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Abstract

The life table entropy provides useful information for understanding improvements in mortality
and survival in a population. In this paper we take a closer look at the life table entropy and use

advanced mathematical methods to provide additional insights for understanding how it relates to

changes in mortality and survival. By studying the entropy (4) as a functional, we show that

changes in the entropy depend on both the relative change in life expectancy lost due to death (e
and in life expectancy at birth (&y). We also show that changes in the entropy can be further linked

to improvements in premature and older deaths. We illustrate our methods with empirical data

from Latin American countries, which suggests that at high mortality levels declines in A (which

are associated with survival increases) linked with larger improvements in &, whereas at low
mortality levels & made larger contributions to A, We additionally show that among countries
with low mortality level, contributions of ef to changes in the life table entropy resulted from
averting early deaths. These findings indicate that future increases in overall survival in low
mortality countries will likely result from improvements in &'.
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1. Introduction

The life table is perhaps the most useful tool in mortality analyses, as it summarizes the
mortality experience of a population at a given point in time into a set of simple indicators
(Preston et al., 2000). For example, life expectancy, a by-product of the life table, has been
used extensively and widely as a measure of population health in national and international
contexts (United Nations, 2012). Other life table measures such as the life table entropy,
however, have received much less attention, although the entropy could also be considered
an equally useful indicator for understanding improvements in mortality and survival in a

population (Wilmoth and Horiuchi, 1999).

In this paper we take a closer look at the life table entropy and provide additional insights
for understanding how it relates to changes in mortality and survival. Unlike previous work
that relied on univariate calculus (e.g., Demetrius, 1974, 1975, 1976, 1978, 1979; Goldman
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and Lord, 1986; Keyfitz, 1977), we provide a more rigorous development and a further
description of the life table entropy using the calculus of variations. This approach has
previously been used in demographic research (Arthur, 1984; Beltran-Sanchez and Soneji,
2011; Preston, 1982), and as we show, it provides us with additional tools to deepen our
understanding of the population entropy and overall population survival. We focus, in
particular, on a widely used measure of mortality improvement - life expectancy at birth
(which represents the average length of life in the survival curve of a population) - and an
additional measure called e' that has recently been proposed as a marker of lifespan
inequality (Zhang and Vaupel, 2009). For example, averting deaths at younger ages
(premature deaths) is associated with reductions in lifespan inequality (Zhang and Vaupel,
2008). Recent evidence from 40 countries shows a negative correlation between life
expectancy (&) and lifespan disparity (¢') from 1840 to 2009, with most of the increase in
life expectancy resulting from improvements in premature deaths (Vaupel et al., 2011). The
authors conclude that improvements in life expectancy at birth can also be accompanied by
reductions in lifespan disparity (&'). In this paper we provide a mathematical foundation for
these empirical findings by linking changes in the life table entropy, life expectancy at birth,
and lifespan disparity. We demonstrate, mathematically and empirically, that changes in the
entropy depend on both the relative change in life expectancy lost due to death (¢') and in
life expectancy at birth (&). We also show that changes in the entropy can be further linked
to averting premature and older deaths. These results provide important implications for
understanding current and future changes in the overall survival of a population. For
instance, using data from Latin American countries for 1950-2005, we show that at low
mortality levels changes in & contributed the most to overall survival, indexed by the
entropy, which resulted from improvements in premature deaths. This implies that in these
countries future increases in overall survival will likely come from changes in ef and that
these improvements are likely to reduce lifespan inequality as a result of averting early
deaths (Zhang and Vaupel, 2008, 2009).

The paper is organized as follows. We begin in Section 2 with a brief overview of the
mathematical definitions of the mortality and survival functions, and the life expectancy and
entropy (for the interested reader, Appendix A.1 contains a brief literature review of the
entropy). We then review how the entropy is used to measure relative changes in life
expectancy in Section 2.1, and discuss the functional nature of the entropy in Section 2.2,
We present our main results in Sections 2.3—2.4, where we use the calculus of variations
(reviewed in Appendix B) to show that changes in the entropy depend on both the relative
change in life expectancy lost due to death (") and in life expectancy at birth (&) - c.f. (2.5)
- and also provide a new way to describe the effect of changes in the mortality function on
the population entropy (c.f. Proposition 2). In Section 3 we further link changes in the
entropy with improvements in premature and older deaths in relation to & and ef. Section 4
applies our results to mortality data from 18 Latin American countries from about 1950 to
2008. Therein we discuss our finding that at high mortality levels declines in A (which are
associated with survival increases) linked with larger improvements in g, whereas at low
mortality levels &' made larger contributions to 4. We end with concluding remarks in
Section 5.
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2. The entropy

The life table entropy is commonly used throughout demography to study the relative
changes in life expectancy associated with changes in age-specific mortality rates. In this
section we review the construction of the entropy due to Keyfitz (1977) (see Appendix A.1
for a brief history), and then present our main analytical results.

2.1. The demographic motivation for introducing the entropy

Let 4(x) be the force of mortality at age x. The probability of surviving from birth to age xis
then

S(x) = e_/o.“(s)ds’ (21)

so that /ife expectancy at age x is given by

a
- (s)ds
e(x):/ooe '/O'u da.
x

In many of the situations of interest to us in this paper, xis fixed and ((s) may vary. For
instance, we may be interested in studying changes in life expectancy at birth (which implies
that x = 0). We therefore introduce the following notation to reflect these cases:

siuen=e e fue = f T )

Consider now a relative increase € > 0 in y - that is, a proportional increase in yat all ages -
similar to that proposed by Keyfitz (1977). Then the new mortality function is (1 + €)459)
(note that Au = € 4, so that Ayl = €), the new probability of surviving from birth to age xis

—/g(l + e)u(s)ds —fg/t(s)ds e
S LA +eus)] =e =|e

= (s, 1u1)' €,

and the new life expectancy at age xis

e [(1+u(s)] = / “s@! *€da.
X

Without loss of generality, let us specialize to the most studied case of life expectancy—Ilife
expectancy at birth:
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(e} ~
eol(1 + Ou(s)] = A S@!+€da.

We expect the relative increase in mortality to cause a relative decrease in life expectancy. To
measure this decrease, Keyfitz and Caswell (2005, sec. 4.3.1) calculate dey/de| ¢ and then
consider eto be finite but small to arrive at the approximation

(2.3)

Aey [ [2SMINES)) dx
/5 S(x) dx ‘

€

Since 0 < §(x) < 1 (this follows from (2.1)), the ratio in the parentheses is negative,
confirming our expectation that a relative increase in mortality should result in a relative
decrease in life expectancy. Accordingly, the negative of the expression in parentheses is
known as the entropy of the life table, and is customarily denoted by H. More formally, we
make the following definition.

Definition 1. Given a survival function S(x), the quantity defined by

/ (°)° S()In(S(x))dx
/ 80 S(x)dx

H[S(x)] = 24)

is called the entropy of the population.

We will explain the bracket notation in the next section, but for now let us note that the
approximation in (2.3) suggests the following interpretation for / (Goldman and Lord,
1986): a small proportional increase € in the death rate at all ages results in a proportional
decrease in life expectancy of approximately Htimes e. For example, for /=1 “when the
death rates at all ages increase by 1 percent, the expectation of life diminishes by 1 percent
Keyfitz and Caswell (2005, Sec. 4.3.1)”. Thus, A measures how relative changes in the
mortality function affect the relative change in life expectancy of a population. In other
contexts A has other interpretations (see Appendix A.2), but it is commonly known to be “in
general highly sensitive to variations in age-specific mortality” Demetrius (1979) (Appendix
A.3 contains a more thorough discussion of this point), which makes it a useful tool for
characterizing a population’s survivorship.

2.2. Understanding the life table entropy (H) as a functional of the survival function (S)
and the force of mortality ()
The preceding analysis described the effect on A of a specific change in the mortality
function 4(x) (and consequently, by (2.2), in S(x)). This suggests that we view Has a
functional—a quantity whose input is a function and whose output is a real number. Indeed,
as (2.4) makes clear, His a functional of S(x), since it takes as input a survival function S(x)
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and outputs a real number (this is why we have used the A[S(x)] notation). Similarly, H can
also be seen as a functional of 4(x), in which case we write A[(X)].

Functionals are similar to functions, except that the “independent variable” is now a
function. To better see this important distinction (and also the functional nature of H),
consider the so-called Ayperbolic mortality example, where

S(x) (1 x)a
x)=[1-—|,
S0

ux) = So— %

HIp(0] = HIS@)] = < -

For simplicity, set s = 1 so that we can uniquely identify a curve in the family of mortality
and survival curves, 4(X) = al(1 — x) and S(x) = (1 — x)4, by the parameter a. Since H= al(a
+ 1), it follows that Hassigns to each function ((x) = a(1 — x) (or, equivalently, S(x) = (1 -
X)9) one number al(a+ 1), clearly illustrating the functional nature of A. A plot of ¢(x) and
S(x) for various a-values is shown in Fig. 1 panels (a) and (b), respectively, and the
corresponding plot of the entropy A is shown in Fig. 1(c).

A closer look at panels (b) and (c) reveals two more characteristics of A as a functional of
S(x). Firstly, it detects the degree of concavity (also called convexity) in an S(x) function.
Secondly, decreasing H values signal changes in the survival curve toward greater
survivorship. (Appendix A.3 contains a discussion of these two general features of H.) By
the same token, panels (a) and (c) also indicate similar characteristics of A/ as a functional of
U(X) but in this case decreasing H values signal changes in the force of mortality curve
toward /ower mortality. Because the survival function is bounded, 0 < S(x) < 1, changes in
S(X) have “less room” to operate and this leads to different dynamics when studying changes
in Has a functional of S(x) versus when His a functional of u(x)—which, at least
theoretically, is unbounded. Thus, the entropy A would express differential effects in
response to changes in the survival function (S(x)) or to changes in the force of mortality
(i), and calculus of variations offers a unique opportunity to study these changes. We
study these two cases in Sections 2.3 and 2.4, respectively.

