rich hyaline membranes on an uncovered basement
membrane. Loss of alveolar epithelial reliability leads to
the accumulation of protein-rich and exceedingly cellular
edema fluid in the interstitium and alveoli. This inflam-
matory milieu contains mainly of activated neutrophils
and alveolar macrophages, which secrete inflammatory
mediators that disorder epithelial fluid transport and
impaired surfactant production of AT2 cells. Capillary
thrombosis and extravascular fibrin accumulation formed
as an effect of endothelial-dysfunction-associated upre-
gulation and activation of tissue factor, and damage of the
ability to activate the vitamin-K-dependent proteins C
and S. This local pro-coagulant state potentiate pulmon-
ary dysfunction and the acute inflammatory response30.
VALI aggravates the syndrome more by physically dis-
orderly responsible tissues and cells, leading to the

Fig. 1 Pathophysiology of lung injury
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Fig. 2 Pathophysiology of COPD and IPF
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expression of pro-inflammatory and/or pro-fibrotic
mediators31. Lung injury is distributed by pro-
inflammatory and systemic inflammation, multiple-
organ dysfunction, and apoptosis connected with VALI.
Subsequent to the acute inflammatory phase, most

patients steadily convalesce normal lung function. Epi-
thelial growth factor improves the multiplication of AT2
cells, which are also understood to act as progenitor cells
for both daughter AT2 cells and AT1 cells32. This phe-
nomenon is combined to reconstruct the epithelial barrier
and reinstate normal lung function.
Cuboidal AT2 cells are more impervious to injury33.

Surfactant production and ion transport functions are
present in AT2 cells. They also function as progenitor
cells for renewal of AT1 cells subsequent to injury.
Alveolar epithelial damages in the previous ultrastructural
investigation of patients dying with ALI/ARDS include a
spectrum from cytoplasmic swelling, vacuolization, and
bleb formation to necrosis and widespread denuding of
epithelial cells34. Injury to AT2 cells also prevents sur-
factant synthesis and turnover, leading to the irregularities
of both the lipid and protein constituents of surfactant
that are features of ALI/ARDS35. Increased permeability
pulmonary edema promotes impairment of the surfactant
because of manifestation of serum proteins36 and pro-
teolytic enzymes37 in the alveolar space.
AT2 cells can self‐renew and also differentiate into

AT1 cells and so are referred to as alveolar progenitor
cells38. AT2 cell senescence is evident in IPF39 and in
experimental fibrosis models40. A recent disease model is
that lung fibrosis grows as a result of constant insults plus
genetic and senescence-related hazard factors, resulting in
alveolar epithelial cell impairment, which is followed by
activation of myofibroblasts and replacement of injured
alveolar epithelium with fibrotic tissue, due to a reduced
reparative capability of alveolar epithelium. Clarification
of the mechanisms underlying AT2 cell senescence,
consequently, may be a considered approach to the
understanding of the disease pathogenesis and thus the
exploitation of efficient therapeutics.
Plasminogen is converted into plasmin by serpine, a

serine proteinase playing a key role in fibrinolysis41.
Besides suppression of fibrinolysis, PAI‐1 has numerous
other roles, including modulation of cell adhesion, relo-
cation, and multiplying, unautonomous or autonomous of
its protease inhibitory activity42. Investigations from oth-
ers have displayed that PAI‐1 shows a critical role in the
progress of lung fibrosis, while the mechanism whereby
PAI‐1 stimulates lung fibrosis remains unclear. Sig-
nificantly, PAI‐1 expression is enlarged in senescent
cells43 and developing confirmation proposes that PAI‐1
is not only a marker nevertheless a facilitator of cell
senescence. Nevertheless, whether the increased PAI‐1
expression is liable for AT2 cell senescence in fibrotic

lung diseases and, most essentially, how PAI‐1 promotes
cell senescence remain indistinguishable.
The gradual degeneration in the functional ability of an

