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Abstract

The life table entropy provides useful information for understanding improvements in mortality 

and survival in a population. In this paper we take a closer look at the life table entropy and use 

advanced mathematical methods to provide additional insights for understanding how it relates to 

changes in mortality and survival. By studying the entropy (H) as a functional, we show that 

changes in the entropy depend on both the relative change in life expectancy lost due to death (e†) 

and in life expectancy at birth (e0). We also show that changes in the entropy can be further linked 

to improvements in premature and older deaths. We illustrate our methods with empirical data 

from Latin American countries, which suggests that at high mortality levels declines in H (which 

are associated with survival increases) linked with larger improvements in e0, whereas at low 

mortality levels e† made larger contributions to H. We additionally show that among countries 

with low mortality level, contributions of e† to changes in the life table entropy resulted from 

averting early deaths. These findings indicate that future increases in overall survival in low 

mortality countries will likely result from improvements in e†.
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1. Introduction

The life table is perhaps the most useful tool in mortality analyses, as it summarizes the 

mortality experience of a population at a given point in time into a set of simple indicators 

(Preston et al., 2000). For example, life expectancy, a by-product of the life table, has been 

used extensively and widely as a measure of population health in national and international 

contexts (United Nations, 2012). Other life table measures such as the life table entropy, 

however, have received much less attention, although the entropy could also be considered 

an equally useful indicator for understanding improvements in mortality and survival in a 

population (Wilmoth and Horiuchi, 1999).

In this paper we take a closer look at the life table entropy and provide additional insights 

for understanding how it relates to changes in mortality and survival. Unlike previous work 

that relied on univariate calculus (e.g., Demetrius, 1974, 1975, 1976, 1978, 1979; Goldman 
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and Lord, 1986; Keyfitz, 1977), we provide a more rigorous development and a further 

description of the life table entropy using the calculus of variations. This approach has 

previously been used in demographic research (Arthur, 1984; Beltrán-Sánchez and Soneji, 

2011; Preston, 1982), and as we show, it provides us with additional tools to deepen our 

understanding of the population entropy and overall population survival. We focus, in 

particular, on a widely used measure of mortality improvement - life expectancy at birth 

(which represents the average length of life in the survival curve of a population) - and an 

additional measure called e† that has recently been proposed as a marker of lifespan 

inequality (Zhang and Vaupel, 2009). For example, averting deaths at younger ages 

(premature deaths) is associated with reductions in lifespan inequality (Zhang and Vaupel, 

2008). Recent evidence from 40 countries shows a negative correlation between life 

expectancy (e0) and lifespan disparity (e†) from 1840 to 2009, with most of the increase in 

life expectancy resulting from improvements in premature deaths (Vaupel et al., 2011). The 

authors conclude that improvements in life expectancy at birth can also be accompanied by 

reductions in lifespan disparity (e†). In this paper we provide a mathematical foundation for 

these empirical findings by linking changes in the life table entropy, life expectancy at birth, 

and lifespan disparity. We demonstrate, mathematically and empirically, that changes in the 

entropy depend on both the relative change in life expectancy lost due to death (e†) and in 

life expectancy at birth (e0). We also show that changes in the entropy can be further linked 

to averting premature and older deaths. These results provide important implications for 

understanding current and future changes in the overall survival of a population. For 

instance, using data from Latin American countries for 1950–2005, we show that at low 

mortality levels changes in e† contributed the most to overall survival, indexed by the 

entropy, which resulted from improvements in premature deaths. This implies that in these 

countries future increases in overall survival will likely come from changes in e† and that 

these improvements are likely to reduce lifespan inequality as a result of averting early 

deaths (Zhang and Vaupel, 2008, 2009).

The paper is organized as follows. We begin in Section 2 with a brief overview of the 

mathematical definitions of the mortality and survival functions, and the life expectancy and 

entropy (for the interested reader, Appendix A.1 contains a brief literature review of the 

entropy). We then review how the entropy is used to measure relative changes in life 

expectancy in Section 2.1, and discuss the functional nature of the entropy in Section 2.2. 

We present our main results in Sections 2.3‒2.4, where we use the calculus of variations 

(reviewed in Appendix B) to show that changes in the entropy depend on both the relative 

change in life expectancy lost due to death (e†) and in life expectancy at birth (e0) - c.f. (2.5) 

- and also provide a new way to describe the effect of changes in the mortality function on 

the population entropy (c.f. Proposition 2). In Section 3 we further link changes in the 

entropy with improvements in premature and older deaths in relation to e0 and e†. Section 4 

applies our results to mortality data from 18 Latin American countries from about 1950 to 

2008. Therein we discuss our finding that at high mortality levels declines in H (which are 

associated with survival increases) linked with larger improvements in e0, whereas at low 

mortality levels e† made larger contributions to H. We end with concluding remarks in 

Section 5.
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2. The entropy

The life table entropy is commonly used throughout demography to study the relative 

changes in life expectancy associated with changes in age-specific mortality rates. In this 

section we review the construction of the entropy due to Keyfitz (1977) (see Appendix A.1 

for a brief history), and then present our main analytical results.