2.3. Atheorem concerning the entropy as a functional of the survival function

Changes in functions are described by calculus, while changes in functionals are described
by the calculus of variations. (Appendix B contains a brief review of the subject, as well as
the notation we will use throughout the remainder of the paper.) Importantly, calculus of
variations allow us to look at variations in the entire survival function S(x) and their link
with changes in A (as in Fig. 1), as opposed to univariate calculus in which changes are
localized at a given point in the survival function. In this section we focus our attention on
SHand & H - the analogues of the first and second derivatives of a single-variable function,
respectively - and what they can tell us about changes in the survival function. To begin, let
us note that the denominator of (2.4) is just e[ S(X)] (recall (2.2)). Moreover, Goldman and
Lord (1986) and Vaupel (1986) have shown that the numerator of (2.4) - which includes the
minus sign - can be re-expressed as
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oo
[) H(x)S(x)e(x)dx,

which has been traditionally denoted by &' (Vaupel, 1986). Therefore,

+ o]
e'[S]= - A S()In(S(x))dx,

so that the entropy (2.4) then becomes

e

HISOT= ¢ s

Now, denote by S(x; €) a family of smooth “varied curves”: curves that are small
perturbations of S(x) but have the same endpoint values as S(x) (i.e., for all €, S0; €) = S(0)
and S(x; ) —> Oas x — 00).1 The difference S(x; €) — S(x) is called the variation of S(x)
and is traditionally denoted by 65 (c.f. Appendix B). We can now prove the following
theorem.

Proposition 1.—Let S be a variation of the survival function S(X). Then:
1. The relative change in H{S(X)] is

SH[S(x)] _ 8¢ [S(x)] N —deg[S(x)]

HISOI ~ ofisey T eoseor » @2

where the first variations of €' [S(X)] and e[ S(X)] are given by

PAINGIE — Seg[S(x)] — A 00ln(‘S‘(x))v(x)dx, (2.6)

5eO[S(x)]=foov(x)dx, (2.7)
0

and where §S(X) has been expanded to first-order in e: 6 S(X) = e X), With UX)
a smooth function that vanishes at zero and as x — ©0,

2. The second variation & H S(X)] is

IFor example, 4(x; €) = (1 + €)u(x), the perturbation to the mortality function discussed in Section 2.1, is a family of smooth varied
curves for f(x).
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) 1] fRow?
5°H[S(x)] = —e—o[ A e dx (2.8)

+ 2[560§H + (/oow(x)dx)(H +1)
0

k)

+ / oow(x)ln(S(x))dx]
0

where & S(X) has been expanded to second-order in e: 8 (X) = eUX) + EMX),
where UX) and w(X) are smooth functions that vanish at zero and as x — ©0.

The proof of Proposition 1 can be found in Appendix C.

Eq. (2.5) decomposes the relative change in /into the sum of the relative changes in e' and
&- Therefore, this equation shows that changes in overall survival, indexed by A, depend on
improvements in both &' and in &). In addition, Eq. (2.6) shows that g and &' change in
opposite directions in response to a variation in the survival function, since for small
variations in S(x), where 1x) — 0, the first variations of & and e’ would be the exact
opposites of each other.

We end this section by noting that when e is finite but small we can use the first and second
variation to approximate H[ S+ 65] to second order in e (see also (B.8)):

2
HIS(x) + 88(x)] ~ H[S(xX)] + eSH[S(x)] + %EZH[S(x)] . (2.9)

2.4. The entropy as a functional of the mortality function

Let us now return to the problem of studying the effect on A of varying (x). The following
theorem is the analogue of Proposition 1.

Proposition 2.—Let &u be a variation of the mortality function (As). Then the relative
change in H[1(9)] 7s given by

SHu(s)] _ de'[u(s)] | ~0€olH(s)]
Hlp)l — ol eoln®)]

. (210)

where the first varfations of € [1(X)] and e[(X)] are given by

8e'[u(s)] = — deylu(s)] (2.11)

- fo S [u()1n(S [u()])In(S [v(s)])dx,
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(o]
oeglu(s)] = A Sx[/t(s)]ln(Sx[v(s)])dx, (2.12)

f 8 v(s)d.

with S [v(s)] = e S, and where 8l48) has been expanded to first-order in e: 51(S) =

eUs), with V(S) a smooth function that vanishes at zero and as s — 0.
The proof of Proposition 2 can be found in Appendix C.

Although (2.10) is a direct analogue of (2.5), note that the equations identifying the first
variations of sel[S(x)] and 5g[S(X)] ((2.6) and (2.7)) are very different from those shown
above in (2.11) and (2.12). The extra terms shown in the latter case come from the non-
linear link between the force of mortality and average years of life (Se' and Sgp). These
equations highlight the differential effect on the entropy A resulting from changes in the
survival function (S(x)) versus changes in the force of mortality (1(x)).

Similar to Eqg. (2.6), Eq. (2.11) shows that there is a negative association between the first
variation of e'[z(x)] and that of ey[(x)]—when one increases the other one decreases.
Moreover, for very small variations (544s) close to zero) the second term in (2.11) becomes
negligible (because S{US)Il9~0 — 1 and In(S{Us)]) — 0), and the two variations
become negatives of each other.

2.5. Reproducing the Keyfitz result with Propositions 1 and 2

As a quick application of Propositions 1 and 2, let us show that the calculation performed by
Keyfitz and Caswell (2005, Sec. 4.3.1) and reviewed in Section 2.1 is indeed an investigation
of the change in the functional A~ under the variation & = eu(s) of the mortality function
(Beltran-Sanchez and Soneji, 2011).

To begin, note that the new mortality function (1 + €)(s) in that calculation can be written

(1 +e)u(s) = u(s) + eu(s) = u(s) + ou(s).

In the language of Proposition 2, this means that () = 1(s), so that (2.12) immediately gives

Sey [0 S()In(S(x))dx

%o (2.13)
o J5 S(x)dx

If we now consider e to be finite but small, applying (B.7) yields

/7 S@In(S(0)dx

Aeo 5e0
—RE€ = €,
0 €0

/¢ Stodx
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which verifies the entropy result of Keyfitz and Caswell (2005, sec. 4.3.1) (Eq. (2.3)).

We can also derive (2.13) (and therefore again reproduce (2.3)) using Proposition 1 as
follows. The variation in the mortality function causes a variation in the survival function

S(x) of

855 = S0 ¥ € = 500 = S@(SC° - 1) = S 1]

2
= S| eln(S(x) + GZM 4ol

(The terms in parentheses in the last equation come from Taylor-expanding e€ () — 1)
Therefore, to first-order in ¢, the variation in the mortality function results in a variation §S
= eS(%) In(S(x)) in the survival function. Then, using (B.6) to compute the first variation of

el S(X)] we arrive at

éeo[S(x)] = [aigeo{S(x) + eS(x)ln(S(x))He

o0
= A S()In(S(x))dx .

Dividing this equation by g then yields (2.13).

Analytical expressions for the entropy are also known for other special scenarios. In
Appendix D we consider a few of these special cases and apply Propositions 1 and 2 to
again verify the results found in the literature.

3. Early deaths from late deaths

Propositions 1 and 2 allow us to study changes in the life table entropy (A) associated with
improvements in the survival and mortality functions across all ages. These propositions can
also be used to provide additional insights to link premature and older deaths with life table
entropy, and to inform about changes in lifespan disparity. For instance, an important
property of ' as a measure of life disparity is that there is a unique threshold age, &', that
separates early from late deaths (Zhang and Vaupel, 2009). The importance of this age for
overall survival is that improvements in reducing early (premature) deaths reduces variation
in lifespans (overall survival), while improvements in late (older) deaths increases variation
in lifespans (Vaupel et al., 2011). An age &' separates early from late deaths if 0 = &'(a")

:
—eg(a")[L - A(a")], where A(a") = /§ u(s) is the cumulative hazard function (Zhang and
Vaupel, 2009).

Proposition 1 can be re-expressed to incorporate a given threshold age a'. The result is
(Appendix E):
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SHISW] _ | 8¢Sl < afy) | —0eolStxlx <ah)] (3.1)
H[S(x)] — ¢S] e[S(x)] '
se[Sxlx > aly]  —0¢olSCxlx > a")]
' IS(0)] eo[S()] ’

where the first conditional variations of e/[S(x)] and g[S(x)] are given by

e’ [Sxlx < ah)] = — dey[S(xlx < a")] - / aTln(S(x))v(x)dx, (3.2)
0

e’ [S(xlx > aN] = — Gey[S(xlx > a')] - f :oln(S(x))v(x)dx, (3.3)

a

s
dep[S(xlx < aT)] = /a v(x)dx, (3.4)
0

SeglS(xlx > a')] = / :Ov(x)dx, (3.5)

a

where (X) is a smooth function that vanishes at zero and as x — ©o.

Eg. (3.1) shows that relative changes in the entropy can be decomposed as the sum of
relative changes in e'[S(x)] and g[S(x)] associated with early and late deaths. In addition,
Egs. (3.2)—(3.5) highlight the interplay between e[S(x)] and &[S(x)] in determining overall
survival when early and/or late deaths are averted. Proposition 2 can also be written in
analogous form to (3.1) with its respective conditional variations in e'[(s)] and ey[4(3)]
(Appendix E).

Note that the above equations are general in the sense that they work with any threshold age.
For instance, one may be interested in investigating changes in the entropy associated with
mortality improvements below and above the mean, median, mode? or any other moment of
the survival probability function or the force of mortality (Appendix E).

20ne may need to bound the estimate of the mode, e.g. for ages >10, to avoid a bi-modal distribution due to high number of deaths in
childhood. In doing so one would also need to bound the entropy accordingly.
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4. Application to Latin American mortality data

In this section we describe the results of applying Proposition 1 to assess changes in the
entropy, A, and their corresponding link with changes in & and &'.

4.1. Data and methods

We use period mortality data from 18 countries in Latin America from about 1950 to 2008
from the Latin American Mortality Database (Palloni et al., 2014) (Table 1).This data covers
the period when major improvements in mortality took place in the region, with particularly
fast declines in infant mortality and sizeable increases in life expectancy at birth (Palloni and
Wyrick, 1981; Palloni and Pinto, 2011).