organism predisposing to death is aging44. IPF is a disease
which is associated with aging45, with accumulative
occurrence and predominance in human subjects over the
age of 50 years46. There is a high rate of death in indivi-
dual diagnosed of IPF47. Patient diagnosed of progeria
syndromes are also at a higher possibility of fibrotic dis-
order48. Telomere dysfunction syndromes and the short
telomere length is a dangerous factor in an individual with
IPF49.
Previously, infiltrating leukocytes were understood to be

significant to the pathology while the epithelium was
thought to target the injury. However, current investiga-
tion reveals that the epithelium is a rich source of mole-
cules involved in modulating inflammation and lung
defense mechanisms. The human AT2 epithelial cell
expression of TLR-4 was investigated by previous
researchers50 and revealed a comprehensive spectrum of
cytokines and chemokines including IL-1β, TNF-α, IL-6,
CCL2, CXCL8, CXCL1, and CCL20 (MIP-3α) after
treatment with LPS51. When they are exposed to LPS,
AT2 cells produce more chemokines than alveolar mac-
rophages from the same subject. In TLR4 signaling
mechanism, the AT2 cell serves as a major source of
neutrophil chemoattractant chemokines52.

The physiological function of AT2 cells
AT2 cells are important for the production of sur-

factant. The AT2 cell secretes, synthesizes, and reuti-
lizes the protein and lipid constituents of pulmonary
surfactant. The unique part of importance is the
synthesis of dipalmitoylphosphatidylcholine and the
function of phosphatidylcholine remodeling through a
highly specific deacylation/reacylation reaction53. Due
to the fact that the production of surfactant in rodent
and human are unsimilar, hence investigations on pro-
tein and phospholipid synthesis and assembly in human
AT2 cells are interesting for further studies. Other
questions concern the lamellar body. Distinguishing
whether the transporter ABCA3 is essential for lamellar
body biogenesis54 similarly controls phospholipid
import and specificity. Similarly, the authentic role of
surfactant proteins in these processes is indistinguish-
able. The thoughtful respiratory failure caused by the
deficiency of SPB55 indicates this protein’s significance
in surfactant processing and function. The chronic,
fibrotic phenotype of SPC deficiency in certain mouse
strains and humans suggests a dissimilar, but probably
equally significant function for this protein56. These
problems highlight the need for more evidence in this
area. There are no known clinical means of increasing
the endogenous pool of surfactant in ALI.
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Transepithelial transport in human and rodent AT2
cells assist the alveolar space reasonably free of fluid and
transport sodium through well-defined apical sodium
channels and the basolateral Na+/K+-ATPase57. Recent
in vivo studies using siRNA to knockdown alpha-ENaC
(epithelial Na channel) expression found that deletion of
this transporter reduced baseline lung fluid absorption by
~30%58. However, in ALI, the fluid has a high protein
concentration and the epithelial barrier is not intact. The
causes controlling baseline of alveolar fluid volume and
pH remain unclear. Hence, the importance of the sodium
phosphate transporter situated on the apical membrane of
AT2 cells59 and exactly how the other components of
alveolar fluid are processed are limited.
In answer to a diversity of AT1 cell injuries, hyperplastic

AT2 cells60 conceal the basement membrane and then
differentiate into AT1 cells, maintain their AT2 cell
phenotype, or undergo apoptosis61. The causes regulating
induction, differentiation, and clearance of hyperplastic
AT2 cells are still unclear. Repopulation of AT2 cell in the
normal lung is also unclear. Hence, there are some sug-
gestions that AT2 cells may undergo epithelial to
mesenchymal transition (EMT)62. Therefore, investigating
the significance of EMT and epigenetics to pulmonary
fibrosis will be a fascinating study. The importance of the
paracrine signaling and molecular mechanism of injured
cells remains unexplored. AT2 cells express major histo-
compatibility class II antigens63 but little is known about
their ability to present antigen and initiate inflammatory
responses and respiratory viruses.