We focus here on age 0, that is, life expectancy at birth (&) with its corresponding life
expectancy lost due to death (&) and life table entropy (4). To highlight the usefulness of
Proposition 1 for studying changes in overall survival, we also provide an application
decomposing changes in A associated with improvements in early vs. late deaths. Because
population data typically comes in discrete form, we use standard techniques to estimate
8(0), €'(0), and A at time #(life table notation) - see Appendix F.1 - and also use the discrete
versions of the first variations in Proposition 1 - see Appendix F.2.

4.2. Results

As a first application of Proposition 1, for each country in Table 1 we compare the observed
change in H between two consecutive time periods 4 and & (H[S(x, &)] — H[S(x, 4)]) to the
predicted change in H (8H[ S(x, 1‘1)]).3 Using advanced numerical integration techniques
(Appendix F.2), we find that in each country the average percentage error in the estimation
across all periods is <0.16%*%

Next, Fig. 2 shows estimates of the life table entropy, H, for all countries included in the
analyses for males and females (see Appendix Table 2 for specific values). Results indicate a
decline in H over time suggesting improvements in overall survival in all these countries
since the 1950’s. Interestingly, there is a different pattern in A between countries that had an
early demographic transition and those with a late transition. For instance, countries with an
early demographic transition (e.g., Argentina, Costa Rica, Cuba, and Uruguay) start at lower
levels in H'in the 1950’s and show slower pace of decline over time; the opposite is true for
countries with a late demographic transition (e.g., El Salvador, Guatemala, Honduras and
Nicaragua). This result reflects the fact that countries with an early demographic transition
had already attained relatively low mortality levels in the 1950’s (Palloni and Pinto, 2011);
thus, their corresponding life table entropy early on is lower than that of countries with a late
demographic transition. In addition, improvements in overall survival tend to be larger when
starting at high mortality levels, suggesting that A would show faster declines for countries
with a late demographic transition.

3This and all subsequent analyses were performed using the R software package (R Core Team, 2014).
The discrete approximations (F.1) and (F.2) lead to percentage errors in Has large as 4.5% in some cases (Ecuador between 1986 and
1995). We therefore employed the aforementioned advanced numerical methods for all subsequent analyses.
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As a second application of Proposition 1 - and (2.5) specifically - we now decompose
changes in A over time to assess whether increases in overall survival in Latin America in
the second part of the 20th century are due to larger improvements in &' vs. &,

The percentage contribution of &' and &) to the change in A between two consecutive
periods for each country for males and females is shown in Figs. 3 and 4, respectively
(Appendix Table 3). Results clearly indicate a differential contribution of g and &' to
changes in A over time. Improvements in gy show larger contributions to increasing overall
survival at high mortality levels (e.g., before 1990), but improvements in e contributed the
most as the mortality level declines. For instance, for males in El Salvador, Guatemala,
Honduras and Nicaragua, increases in g, contributed about 60% of the change in H before
1980, but after 2000, a similar percentage contribution is due to improvements in e'. On the
other hand, increases in survival for males in countries with low mortality levels (e.g.,
Argentina, Cuba and Uruguay) were mostly due to improvements in e'. There is a similar
pattern for females, but in this case, ' made larger contributions to overall survival because
females tend to experience lower mortality rates than males.

Importantly, there was a different age pattern of mortality decline in Latin America since the
1950’s between countries with early and late demographic transitions (Palloni and Wyrick,
1981). For the latter countries, declines in infant and childhood mortality are likely
responsible for the bulk of overall survival, but for the former countries, declines in adult
and older adult mortality are the most likely contributors (Palloni and Pinto, 2011). Thus, as
a third application of Proposition 1, we estimate the age separating early (premature) from
late (older) deaths (a', Appendix Table 2) and further decompose changes in / over time
associated with averting premature and older deaths using Egs. (3.1)—(3.5) (Appendix Table
4).

Due to space limitations we only show results for males (Fig. 5); results for females are
shown in the Appendix Fig. 6. Results for the age separating premature from older deaths
show that in countries with a late demographic transition, &' starts at lower values and
increases at a faster pace over time relative to countries with a late demographic transition
(Appendix Table 4, Appendix Fig. 7). This time trend corresponds to a faster mortality
reduction over time among the former countries.

Fig. 5 shows results decomposing changes in the male entropy due to improvements in
premature and older deaths. In countries with a late demographic transition (e.g., El
Salvador, Guatemala, and Honduras), increases in overall survival are mainly due to
increases in g resulting from improvements in older deaths (light pink). As the mortality
level declines in these countries there is a larger contribution to overall survival from
premature deaths (pink). On the contrary, in countries with an early demographic transition
(e.g., Argentina, Cuba, and Uruguay), increases in overall survival are due to improvements
in e resulting from averting premature deaths (dark blue). In some of these countries, for
example in Argentina, Cuba and Uruguay, males at older ages experienced worsening rather
than improving average years of life lost due to death—hence the negative contribution to
overall survival in the figure. Nonetheless, premature deaths made large enough
contributions to overall survival that they offset the mortality deterioration at older ages.
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5. Concluding remarks

In this paper we provide a demographic interpretation of changes in the life table entropy by
studying this concept from the functional viewpoint. This approach allow us to provide
additional insights for understanding changes in overall survival in a population. In
particular, we find that changes in the entropy depend on the relative changes in both life
expectancy lost due to death (&) and in life expectancy at birth (&), with the exact
relationship given by (2.5). Our results also provide a new way to describe the effect of
changes in the mortality function on the population entropy (c.f. Proposition 2). These are
well-studied demographic concepts that now have a natural and consistent link to a
population’s entropy and changes in its mortality and survival functions.

When we apply our methods to period mortality data in Latin American countries since the
1950°s, we obtain an especially useful description of the interplay between g and &' in
determining changes in overall survival of a population. We show that, in these countries,
declines in H - which are associated with increases in overall survival - are driven by faster
improvements in & in high mortality regimes, and by € in low mortality regimes. This
insight reinforces the interpretation of & as an indicator of life disparity (Vaupel et al., 2011;
Shkolnikov et al., 2011). Thus, in countries experiencing a low-mortality regime,
improvements in overall survival will increasingly depend on reducing disparities in length
of life in adulthood.

Moreover, we show that changes in the survival function produce changes in opposite
direction between e’ and & (see Eq. (2.11)). In fact, for very small changes in the survival
function, e.g. those currently experienced in low-mortality countries, e’ and &, are direct
opposites. Thus, our equation helps elucidate previous research that shows a negative
correlation between e’ and g among low-mortality countries, why this correlation is higher
in recent times, and why countries with low life disparity (&) tend to have higher values in
life expectancy at birth (&) (Vaupel et al., 2011).

For Latin American countries, our decomposition of changes in the entropy due to averting
premature and older deaths shows that improvements in overall survival (i.e., declines in H)
are associated with averting premature deaths. The implication of this result is that countries
in Latin America are likely reducing lifespan inequality, which is a consequence of averting
early deaths (Zhang and Vaupel, 2009, 2008).

Our methods and the substantive results have immediate applications for envisioning future
changes in overall survival in other countries. For instance, it is likely that most increases in
survival in high-income countries will result from improvements in &', while in low- and
middle-income countries g is likely to still play an important role in determining overall
survival of the population. Our methods also provide additional insights for linking changes
in the life table entropy with improvements in premature and older deaths. Our formulas are
general in the sense that they work with any threshold age. For instance, one may be
interested in investigating changes in the entropy associated with mortality improvements
below and above the mean, median, and mode.
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The results we have achieved have been made possible by casting the problems we have
studied within the domain of the calculus of variations. The examples considered in
Appendix D further showcase how demographic questions, like the change in a population’s
life expectancy given a relative change in their overall mortality, can be answered with
variational calculus. These tools have already proven useful in the field (see e.g., Arthur,
1984; Beltran-Sanchez and Soneji, 2011; Preston, 1982; Engelman et al., 2014), and we
would like to further advocate their use, especially given the potential insights - such as
those contained in Proposition 1 and the applications of it we have discussed - that may
surface as a result of their usage.

Source: Latin American Mortality Database (LAMBdA).
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Appendix A.: Origin and interpretations of the entropy

A.1l. A brief history of the origin of the life table entropy

The concept of entropy was initially proposed in the physical sciences as a measure of the
level of disorder in a system. A similar concept in population studies - population entropy or
life table entropy - was independently developed by Demetrius and Keyfitz in the 1970°s
using different principles. The first approach, developed by Demetrius (1974, 1975, 1976,
1978), is a direct analogue of the entropy of physical systems. Demetrius considers a
population to be a system of n interacting age classes that can be represented by a lattice
system. This system has a phase space with an associated set of (invariant) probability
measures. Thus, given a finite partition of the lattice system there is a Kolmogorov entropy
which, in an equilibrium state (i.e., a state that maximizes the entropy for a fixed mean
energy), corresponds to “the variability of the contribution of the different age classes to the
stationary age distribution (Demetrius, 1974)”.

Table 2

Estimates of life expectancy at birth (&), life expectancy lost due to death (&'), entropy of
the life table (4), and the age separating early from late deaths (a') for males and females
for 18 countries in Latin America.

Year Males Females

€0 ef af H €y ef al H
Argentina
1953 59.6 16.1 53.0 0.27 647 151 61.0 0.23
1965 61.8 151 550 024 680 134 650 0.20
1975 632 145 56.0 023 699 126 66.0 0.18
1985 66.1 131 59.0 020 724 109 69.0 0.15
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Year Males Females

€ ef a H €y el af H
1996 676 126 610 019 743 102 710 0.14
2005 695 11.7 63.0 017 756 95 73.0 0.13
Brazil
1985 60.6 16,6 53.0 027 665 142 620 0.21
1995 644 152 570 024 709 124 670 0.17
2005 67.7 13.7 610 020 739 108 710 0.15
Chile
1956 516 20.6 39.0 040 563 200 470 0.36
1965 55.3 188 450 034 610 17.7 550 0.29
1976 619 157 540 025 677 136 630 0.20
1987 670 131 600 020 729 106 69.0 0.15
1997 703 115 650 016 758 9.1 720 0.12
2006 724 105 680 014 776 82 750 0.11
Colombia
1957 509 214 36.0 042 540 208 420 0.39
1968 56.1 187 470 033 600 181 530 0.30
1979 619 162 550 026 664 144 610 0.22
1989 634 156 56.0 025 699 123 650 0.18
1999 66.0 147 600 022 729 110 69.0 0.15
2008 69.1 129 650 019 752 938 73.0 0.13
Costa Rica
1956 586 190 520 033 608 182 550 0.30
1968 628 16.6 580 026 658 153 620 0.23
1978 685 135 640 020 724 115 69.0 0.16
1992 716 115 670 016 757 94 720 0.12
2005 731 109 69.0 015 776 8.6 750 0.11
Cuba
1961 646 151 59.0 023 673 143 630 0.21
1975 69.4 127 650 018 722 115 69.0 0.16
1991 710 112 66.0 016 743 938 70.0 0.13
2006 733 103 680 014 768 87 730 011
Dominican Republic
1955 490 228 310 047 509 227 340 044
1965 548 208 440 038 574 203 480 0.35
1975 583 187 500 032 615 181 550 0.29
1987 62.7 16.6 56.0 0.26 676 149 63.0 0.22
1997 66.1 154 600 023 715 130 680 0.18
2006 678 140 620 021 729 11.7 69.0 0.16
Ecuador
1956 469 239 240 051 497 237 300 048
1968 543 213 430 039 56.7 207 470 0.36
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Year Males Females

€ ef a H €y el af H
1978 588 192 500 033 626 179 580 0.29
1986 632 167 570 026 675 148 64.0 0.22
1995 66.0 153 600 023 712 129 68.0 0.18
2005 695 135 650 019 747 108 720 0.15
El Salvador
1955 440 239 190 054 472 237 26.0 0.50
1966 50.7 219 360 043 549 209 450 0.38
1981 534 206 380 039 623 17.7 570 0.28
1999 612 169 500 028 708 125 67.0 0.18
2008 629 159 520 025 725 113 680 0.16
Guatemala
1957 424 244 130 058 426 240 150 0.56
1968 465 229 260 049 484 225 300 047
1977 509 21.6 350 043 544 208 43.0 0.38
1987 559 194 440 035 607 17.8 54.0 0.29
1998 61.3 174 510 028 671 146 620 0.22
2005 642 158 570 025 694 131 650 0.19
Honduras
1955 396 248 9.0 063 407 243 120 0.60
1967 485 226 300 047 514 220 370 043
1981 60.6 188 53.0 031 645 17.0 60.0 0.26
1989 65.4 167 600 026 696 146 670 0.21
Mexico
1955 485 228 300 047 517 221 370 043
1965 542 205 420 038 593 191 520 0.32
1975 59.3 189 500 032 643 169 59.0 0.26
1985 634 163 56.0 026 69.1 13.6 650 0.20
1995 66.8 144 610 022 721 118 680 0.16
2005 69.8 126 640 018 743 103 700 0.14
Nicaragua
1956 425 240 170 056 470 240 250 051
1967 490 227 310 046 529 220 400 042
1983 57.7 194 470 034 638 168 58.0 0.26
2000 647 153 570 024 695 131 640 0.19
2007 658 142 580 022 708 120 650 0.17
Panama
1955 574 188 49.0 033 586 19.0 490 0.32
1965 61.7 16.7 56.0 027 637 163 580 0.26
1975 65.7 148 600 023 679 141 63.0 0.21
1985 700 131 66.0 019 729 116 70.0 0.16
1995 714 123 670 017 749 106 720 0.14
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Year Males Females

€ ef a H €y el af H
Paraguay
1956 586 182 510 031 605 182 53.0 0.30
1967 612 16.8 550 0.27 634 163 580 0.26
1977 62.6 162 56.0 026 653 154 600 0.24
1987 65.0 146 59.0 023 681 135 64.0 0.20
1997 652 145 59.0 022 69.1 129 64.0 0.19
2006 681 130 630 019 719 112 680 0.16
Peru
1966 481 229 300 048 509 229 340 045
1976 55.6 204 460 037 585 197 510 0.34
1987 610 176 540 029 644 165 600 0.26
2000 66.3 145 610 022 704 128 670 0.18
2008 69.2 127 640 018 73.0 11.0 69.0 0.15
Uruguay
1969 63.0 145 56.0 023 688 128 650 0.19
1980 654 135 59.0 021 716 115 680 0.16
1990 675 125 610 019 739 103 710 0.14
2000 688 121 620 018 753 9.6 720 0.13
2007 702 115 640 016 763 9.1 73.0 0.12
Venezuela
1955 556 195 46.0 035 585 19.1 500 0.33
1966 60.8 168 530 028 645 156 580 0.24
1976 62.1 157 550 025 676 139 620 0.21
1985 65.1 144 580 022 705 122 650 0.17
1995 665 140 600 021 723 113 680 0.16
2006 673 139 610 021 742 104 700 0.14

Source: Authors’ calculations using data from LAMBAA (Palloni et al., 2014).

Contrary to Demetrius, Keyfitz (1977) uses demographic principles to derive an analogous
formula of population entropy. Keyfitz develops his concept while searching for an
alternative indicator to assess changes in life expectancy associated with fractional declines
in age-specific mortality rates. Both approaches lead to similar entropy formulations,
although their focus is rather different as Demetrius (1979) emphasizes the net maternity
function while Keyfitz (1977) focuses on changes in the mortality schedule.

A.2. Other interpretations of the entropy

While the entropy of a physical system has the same meaning regardless of the context - the
higher the entropy the higher the disorder in the system - the many applications in human
and non-human populations of the population entropy have resulted in a variety of context-
specific interpretations. For example, population entropy has been associated with the fitness
of an age-structured population (Demetrius, 1974), the life-history of a population (e.g.,
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populations that only reproduce once have zero entropy—semelparous populations)
(Demetrius, 1975), the rate of convergence of a population to its stable equivalent age
distribution (Tuljapurkar, 1982, 1993), the general shape of the survival function (e.g.,
entropy = 0 if all mortality concentrates at one age or entropy = 1 if mortality is the same at
all ages) (Demetrius, 1978; Keyfitz and Caswell, 2005), and the “degree” of concavity of the
survival function, such that increasing concentration of deaths at some age corresponds to
lower entropy values (e.g., low entropy in high-income countries as deaths concentrate at
older ages) (Wilmoth and Horiuchi, 1999; Nagnur, 1986).

Table 3

Contribution to changes in the life table entropy (A) due to changes in life expectancy at
birth (&) and in life expectancy lost due to death (e') for males and females for 18 countries
in Latin America.

Period Males Females

Change in H Overall cont % cont Change in H Overall cont % cont

Observed  Predicted® sel beq 5.7 dey Observed Predicted® 5 ¥ beg 50T O

eJr €0 eT 0 e% ‘0 eT €0

Argentina
1953-1965 -0.026 -0.028 -0.018 -0.010 65.2 348 -0.036 -0.035 -0.023 -0.012 655 345
1965-1975 -0.015 -0.016 -0.010 -0.006 63.6 364 -0.018 -0.017 -0.012 -0.005 69.1 30.9
1975-1985 -0.032 -0.033 -0.022 -0.010 682 31.8 -0.029 -0.029 -0.023 -0.006 77.9 221
1985-1996 -0.012 -0.011 -0.007 -0.005 59.9 401 -0.014 -0.014 -0.010 -0.004 723 277
1996-2005 -0.018 -0.017 -0.012 -0.005 70.3 29.7 -0.011 -0.011 -0.009 -0.002 77.7 223
Brazil
1985-1995 -0.038 -0.035 -0.018 -0.017 51.9 481 -0.039 -0.034 -0.019 -0.014 575 425
1995-2005 -0.033 -0.032 -0.020 -0.012 629 37.1 -0.028 -0.028 -0.020 -0.007 73.6 26.4
Chile
1956-1965 -0.058 -0.062 -0.033 -0.029 534 46.6 -0.066 -0.069 -0.039 -0.030 57.0 430
1965-1976 -0.087 -0.090 -0.049 -0.041 546 454 -0.088 -0.090 -0.058 -0.032 644 35.6
1976-1987 -0.058 -0.058 -0.037 -0.021 640 36.0 -0.056 -0.055 -0.039 -0.015 71.7 283
1987-1997 -0.031 -0.029 -0.019 -0.010 66.4 336 -0.025 -0.023 -0.017 -0.006 751 249
1997-2006 -0.019 -0.019 -0.014 -0.005 743 25.7 -0.015 -0.014 -0.011 -0.003 805 195
Colombia
1957-1968 -0.087 -0.090 -0.047 -0.043 519 481 -0.084 -0.087 -0.044 -0.043 50.6 49.4
1968-1979 -0.072 -0.075 -0.040 -0.035 536 464 -0.084 -0.085 -0.053 -0.032 622 37.8
1979-1989 -0.016 -0.016 -0.010 -0.006 614 38.6 -0.041 -0.041 -0.030 -0.011 724 276
1989-1999 -0.024 -0.022 -0.011 -0.010 527 473 -0.025 -0.022 -0.015 -0.008 66.5 335
1999-2008 -0.036 -0.035 -0.025 -0.010 704 29.6 -0.021 -0.021 -0.016 -0.005 76.6 23.4
Costa Rica
1956-1968 -0.060 -0.061 -0.038 -0.024 614 386 -0.067 -0.067 -0.043 -0.025 635 365
1968-1978 -0.068 -0.068 -0.044 -0.024 645 355 -0.073 -0.072 -0.049 -0.023 67.7 323
1978-1992 -0.037 -0.037 -0.028 -0.009 76.2 23.8 -0.035 -0.035 -0.028 -0.007 79.2 20.8
1992-2005 -0.011 -0.010 -0.006 -0.003 65.0 350 -0.013 -0.013 -0.010 -0.003 747 253
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Period Males Females