Apoptosis of AT2 cells in lung diseases
Apoptosis is a process of programmed cell death. There

are majorly two types of apoptosis, which includes
intrinsic (mitochondria-mediated) and extrinsic types
(receptor-mediated). The intrinsic is also known as
apoptosome mediated apoptosis. It is originated majorly
in the cytosol. The internal and external stimuli may
activate or inhibit the process64. When the AT2 cell in
ALI/ARDS, COPD, and IPD is injured it will lead to DNA
damage which causes protein like ataxia-telangiectasia
mutated (ATM), checkpoint kinase 1 (CHK1) which
coordinate DNA damage responds, cell cycle arrest which
leads to cell death. When they sense the damage, they will
also activate the p53 which is a dangerous protein that can
turn on multiple proteins. The cell cycle will not be able
to proceed to the next stage because of the presence of
p5365. The major factors controlling the mitochondria-
mediated pathways are p53 and bcl266 (Fig. 3). Bcl2 is a
mitochondrial outer membrane permeabilization protein
which roles are lengthening cellular survival via inhibition
of a diversity of apoptotic demises, whether these are p53
dependent or independent67. P53 will recruit other pro-
tein like p21, BAX (which can create pores in the

mitochondria) which allows cytochrome C into the
cytosol. When cytochrome C is released, it acts as the
death signal. Cytochrome C combines with apoptotic
protease activating factor 1 (APAF 1) to activate procas-
pase 9 to caspase 9 which further activate procaspase 3 to
caspase 3. Caspase 3 activates nuclease enzymes which
can migrate into the nucleus and degrade the DNA.
Extrinsic types (receptor-mediated) occurs when Fas

receptor binds to Fas ligand (FasL) due to infections, DNA
damage, and injury. The infections bind to FasL receptor,
which in turns activate the death domain receptor and the
activation is autocatalytic. Due to the accumulation of
death domain signal, it leads to the death-inducing sig-
naling complex, which will activate procaspase 8 to cas-
pase 8. Caspase 8 will activate procaspase 3 to caspase 3,
which can degrade the inhibitor of nuclease enzymes and
migrate to the nucleus to degrade the DNA. Apoptosis of
AT2 cell is assumed to be mainly accountable for the
vanishing of surplus epithelial cells during the resolution
phase of ALI68. The investigation has been done on BALF
from ALI/ARDS patients and revealed increased in solu-
ble Fas (Apo1, CD95) and FasL69, suggesting that the Fas
system might be relevant in the programmed cell death in
ALI or ARDS70.
Apoptosis of AT2 cell is associated with the pathogen-

esis of lung fibrosis likewise to its resolution in current
investigations71. In the fibrotic lung, apoptosis of inflam-
matory cells might also be advantageous72. An authenti-
city of apoptosis called DNA fragmentation was
discovered in bronchiolar cells and AT2 within lung
biopsies from patients with IPF and rats with bleomycin-
induced lung fibrosis73. Thus epithelial apoptosis coloca-
lizes with myofibroblasts where collagen deposition is
severe, in patients with IPF. Apoptosis within AT2 cells of
fibrotic human lungs was revalidated and discovered of
fragmented DNA74. Constant with those findings, the
“death receptor” Fas was found to be expressed in AT2
within the lungs of IPF patients by numerous research-
ers75. In animal models, similar clarifications were
attained76. Furthermore, knockout mice lacking the
receptor Fas were found to be unaffected to the profi-
brotic effect of bleomycin. Thus the functions of Fas-
induced apoptosis in the development of the pulmonary
fibrotic response are still debatable; in addition, pathways
other than Fas can initiate epithelial apoptosis and facil-
itate fibrogenesis. Furthermore, the regulation of apop-
tosis of AT2 cells may be due to the modifications in the
expression of various antiapoptotic and proapoptotic
factors (p53 and p21). It has been found out that ERK
decreased and active JNK increased in epithelial cells
which are important signaling pathway which may eluci-
date the effects of apoptosis AT2 cells in IPF patients77.
During the intermediate stage of IPF, TUNEL-positive
cells and activated p38 MAPK were found in the in AT2
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cells78. The main molecular mechanism underlying the
apoptosis of AT2 cells is still unclear.
COPD pathogenesis is likely associated with apoptosis79

(Fig. 2). Inhaled oxidant from cigarette smoking and
increased amount of reactive oxygen species (ROS) pro-
duced by numerous inflammatory cells in the airways of
COPD patients, leads to oxidative DNA damage of host
cells80 and consequently activates the intrinsic apoptotic
cascade facilitated by an atypical immune response with
the predominance of CD8+ cytotoxic cell81. While little is
yet acknowledged about the mechanisms underlying
apoptosis of AT2 cells in COPD, experiments to describe
them will be fascinating and captivating.