Change in H Overall cont % cont Change in H Overall cont % cont

Observed  Predicted® 56T 560 5€T (Seo Observed  Predicted? 5eT 660 5eT zSeO

eJr €0 eT 0 e% ‘0 eT €0

Cuba
1961-1975 -0.050 -0.048 -0.031 -0.017 642 358 -0.054 -0.051 -0.036 -0.016 69.6 30.4
1975-1991 -0.025 -0.025 -0.021 -0.004 826 174 -0.027 -0.028 -0.023 -0.004 83.7 16.3
1991-2006 -0.017 -0.018 -0.013 -0.005 716 284 -0.018 -0.016 -0.011 -0.005 714 28.6
Dominican Republic
1955-1965 -0.086 -0.089 -0.033 -0.056 374 626 -0.091 -0.093 -0.036 -0.057 39.0 61.0
1965-1975 -0.058 -0.058 -0.034 -0.024 588 412 -0.060 -0.061 -0.036 -0.025 58.9 411
1975-1987 -0.057 -0.057 -0.033 -0.024 57.7 423 -0.074 -0.073 -0.043 -0.025 59.4 406
1987-1997 -0.032 -0.030 -0.016 -0.014 534 46.6 -0.038 -0.036 -0.024 -0.013 656 34.4
1997-2006 -0.026 -0.027 -0.021 -0.006 775 225 -0.021 -0.021 -0.018 -0.004 828 17.2
Ecuador
1956-1968 -0.117 -0.121 -0.040 -0.081 329 67.1 -0.113 -0.116 -0.048 -0.067 419 58.1
1968-1978 -0.065 -0.066 -0.034 -0.032 513 48.7 -0.078 -0.079 -0.041 -0.038 525 475
1978-1986 -0.064 -0.065 -0.041 -0.025 623 377 -0.067 -0.068 -0.046 -0.022 67.1 329
1986-1995 -0.032 -0.031 -0.019 -0.012 619 381 -0.039 -0.039 -0.027 -0.012 68.9 311
1995-2005 -0.037 -0.036 -0.024 -0.012 66.4 33.6 -0.035 -0.035 -0.026 -0.009 748 25.2
El Salvador
1955-1966 -0.113 -0.117 -0.033 -0.084 284 716 -0.120 -0.123 -0.042 -0.082 338 66.2
1966-1981 -0.046 -0.047 -0.024 -0.023 51.2 48.8 -0.098 -0.097 -0.046 -0.051 47.0 53.0
1981-1999 -0.111 -0.113 -0.057 -0.056 50.5 495 -0.106 -0.109 -0.071 -0.038 64.8 352
1999-2008 -0.023 -0.023 -0.016 -0.007 68.1 31.9 -0.022 -0.022 -0.017 -0.004 79.9 20.1
Guatemala
1957-1968 -0.083 -0.086 -0.030 -0.056 352 648 -0.098 -0.099 -0.022 -0.077 223 7717
1968-1977 -0.067 -0.069 -0.022 -0.047 324 67.6 -0.084 -0.085 -0.027 -0.057 324 67.6
1977-1987 -0.077 -0.081 -0.039 -0.042 485 515 -0.089 -0.092 -0.048 -0.044 518 48.2
1987-1998 -0.065 -0.063 -0.029 -0.034 46.2 538 -0.076 -0.074 -0.043 -0.031 586 41.4
1998-2005 -0.037 -0.037 -0.024 -0.013 639 36.1 -0.029 -0.029 -0.021 -0.008 740 26.0
Honduras
1955-1967 -0.160 -0.163 -0.021 -0.142 129 871 -0.169 -0.163 -0.006 -0.157 36 96.4
1967-1981 -0.155 -0.150 -0.034 -0.116 226 774 -0.164 -0.156 -0.047 -0.108 30.3 69.7
1981-1989 -0.055 -0.053 -0.029 -0.024 542 458 -0.055 -0.053 -0.032 -0.021 60.0 40.0
Mexico
1955-1965 -0.091 -0.096 -0.041 -0.055 427 57.3 -0.105 -0.104 -0.041 -0.063 395 605
1965-1975 -0.059 -0.058 -0.022 -0.035 389 611 -0.061 -0.060 -0.033 -0.027 55.1 449
1975-1985 -0.063 -0.063 -0.041 -0.022 64.6 354 -0.065 -0.066 -0.046 -0.020 70.1 299
1985-1995 -0.040 -0.040 -0.027 -0.014 66.0 34.0 -0.033 -0.034 -0.025 -0.009 742 258
1995-2005 -0.035 -0.035 -0.026 -0.010 724 27.6 -0.026 -0.026 -0.021 -0.005 80.6 19.4
Nicaragua
1956-1967 -0.102 -0.107 -0.021 -0.086 19.8 80.2 -0.094 -0.099 -0.035 -0.064 352 64.8
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Period Males Females

Change in H Overall cont % cont Change in H Overall cont % cont

Observed  Predicted® 56T 560 5€T (Seo Observed  Predicted? 5eT 660 5eT zSeO

P I P

1967-1983 -0.127 -0.130 -0.048 -0.082 37.0 63.0 -0.152 -0.153 -0.067 -0.086 439 56.1
1983-2000 —0.099 -0.102 -0.061 -0.041 59.7 403 -0.074 -0.076 -0.052 -0.023 69.1 309
2000-2007 -0.021 -0.021 -0.017 -0.004 80.2 19.8 -0.020 -0.020 -0.017 -0.004 825 175
Panama
1955-1965 -0.057 -0.057 -0.032 -0.025 56.8 432 -0.067 -0.067 -0.039 -0.028 583 417
1965-1975 -0.045 -0.044 -0.027 -0.017 60.7 39.3 -0.049 -0.049 -0.032 -0.017 651 349
1975-1985 -0.039 -0.036 -0.021 -0.015 582 41.8 -0.047 -0.044 -0.029 -0.015 655 345
1985-1995 -0.014 -0.014 -0.010 -0.004 73.0 27.0 -0.019 -0.018 -0.014 -0.004 765 235
Paraguay
1956-1967 -0.035 -0.036 -0.023 -0.014 620 38.0 -0.043 -0.043 -0.029 -0.014 67.0 33.0
1967-1977 -0.017 -0.018 -0.012 -0.006 64.8 352 -0.022 -0.022 -0.014 -0.008 64.1 359
1977-1987 -0.033 -0.033 -0.023 -0.010 711 289 -0.037 -0.038 -0.028 -0.010 735 265
1987-1997 -0.003 -0.004 -0.003 -0.001 782 218 -0.012 -0.012 -0.009 -0.003 755 245
1997-2006 -0.032 -0.030 -0.021 -0.010 67.8 322 -0.030 -0.030 -0.022 -0.008 746 254
Peru
1966-1976 -0.108 -0.110 -0.035 -0.075 319 681 -0.113 -0.114 -0.046 -0.068 40.7 59.3
1976-1987 -0.078 -0.079 -0.044 -0.035 553 447 -0.081 -0.082 -0.049 -0.034 589 411
1987-2000 -0.070 -0.071 -0.046 -0.025 649 351 -0.074 -0.075 -0.051 -0.024 683 317
2000-2008 -0.036 -0.036 -0.026 -0.010 729 27.1 -0.031 -0.031 -0.025 -0.007 78.7 213
Uruguay
1969-1980 -0.023 -0.024 -0.015 -0.009 636 364 -0.026 -0.025 -0.017 -0.007 70.2 29.8
1980-1990 -0.022 -0.022 -0.016 -0.006 70.7 29.3 -0.021 -0.020 -0.015 -0.005 746 254
1990-2000 -0.010 -0.010 -0.006 -0.004 60.7 39.3 -0.011 -0.010 -0.008 -0.003 741 259
2000-2007 -0.012 -0.011 -0.008 -0.004 68.1 319 -0.008 -0.008 -0.007 -0.002 79.3 20.7
Venezuela
1955-1966 -0.076 -0.079 -0.046 -0.033 582 418 -0.084 -0.086 -0.053 -0.033 613 387
1966-1976 -0.023 -0.023 -0.017 -0.006 746 254 -0.038 -0.037 -0.026 -0.012 684 316
1976-1985 -0.030 -0.031 -0.019 -0.012 615 385 -0.031 -0.031 -0.023 -0.009 725 275
1985-1995 -0.011 -0.010 -0.005 -0.005 493 50.7 -0.017 -0.016 -0.012 -0.004 724 276
1995-2006 -0.005 -0.004 -0.002 -0.002 438 56.2 -0.016 -0.016 -0.012 -0.004 734 26.6

aPredicted values are estimated as: 6H[S(x, ll)] ~ H[S(x, Il)]

contribution.

Source: Authors’ calculations using data from LAMBAA (Palloni et al., 2014) and formulas from Proposition 1.

J(O’ 0

e(O, t 1)
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In demography, most of the studies about population entropy follow Keyfitz’s principle by
studying the relative change in life expectancy associated with changes in age-specific
mortality rates. These studies have elucidated important properties of the entropy. For
instance, Goldman and Lord (1986), Mitra (1979, 1978) and Vaupel (1986) re-expressed the
entropy using life table notation as the weighted average of life expectancies at age x, which
can be further described as the average years of future life that are lost by the observed
deaths (Goldman and Lord, 1986), the proportional increase in life expectancy at birth if
everyone’s first death were averted (Mitra, 1979; Vaupel, 1986), or alternatively, life
expectancy lost due to death among those surviving to a given age (Vaupel and Canudas
Romo, 2003; Zhang and Vaupel, 2009). This last definition, called e-dagger (e'), was first
coined by Vaupel (1986). This indicator has been further developed elsewhere (Vaupel and
Canudas Romo, 2003; Zhang and Vaupel, 2009) and shown to be a useful indicator of life
disparity (Vaupel et al., 2011; Shkolnikov et al., 2011).