The role of AT2 cells in repairing processes after lung
injury
The cellular and molecular mechanisms underlying how

AT2 cells involved in the repair of an injured alveolar
barrier is still debatable. Electron microscopy reveals that
there are intermediate cell types shown in NO2-injured
lung that display morphological characters of both AT2
and AT1 cell82. A potential mechanism to trigger AT2 cell
activation into the repair process may be signals asso-
ciated with the injury. Recent studies have proposed that

the inflammatory milieu that forms after most types of
alveolar injury can generate alveolar regenerative sig-
nals83. In injuries prompted by hyperoxia, the formation
of oxidants may also signal the commencement of the
repair process84. AT2 cells, in response to unidentified
signals connected to definite injuries, can start prolifera-
tion and AT1 cell transition which may also migrate to
the injured cells for reparation.

The mechanism AT2 cells activation promote repairing
processes after lung injury
Little is known concerning the molecules that control

the AT2 cell activation that results to alveolar repair. The
assumption of transcriptional programs engaged in
embryonic lung development, such as those under the
regulation of the FGF and Wnt pathways (Fig. 4) may be
triggered after injury and may assist in repair85. However,
even though FGF and Wnt signaling appear to be asso-
ciated with alveolar repair numerous transcription factors
(Id2, Erm, Gata6, and Elf5) that are involved in alveolar
growth have not been revealed to have high expression in
AT2 cells after Pseudomonas aeruginosa-induced
injury86. Hence, there may be some associations of the
repair development that does not absolutely summarize

Fig. 3 Roles of p53 in Apoptosis of lung injury
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the developmental process in embryogenesis. Some
growth factors seem to be capable to regulate definite
aspects of the progenitor properties of AT2 cells. EGF and
HGF can also trigger cultured AT2 cells to proliferate87.
The intratracheal injection of HGF or KGF stimulates
AT2 cell proliferation in the lung. However, TGFβ
expression in the bleomycin-injured lung indicates that it
shows a negative regulatory function in the proliferation
of AT2 cells during early repair phase88. In culture, TGFβ
inhibits AT2 cell proliferation but stimulates the trans-
formation of cultured AT2 cells into AT1 cells89, how-
ever, BMP4, another member of the TGF superfamily,
antagonizes this differentiation. The Wnt/β-catenin sig-
naling pathway90 shows a significant function in the dif-
ferentiation of lung epithelial cells during growth.
However, following the reduction of Notch endorsed the
production of SPC-positive cells and the differentiation of
alveolar epithelial cells, facilitating normal repair91.
Hence, in LNEP, Hif1a deletion or upregulation of Wnt/
β-catenin activity stimulated differentiation into the nor-
mal SPC-positive AT2 cell and enhanced repair92. This
investigation highlights the detail that not entirely repair
of cells are equal and reveals instances of signals that fine-
tune tissue repair, such as Hif1a and Wnt/β-catenin
signaling. Hence, consideration of the equilibrium
between good and bad repair is very important. More

understanding of the mechanism of the signals that can
determine normal versus abnormal lung repair is essen-
tial. The immune signaling functions of the Notch in the
cell occur majorly in the inflammatory cells93. Therefore,
it is promising that sustaining Notch signaling might
reduce effective lung repair by extending inflammation, as
well as by regulating progenitor identity, while this
remains to be exploited.