A.3. The effect of changes in age-specific mortality on H

A population’s entropy also detects changes in age-specific mortality. To see this, consider
first the case of constant mortality, where p(s) = pis constant® and taken positive, for the
moment. Then S(x) = ¢ #X, and after inserting this into the formula for / (the negative of the
parenthetical term in (2.3)) a straightforward calculation yields /= 1. The case when ((s) =
0 - the zero /770n‘aliz‘y(:ase6 -leadsto §(x) =1, In §(X) =0, and thus H= 0.7 Thus, we
conclude that if the mortality function is constant across age, /=0, 1. The contrapositive of
this statement is that if //# 0, 1 then the mortality function is non-constant across age. One
more example further illustrates this point. Let us refer to this as the almost-constant
mortality case, wherein

/AI,SER

~la.b],
u(s) = ‘])

>
/'{2’ s € [a7b

where 0 < a< band (4, b # 0. We envision b— ato be small, so that the force of mortality is
the constant z4 for most of the ages s, and only different (yet still constant) for a small subset
of ages. The corresponding survival function is

S0 = e(b — )y = o) - mx

and the corresponding entropy is

S5The corresponding survivorship curves are referred to as Type Il curves (Demetrius, 1978), and describe a population in which no age

;

roup is favored at death (i.e. mortality is independent of age).
The corresponding survivorship curves are referred to as Type | curves (Demetrius, 1978), and describe a population in which all

individuals reach the maximum possible lifespan of the species.

Wenote that 0 and 1 are in general the extrema of A, since 0 < S(x) < 1 implies that /= 0, and — assuming the mean age of the

stationary population is less than the value of the life expectancy — 4 < 1 was shown true in (Demetrius, 1979). (If this assumption is
not the case and the mean is x4, then /<1 + In(x/ep) (Goldman and Lord, 1986, footnote 1).)
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H=1—(b—a)(/41—/42).

In the limit of 6— 4, the force of mortality becomes constant and /#— 1, which verifies
our earlier results of the constant mortality case. But when b # g, the change across age in
the force of mortality in (A.1) is detected by AH. To summarize, for a given population, values
of H# 0, 1 immediately tell us that the population’s mortality function varies across age.
Moreover, the almost-constant mortality case also highlights the sensitivity of A no matter
how small the difference b — ais, H detects the change in mortality, suggesting that ~is “in
general highly sensitive to variations in age-specific mortality” Demetrius (1979).

Because mortality is related to the survival function via (2.1), these results suggest that a
population’s entropy may be a useful tool in characterizing its survivorship (in the cases
when mortality is not constant across age). Indeed, in the literature A is often referred to as
the “simple parameter” that can “characterize the shape of [survival] curves” Demetrius
(1979). Often the “shape” refers to the degree of concavity (also convexity) of the survival
curve, and we find several references agreeing that “Ais a convenient summary of the
degree of concavity in an {x) column” Keyfitz and Caswell (2005, Sec. 4.3.2). We see
clearly that as the concavity of the survival curves in Fig. 1(a) changes, the entropy A in Fig.
1(b) changes as well. Moreover, we note that decreasing H values - given by decreasing &
values - leads to /ncreased survivorship.

Appendix B.: Introduction to the calculus of variations

Consider the following calculus problem. Given a real-valued function () of a real variable
xthat is differentiable on a given interval (&, 5), approximate the change in y’due in a small
change ein xfrom an initial point xg € (&, b).

This problem can be solved easily by using differentials as follows. The assumed
differentiability of y guarantees the existence of y/ (xp), defined by

¥(xp) = limw. (B.1)

e—0

The infinitesimal change dyin y due to an infinitesimal change dxin xis then defined by
dy = y’(xo)dx.

If we now suppose that the change in xis finite but small, we may drop the equality in (B.1)
and use the approximation

+ -
¥'(xy) & w, or equivalently, Ay = y'(xp)e, (B.2)
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where Ay = U xg + €) — U Xp). The last approximation in (B.2) has a simple interpretation:
the change in input Ax = e produces an approximate change in the function’s values given by
the derivative )/ (xg) multiplied by Ax = e. Moreover, from (B.2) we also see that the re/ative
change in y, given by ayly, is ¥ (xg) multiplied by the relative change a/x.

= y’(xo)%, or, for a finite but small change Ax =€, (B.3)

The related problem of approximating the change in a differentiable multivariable function
MX) in the direction of a vector v can be treated similarly. The analogue of )/ (xp) is the
directional derivative y/ (xo) defined by

¥(Xo +ev) = ¥(xo) .

- (B.4)

y’(xo) = lim

e—0

The approximate change in yin the direction v is then given by (B.2), with )/ (xo) replaced
by ¥/ (xo).

Now, if the object of interest is not a function but instead a functional, the derivative (B.4)
has an analogue. To describe it let us consider the simplest example of a functional: the
familiar Riemann integral

b
Iy()] = f ywdx.  (B5)

Given a function }(x) that is Riemann integrable over the interval [a, 4], the functional
(X)] produces a number—the net signed area between aand & under the graph of }(x). We
can now ask the same question as before: what is the approximate change in [)(x)] due to a

change in (x)?

The answer to this question is an exercise in the calculus of variations. Following Sagan
(1992) one first defines a variation of y(x) - denoted by §(x) - by e x), where L&) = Ub) =
0. (Intuitively, the curve (x)+&)(x) in general closely resembles y(x) but is not equal to it.)
Then, the first variation of a functional

b
Jly()l = f F(x,y(x))dx,
a
where Fis a smooth function defined as follows.

Definition 2. Let 1(x) and }(x) be two functions differentiable on a domain A, with v
satisfying &) = Ub) = 0. Then the first variation §f)(X)] is defined by
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SIy()] = lim LW+ 5y(;c)] —ID@ g

e—0

= | 567100 +

e=0

= | 52/l + ev(o)]

e=0

whenever the limit exists.
As in (B.4), this can be thought of as the derivative of J)(x)] “in the direction of Ux)”.

In practice, the process of calculating 6/begins in one of two ways. In the first, one is given
a family of varied curves parameterized by some parameter e In this case (B.6) is calculated
by Taylor expanding these varied curves in powers of e. For example, for the functional (B.
5) let us consider the effect of the variations &1*€X of the function e¥on /[e*]. Here y(x) +
5U(x) = é1*9X and to calculate (B.6) we Taylor expand the varied curves:

2

1+€x+€2x—+--~

(A+ex_ x ex _ X
e =ee =¢ o

Then (B.6) gives

b
x1_ |0 (1+e)x
51[6]— &L e dx o
€=
b 2 b
= i\/‘ ex1+ex+62x—'+-~dx :f xe¥dx.
de J, 2! e=0 a

To interpret this last result, we note that as in (B.2) we may write (Theorem 1.5 Sagan,
1992)

AJly()] = J[y(x) + 6y(0)] = Jy(0)] = esJ[y(x)]  (B.7)

when eis small. For example, if we choose a=0and 6= 1 in the e¥example and consider
the variation to be y(x) + S(x) = 10X then

alle"] = I[e(l’OI)X] —1]e"] ~ 0.01) /0 b etar = 001,

This compares well with the actual increment [&-0DX] — [&X] = 01004.

In the second approach to calculating the first variation &J/one is given the variation §y. For
example, for the functional (B.5) we have 6y = eUX)
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1y() + y(0)] — Iyl

Sl[ly(x)] = lim o

€ —

J20w +evindx— [Dywdx b
= lim =/ v(x)dx.
a

€

e—0

Using (B.7), we then have

b
Ally(x)] = ef v(x)dx,
a

which tells us that for small enough ¢, changing the integrand y(x) to y{(X) + e x) changes
the net signed area by approximately e multiplied by the net signed area of 1©x), a
conclusion made even more clear by drawing a few example graphs.

The preceding development has focused on the analogue of the first derivative in the
calculus of variations. But as in the case with functions, where higher-order derivatives can
be defined, we can also define higher-order variations of functionals.

Definition 3. Let J(x; €) be a family of smooth varied curves for the function (x) such that
for all ewe have (g, €) = &) and Ub; €) = Ub). Define S X) = X, €) — UX) and let

oy(x) = ev(x) + ezwl(x) + o+ enwn " 1()c) + e

be the Taylor expansion in powers of € of §)(x). Then the nth variation &’ J)(x)] is defined
by

'3
& 1y00] = ["—nny(x) + 8]
oe

e=0

whenever the derivative exists.
We note that in the case of 7= 1 this definition reduces to definition (B.6).

For instance, continuing with the eX¥example, we have
s /”ex
662 a
b
= / xzexdx.
a

We can then extend (B.7) to second order in e (Theorem 1.8.1 Sagan, 1992):

2x2
I+ex+e 57+

o dx

&le"] =

e=0
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2
Jy() + 6y(0)] = Jly()] = edJ[y(x)] + %521 [y®] (B.8)

when eis small. For example, choosing 2= 0 and 6= 1 in the e¥example and again
considering the variation to be J(x) + 8y(x) = &1-0DX then

1 2 r1
l[e(l'm)"] — 1[e*] ~ 0.01) / xedx + L01 / Petdx
0 2 Jo

=0.0100359,

which is an even better approximation to the actual increment [&1-00X] - [&*] = 0.01004.
Finally, motivated by (B.3), we make the following definition.

Definition 4. The relative change of a functional J)(x)] is defined by

oJ[y(x)]
JIy(0)]

everywhere J ()] is nonzero.

Appendix C.: Proofs of propositions

Proof of Proposition 1.

Let 65(x) = eUX) be a variation of S(x), i.e. LX) is a smooth function that vanishes at zero
and as x — oo,

Proof. We begin with the observation that H[S+ 85] = 6/[S+ 85|/ [S+ &S] can be written
as

0=H[S+ rSS]eO[S +68]— e%[S + 65]
=H[S + sv]eO[S +ev] — eT[S +ev].

Now, taking the derivative with respect to e yields

OH (6 vle (S 4 ev] + HIS + v St ev]  (C.1)
06 €V eo €V €V 06 €V .

e’
- E[S + €V] = 0,
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Setting e = 0 now gives

OH[S]ey[S] + H[S16e,[S] — 6eT[S] =0. (C.2)

Solving for §H[ 5] yields
st — Hée e (ot Tée
ot = 0_ o _“ofs’ T
€ L )
_a %0
= o

We now show that Se' and &gy are given by (2.6). By (B.6) we have

.
%1500 + ev(o)]

9 o0
= - —[/ (S(x) + ev(x)In(S(x) + ev(x))dx
de| Jo

- va(x)[ln(S(x) + ev(x)) + 1]dx.

Evaluating this expression at € = 0 yields

(o]
sel s = — /0 v)n(S&)) + 11dx

o0 )
= - / v(x)dx — / In(S(x))v(x)dx,
0 0

which is the first equation in (2.6). Lastly,

660 9 o0
d—[S(x) +ev(x)] = a—[/ (S(x) + ev(x))dx
€LJo

€
(o]
= / v(x)dx .
0

Thus,

00
5eO[S(x)] = / v(x)dx,
0

reproducing the second equation in (2.6). O

2. To show: The second variation
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2 1 0
5°H= — —[2[5605H+ (/ w(x)dx)(H— 1)
€ 0
2
 (v(x))
- [) S dx].

oo
- [) w(x)In(S(x))dx
Proof. For ease of writing, let S(x) + §5(x) = S(x; €) be a family of varied curves, where
S(x; 0) = §(X), S0; €) =0, and S(x; €) — 0as x— 00, Expand S(x; €) in an e series:

S(x) + 65(x) = S(x) + ev(x) + ezw(x) + e

Now, differentiate (C.1) with respect to e twice to arrive at

H"'[S(x; €)leg[S(x; €)] + 2H'[S(x; €)leg [ S(x; €)]
+ HIS@ legISes ] - (¢} 1St e = 0,

where the primes denote derivatives with respect to e. Setting e = 0 then yields

H''[S(x; 0)]eglS(x; 0)] + 2H'[S(x; 0)]eglS(x; 0] (C.3)
+ HIS(x; )1eg [S(x; 0] — () "1S(x; 0)1 = 0.

To calculate the quantities in this equation, we begin with eolS(x;e)] = / 8°S(x; e)dx. Then

eb[S(x;O)]z[; v(x)dx = dey[S(x)],  (C.4)

e(/)/[S(x; 0)] = 2foow(x)dx.
0

Similarly,
(o]
eT[S(x; )] = —A S(x; €)In(S(x; €))dx
T o0
=>(e )’[S(x;O)]: - /0 (e 0)[In(S(x; 0)) + 1]dx
o0
= (") 1seeon = - [) (8" (x; 0)(In(S(x; 0)) + 1)
2
(§'(x;0))
+ S(x:0) dx .
Therefore,
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() 15 001 = -2 / ZnS) + Ddx  (C5)
0
® ()’
- A 500 dx.
Finally, substituting (C.4)—(C.5) into (C.3) gives

(52H)eo +2(5H)(5e,) + (2H)( [) oow(x)dx)

00 0 2
(UE)
+ ZA w(x)(n(S(x)) + 1dx + A NE) dx = 0.

Solving for 82H reproduces (2.8). O

Proof of Proposition 2.

Proof. Let §u(s) = e(s) be a variation of the mortality function (s), and suppose that (0) =
Oand L$) — 0as s— ©o. Then

oo = [o(u(s) + evis)ds
= /0 e dx

eglp +6pl

X

X
=/ oH(s)d
=/°°e Jore s(l—e(/xv(s)ds)+h.p.e.)dx
0 0
= eo[u] —S[AwS[y(s)](Axv(s)ds)dx

where the abbreviation h.p.e. stands for “higher powers in epsilon”. Therefore,

00 —fg,u(s)ds —e/év(s)ds
= ‘/.5 e e d

+h.p.e.,

+ou] -
Selu(s)] = lim ol + 011~ egli] (C.6)

e—0 €

= —/mS[u(s)](/xv(s)ds)dx.
0 0

Jov®

- )d.
Now, since S[v(s)] = e S, then In(S[v(s)]) = — fgv(s)ds. Therefore, (C.6) can be written

asin (2.12). Similarly, we have that
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+ oo = [ (u(s) + ev(s)ds
e'[pu+oul= —[) e

X dx

- A x(,u(s) + ev(s))ds

X
= Jou(s)d
= /‘ooe /OM * S(l —e(/xv(Ac)d.v)+h.p.e)
0 0
X X
X( / u(s)ds + e / v(s)ds)dx
0 0
¥ ooS X 4
=e'[u] —6[ /0 [M(S)]( /0 v(s) S)
X
X ((A ,u(s)ds) - l]dx] +hpe.

It follows that

eTlu +oul — eTluJ

sellul= lim .

e—0

OoS ! d. g d. 1|d
- A [u(s)]( A ws) s)(( A (s) s)— )x

[oo]
—/(; S[u)IC— In(SvHD)( — In(S[us)]) — Ddx

(o]
- ./0‘ S[u()In(SvDAS[u()]) + Ddx

(o]
- A S[u()In(S[v(s)Ddx
o0
- [) S[pu()NIn(S[v(s)DIn(S[u(s)]dx

oo
= —beglu(s)] = _/(; SLu()IIn(S[u(s)DIn(S[v(s)]dx,

which reproduces (2.11). O

Appendix D.: More applications of Propositions 1 and 2

In Appendix D.1 we reproduce the results of constant mortality case of Appendix A.3 as a
basic illustration and check of Proposition 1. In Appendix D.2 we illustrate a particular case

. N b alb —(alb)e?™
assuming a Gompertz force of mortality, i.e. z(x) = a2 €¥and S(x) = "/’ , and
evaluate the change in /' when there is a proportional change in S(x) at all ages (similar to
that shown by Keyfitz (1977)).

D.1. Reproducing the constant mortality case results

Let u be a positive real number and S(x) = ¢ #X, and consider a variation §Sthat produces
the new survival curve S+ 65= & WX where e> 0. To illustrate the results of Proposition
1, we first Taylor expand S+ &Sin powers of e
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S455=e WHEOX_ mpx mex e_”x(l ex + (eg) +

(SX)

=S+e M-ex+ + e

From the last equation we see that
8S = e(—xe_”x) + ez(xze ”X/Z) +

Thus, comparing with the expansion 8S(x) = e(X) + e2m(x) we see that U x) = —xe ¥ and
wmx) = X2 #¥2. From (2.6) we then have

AR / "= prd(—xe Y = - L (D)
0

u
deglS(x)] = / (—xe_”x)dx = — Lz
0 p

Now, since

T—ﬂx=_/°°_ _ﬂxd=l
e[e ] O(ﬂx)e x m

—pxy_ [ —px, 1
eO[e ]—[) e dx—ﬂ,

we see that 5e'/e’ = —1/u = &gyl g. Therefore, according to (2.5) we have that 5§+ = 0. This
suggests that, for example, the survival functions S;(x) = € 2¥and Sy(x) = 291X poth have
the same A value. This is confirmed by the fact that /= 1 for the constant mortality case
(c.f. Appendix A.3).

To illustrate (2.8) we make use of the following facts:
/002 ”xdx—— /Ooxze_”x(—ux)dx=—i.
0 P

Using these, along with the fact that H{S(X)] = 1, Eq. (2.8) gives

2
3
"

SHISW] = — u| = + 0

2 6
+3(1+1)—3H=0.
H H

Therefore, to second order in e we have, according to (2.9),

HIS+585] % 1+0-c+0-c2=1.
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These calculations are again in accordance with our results from the constant mortality
example of Appendix A.3.

To illustrate Proposition 2, note that the mortality function here is () = 4, and that the
variation §(s) = e Thus, s) =1 and (2.12) gives8

- [plds
560[#(3)]=Ao°e_”xln(e /O )dx:Aoo(—xe_”x)dxy

matching (D.1). Similarly, (2.11) gives

SeT[ﬂ(s)] = — Aw(—xe_”x)dx - [)we_”x( — ux)(— x)dx,

again matching (D.1). Since €', &), ef, 5 all have the same values as before, (2.10) leads
to the same 6H = 0 conclusion.

D.2. Proportional changes in S and their effect on H

Suppose that we consider a small proportional increase in S(x) to AS(x), where k> 1 is close
to one. We can then write

kS(x) = (1 + k — 1)S(x) = S(x) + (k — 1)S(x) = S(x) + 65(x),

where 65(x) = eS(x), with e= k-1 > 0 but close to zero. Note that x) = S(x) and m(x) =
0. From (2.6) we then have

se'[S()] = — A "1+ SISy,  (D.2)

5eO[S(x)] = /mS(x)dx.
0

Notice that the relative change in life expectancy &egy/gy = 1, whereas the relative change in
the average years of future life that are lost by observed deaths is

selisw1 _ J U+ In(SCoNS(x)dx
'8 /7 S@)In(S(0)dx
g S@dxt [FS@Sdx ¢

-2+,
S S0In(S@)dx el

8We note that although () = 1 does not vanish at zero and as s — ©9, one can easily replace it by a continuous function that does
without affecting the results of the calculations.
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So that (2.5) gives
SHISWI _ (L%  )_j2 _%
HIS0] _( g 1) I=-= (0-3)
1
= —W(x)]:}éH[S(x)] = —1.

Thus, we conclude that since §H[ S(X)] < 0 the survival curves S(x) must be changing shape
toward increased survivorship, which is true since we have assumed that > 1.

For the second variation, using (D.2) and (D.3) in (2.8) yields

S2HIS()] = —

2
1 o) B
eo‘/o NE) dt +2{(1)(— 1)+ 0+ 0}

1
[
From (2.9) it follows that

2
HIkS(0)] ~ HIS(0)] + eSHIS()] + 58 HIS]  (D.4)

2
= Hisel+ k- -+ EE )

2
= H[S()] + (1 —k)+@.

We note that analogous calculations can be carried out for the kA< 1 case.