Potential therapy of lung disease by utilizing the type 2
progenitor cells
The fibrotic response could be prevented by the use of

pharmacological inhibition of apoptosis. It was dis-
covered that bleomycin-induced accumulation of lung
collagens could be blocked by daily intraperitoneal
injections of N-benzyl carboxy-Val-Ala-Asp-fluoro
methyl ketone (ZVADfmk), a broad spectrum inhibitor
of caspases (cysteine proteases) essential for the induc-
tion of programmed cell death. Shortly another inves-
tigator confirmed the blockade by using the same
caspase inhibitor (ZVADfmk) administered by aerosol
to mice94. Another approach to interrupt AT2 apoptosis
showed active in blocking bleomycin-induced pulmon-
ary fibrosis. The forced expression of p21, mainly in
lung epithelial cells, utilized both antiapoptotic and
antifibrotic effects.

Fig. 4 Wnt signaling pathway
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In spite of uncertainties about their safety and the best
administration route to ameliorate their engraftment, use
of stem cells in animal models has been validated to
mitigate injury and fibrosis in lungs confronted with
endotoxin95. The explicit mechanisms by which stem cells
accomplish their roles in tissue repair are still under
study, the inhibition of pro-inflammatory cytokines and
release of several growth factors seem to be involved. The
utilization of exogenous growth factors is an alternative
therapy used to induce the proliferation of endogenous
stem cells. EGF, KGF, and HGF have been utilized. They
are mitogens in AT2 cells and facilitate their maturation
by increasing surfactant production synergistically. EGF
had significant effects in an animal model of ALI, and
inhibition had bad effects in reparation96.
Modulation of epithelial cell migration and anti-

inflammatory cytokines are been upregulated by KGF.
ATP-citrate. stearoyl CoA desaturase, lyase, fatty acid
synthase, and acetyl CoA carboxylase are the major
enzymes of fatty acid biosynthesis that are activated by
KGF. They are controlled by two sets of enzymes pri-
marily by two sets of transcription factors, SREBP-1c, and
C/EBP alpha and delta. Transcription and proteolytic
processing level controlled by SREBP-1c, LXR agonist
TO901317SREBP-1c can also activate SREBP-1c97. Reg-
ulation at the level of phospholipid synthesis in vitro and
in vivo is less clear. AT2 cells use the fatty acids for
phospholipid synthesis. Phospholipid synthesis is a part
that requires further study which can enhance the ther-
apeutic effect of AT2 cells.
Vascular endothelial growth factor (VEGF) could also

have a therapeutic effect by its capability to repair injured
endothelium, consequently facilitating in clearance of
lung edema, but animal models have displayed unsa-
tisfactory results. Nevertheless, no study has explicitly
investigated the effects of steroids throughout lung repair
MMPs are other targets to encourage repair98. Though,
the route of administration could be appropriate, as a
recent trial has established that patients with ALI treated
with inhaled salbutamol displayed no important
improvement. Furthermore, blockade of MMP-8 has
displayed favorable results in experimental models of lung
injury, with reduced lung fibrosis after bleomycin
administration99. Conversely, no clinical investigation on
reducing this protease has yet been recommended.

Conclusions
AT2 progenitor cells, growth factors, or drugs that

promote matrix remodeling could be another possibility
to advance the therapy of patients with lung injury. The
mechanisms that can cause tissue disorder in the early
phase likewise contribute to its repair, later on, inflam-
mation and matrix renovation being model illustrations.
Hence, therapies that disorder these pathways, such as

MMP inhibition, may have a prophylactic value, but their
application at a later phase could be detrimental. Hence,
understanding of the intermediaries involved in tissue
repair could lead to new therapeutic strategies being
applied after the initial insult has been measured.
The accumulating knowledge regarding AT2 progenitor

cells would be improved by further studies of the fol-
lowing directions, how is phospholipid production
structured for surfactant production and association with
the hydrophobic surfactant proteins, what controls the
fate of dividing AT2 cells and what regulates their pro-
liferation in the normal lung, are all AT2 cells equipotent
in terms of surfactant production, fluid transport, re-
epithelialization, and immune responses. It is also inter-
esting to investigate the effects of ROS (Hydrogen per-
oxides, nitric oxide, and hydroxide) on induced DNA
damage and repair through the differentiation of AT2
cells progenitor cells. The significance of mitochondrial
complexes I and III, NADPH oxidase isoform NOX4
during AT2 cell differentiation and mechanisms under-
lying the processes will be fascinating to study.
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