Let us now compare these approximations to the exact results one obtains in the Gompertz
case. Let (x) be the force of mortality at age xand assume it follows a Gompertz curve, i.e.
1(X)= a e 1t follows that the corresponding survival function at age x is given by

bx
S(x) = Ce~ @D where € = P, and that

bx
B goe—(a/b)e ebxdx

b bx
[(c;oe—(a/b)e dx

H[S(x)] = —In(C). (D.5)

b
To calculate H{AS(x)] we first note that «S(x) = kCe™(@/b)e X, so that we can simply replace C
by &Cin (D.5). Therefore,
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bx
a/goe—(a/b)e ebxdx

b _ bx
Jee P dx

bx
o Soe—(a/b)e ebxdx

HIkS(x)] = — In(kC) (D.6)

— In(k) — In(C)
b /oo —(a/b)ebxdx ( (
0 e

= H[S(x)] = In(k).

Since we have assumed that 4> 1 but close to one, writing In A= In (1 + (k- 1)) we can
then Taylor expand In(1 + (k- 1)) to express (D.6) as

(k—1)
2
(k — 1)?

= HIS@)1+ (1 = k) + == — .

H[kS(x)] = HIS(x)] — (k- 1) — +--| (D.7)

From this we see that the second-order approximation (D.4) matches the actual result (D.7)
exactly (to second order).

Appendix E.: Early and late deaths

E.1. Reworking of Proposition 1

Given a threshold age &', we can break up the first variations of g[S(x)] and e'[S(x)] as
follows:

T &)
Sey[S(x)] = / “y(x)dx + / ¢ v)dx (E.1)
0 a

= 15e,[S(xlx < a)] + Seg[S(xlx > ah)],
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8e'[S(x)] = — (8eg[SCxlx < a)] + dey[S(xlx > ah)]) (E2)
T 0
_ / a In(S(x))v(x)dx + / : ln(S(x))v(x)a’x)
0 a

;
= [—éeO[S(xlx <ah] - f a ln(S(x))v(x)dx]
0

(]

+ {—be [S(xlx = a)] - f : ln(S(x))v(x)dx]

a

= :8e'[S(xlx < a")] + de[S(xlx > ahl,

where (x) is a smooth function that vanishes at zero and as x — ©o.

Thus, Proposition 1 can be written as:

SHIS@] _ | se'Stelx < aty)  —0elStxlx < ah] €3
H[S(x)] IS0 eo[S(0)] :
o |0l 1Stle 2 gDy | —FeglSlx 2 ah)]
e[S()] eo[S()]

E.2. Reworking of Proposition 2

Similarly, given a threshold age a', we can break up the first variations of ef[x(s)] and
eolA(s)] as follows:

o
Seolu(s)] = /0 S () 1In(S, [v(s)])dx (E4)
+‘/; Sx[ﬂ(s)]ln(Sx[v(s)])dx

= :8epypu(slx < aT)] + Seglp(slx > a%)],
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5¢'Tu(s)] = ~ (Selu(slx < aM)] +Seglu(slx = a")])  (E5)
- fo S (oS (o )In(S [
= [ S (s s e
= (—6e0[ﬂ(s|x <ah]
- A “Tsx[u(snln(sx[u(sn)ln(sx[v(s)])dx)
+ (—eqlu(slx > ah]
- f SIS [u(s))in(S,[v(s)T)dx

a

= :5¢ [u(slx < aN] + de'[u(slx > ahl,

X
— [*us)d
where S [v(s)] = e Jor9 '

Thus, Proposition 2 can be written as:

5eT[ﬂ(st < aT)] —6e0[,u(s|x < aT)]
+
¢ Tu(s)] eplu(s)]
5eT[;4(s|x > a{)] —560[/1(S|X > a’)]
+
e u(s)] eolp(s)]

SHIu(s)] _
HIu(s)]

(E.6)

Appendix F.: Discrete approximations

F.1. Life table notation

One can use the following approximation formulas to estimate &0), €(0), and A at time ¢
(life table notation):

(o] l @
e(0,1) = fo S(a,t)dazmx;OL(x,t) (F.1)
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ef0,n = — / ooS(a, HIn(S(a, t))da (F.2)
0

w—1
o1 ey, t) +e(y+1,1
o om) y;od(y, t)[ 5

)
_e' (0,0
HO =207

where A0, 9, L(x, 5, d(x, 9, and &(x, §) correspond to the following life table values at age x,
time ¢ radix at age O, person-years lived, deaths, and life expectancy.

F.2. Discrete version of Proposition 1

One can use the following approximation formulas to estimate the first variations shown in
Proposition 1:

w
SegSCo)] ~ l%o)x;o [L(x. 1) — Lx1,)]

8¢ 151 = [e(0.1,) = (0.1,)] - [J(o, 1)-e" "o zz)]

where the approximation formulas for &0, 4 and €f(0, 4 are shown in Eqs. (F.1) and (F.2),
respectively. The estimation of e*(0, &) can be carried out using Eq. (F.2) with a())
replaced by a*()); the latter corresponds to counterfactual life table deaths at age y
estimated with mortality at time £ and life table survivors at time 5.

To derive the two formulas above, let §S(x) = S(x, &) — S(x, ;) be a variation of the survival
function between times # and &. Thus, UX) = S(x, &) — S(x, ;). The first variation of & is
then given by:

6eO[S(x)]=/(;oov(x)dx
[oe]
- /0 [(x. 1) = (.1, )]

=/(;°°s(x,t2)—fooos(x,zl)dx

= e(O, 12) - e(O, tl)

1 o0
EINNENES WXZ:O[L(;C, 1) - Lfx.1 1)]
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where A0, 4) = A0, %) = K0).

The first variation of &' is given by:

5eT[S(x)] = — l/oov(x)dx+/°oln(S(x, tl))v(x)dx (F.3)
0 0
- [éeO[S(x)] + f Ooln(S(x, 1,))S(x, 1,)dx
0
_ f " In(S(x. ,))S(x. £, )dx]
0

— [l = € (0,1,) + €¥(0,1))]

5e"[S(0] = [e(0,1,) — e(0,1,)] = [¢7(0. 1)) — €" (0.1,)]

where

a*(x) represents counterfactual life table deaths at age x estimated with mortality at time 4
and life table survivors at time &. From Eq. (F.2), the discrete approximation of the above
equation is given by:

e(y, t2) + e(y +1, 12)
2

, (F4)

w—1
* 1
¢ T0.) & 1y 2 d*0)
y=0

where /0, #) = A0, ) = £0). Thus, a discrete approximation of &6/ [S(x)] (Eq. (F.3)) uses
formulas (F.1), (F.2) and (F.4) corresponding to &0, 8, €(0, # and &"*(0, 3, respectively.

The preceding discretizations imply that (2.5) can be discretized as
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uALCIS 5€°[S(x)]) F5)

5H[S(x, tl)] ~ H[S(x’ tl)]( eT(O,tl) e(O,tl)

e(O, tl) - e(O, tz) - (eT(O, tl) —eh *(0, tz))
"’T(Q )

~ H[S(x,1,)]

_(e(0.15) — (0,1 1)))

e(O, tl)

e(O, tl) - e(O, t2) +e *(0, t2) e(O, tz)]

= H[S(x,tl)]( (0.1

e%(O, tl) )
_ eT(O,tl))(e(O,tl) —e(0,1,) + ¢ (0,1, (0. t2)]
e(0,1,) eT(O, 1) e(0,1,) |

Discretization of equations relating H with early and late deaths.

We use a similar discretization of Egs. (3.1)—(3.5) as shown above, except that now we have
intervals for age (i.e., [0, a'] or [&', 0)).

Using these discretizations in practice requires numerical integration for some calculations
(e.9., (2.4)). To reduce the calculation errors we use more advanced techniques from the
theory of numerical integration. In particular, we fitted a third degree monotone cubic spline
using Hyman filtering (Hyman, 1983) to the quinquennial S(x) column of the life table to
produce single-year survival probabilities. We then estimated the area under this curve using
trapezoids, which simplifies the numerical integration because the length of the intervals is
one unit long.
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Life table entropy by country, year and gender.
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Fig. 7.
Threshold age, &', separating premature and older deaths for males and females by country

and period.
Source. Authors’ calculations using data from LAMBAA (Palloni et al., 2014) and formula 0

;
= ¢t (a") - ey(a")[1 - A(ah)], where A(aT) = /& u(s)ds is the cumulative hazard function
(Zhang and Vaupel, 2009).
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Table 1

Latin American countries with available period mortality data by age and sex.

Country Years

Argentina 1953,1965, 1975, 1985, 1996, 2005
Brazil 1985,1995, 2005

Chile 1956,1965, 1976, 1987, 1997, 2006
Colombia 1957,1968, 1979, 1989, 1999, 2008
Costa Rica 1956,1968, 1978, 1992, 2005
Cuba 1961,1975, 1991, 2006

Dominican Republic
Ecuador

El Salvador
Guatemala
Honduras
Mexico
Nicaragua
Panama
Paraguay
Peru
Uruguay

Venezuela

1955,1965, 1975, 1987, 1997, 2006
1956,1968, 1978, 1986, 1995, 2005
1955,1966, 1981, 1999, 2008
1957,1968, 1977, 1987, 1998, 2005
1955,1967, 1981, 1989

1955,1965, 1975, 1985, 1995, 2005
1956,1967, 1983, 2000, 2007
1955,1965, 1975, 1985, 1995
1956,1967, 1977, 1987, 1997, 2006
1966,1976, 1987, 2000, 2008
1969,1980, 1990, 2000, 2007
1955,1966, 1976, 1985, 1995, 2006

Source:Latin American Mortality Database (LAMBdA).

Theor Popul Biol. Author manuscript; available in PMC 2019 February 09.

Page 52



	Abstract
	Introduction
	The entropy
	The demographic motivation for introducing the entropy
	Understanding the life table entropy (H) as a functional of the survival function (S) and the force of mortality (μ)
	A theorem concerning the entropy as a functional of the survival function
	Proposition 1.

	The entropy as a functional of the mortality function
	Proposition 2.

	Reproducing the Keyfitz result with Propositions 1 and 2

	Early deaths from late deaths
	Application to Latin American mortality data
	Data and methods
	Results

	Concluding remarks
	Origin and interpretations of the entropy
	Table 2
	Table 3
	Table 4
	Introduction to the calculus of variations
	Proofs of propositions
	More applications of Propositions 1 and 2
	Early and late deaths
	Discrete approximations
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Table 1