2.1. The demographic motivation for introducing the entropy

Let μ(x) be the force of mortality at age x. The probability of surviving from birth to age x is 

then

S(x) = e
−∫ 0

xμ(s)ds
, (2.1)

so that life expectancy at age x is given by

e(x) = ∫x

∞
e
−∫ 0

aμ(s)ds
da .

In many of the situations of interest to us in this paper, x is fixed and μ(s) may vary. For 

instance, we may be interested in studying changes in life expectancy at birth (which implies 

that x = 0). We therefore introduce the following notation to reflect these cases:

Sx[μ(s)] = e
−∫ 0

xμ(s)ds
, ex[μ(s)] = ∫

x

∞
e

−∫ 0
aμ(s)ds

da . (2.2)

Consider now a relative increase ϵ > 0 in μ - that is, a proportional increase in μ at all ages - 

similar to that proposed by Keyfitz (1977). Then the new mortality function is (1 + ϵ)μ(s) 

(note that Δμ = ϵ μ, so that Δμ/μ = ϵ), the new probability of surviving from birth to age x is

Sx[(1 + ϵ)μ(s)] = e
−∫ 0

x(1 + ϵ)μ(s)ds
= e

−∫ 0
xμ(s)ds

1 + ϵ

= Sx[μ(s)] 1 + ϵ,

and the new life expectancy at age x is

ex[(1 + ϵ)μ(s)] = ∫x

∞
S(a)1 + ϵda .

Without loss of generality, let us specialize to the most studied case of life expectancy—life 

expectancy at birth:
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e0[(1 + ϵ)μ(s)] = ∫0
∞

S(a)1 + ϵda .

We expect the relative increase in mortality to cause a relative decrease in life expectancy. To 

measure this decrease, Keyfitz and Caswell (2005, sec. 4.3.1) calculate de0/dϵ|ϵ=0 and then 

consider ϵ to be finite but small to arrive at the approximation

Δe0
e0

≈
∫ 0

∞S(x)ln(S(x)) dx

∫ 0
∞S(x) dx

ϵ . (2.3)

Since 0 ≤ S(x) ≤ 1 (this follows from (2.1)), the ratio in the parentheses is negative, 

confirming our expectation that a relative increase in mortality should result in a relative 

decrease in life expectancy. Accordingly, the negative of the expression in parentheses is 

known as the entropy of the life table, and is customarily denoted by H. More formally, we 

make the following definition.

Definition 1. Given a survival function S(x), the quantity defined by

H[S(x)] = −
∫ 0

∞S(x)ln(S(x))dx

∫ 0
∞S(x)dx

(2.4)

is called the entropy of the population.

We will explain the bracket notation in the next section, but for now let us note that the 

approximation in (2.3) suggests the following interpretation for H (Goldman and Lord, 

1986): a small proportional increase ϵ in the death rate at all ages results in a proportional 

decrease in life expectancy of approximately H times ϵ. For example, for H = 1 “when the 

death rates at all ages increase by 1 percent, the expectation of life diminishes by 1 percent 

Keyfitz and Caswell (2005, Sec. 4.3.1)”. Thus, H measures how relative changes in the 

mortality function affect the relative change in life expectancy of a population. In other 

contexts H has other interpretations (see Appendix A.2), but it is commonly known to be “in 

general highly sensitive to variations in age-specific mortality” Demetrius (1979) (Appendix 

A.3 contains a more thorough discussion of this point), which makes it a useful tool for 

characterizing a population’s survivorship.

2.2. Understanding the life table entropy (H) as a functional of the survival function (S) 
and the force of mortality (μ)

The preceding analysis described the effect on H of a specific change in the mortality 

function μ(x) (and consequently, by (2.2), in S(x)). This suggests that we view H as a 

functional—a quantity whose input is a function and whose output is a real number. Indeed, 

as (2.4) makes clear, H is a functional of S(x), since it takes as input a survival function S(x) 

Fernandez and Beltrán-Sánchez Page 4

Theor Popul Biol. Author manuscript; available in PMC 2019 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and outputs a real number (this is why we have used the H[S(x)] notation). Similarly, H can 

also be seen as a functional of μ(x), in which case we write H[μ(x)].

Functionals are similar to functions, except that the “independent variable” is now a 

function. To better see this important distinction (and also the functional nature of H), 

consider the so-called hyperbolic mortality example, where

μ(x) = a
s0 − x , S(x) = 1 − x

s0

a
,

H[μ(x)] = H[S(x)] = a
a + 1 .

For simplicity, set s0 = 1 so that we can uniquely identify a curve in the family of mortality 

and survival curves, μ(x) = a/(1 − x) and S(x) = (1 − x)a, by the parameter a. Since H = a/(a 
+ 1), it follows that H assigns to each function μ(x) = a/(1 − x) (or, equivalently, S(x) = (1 − 

x)a) one number a/(a + 1), clearly illustrating the functional nature of H. A plot of μ(x) and 

S(x) for various a-values is shown in Fig. 1 panels (a) and (b), respectively, and the 

corresponding plot of the entropy H is shown in Fig. 1(c).

A closer look at panels (b) and (c) reveals two more characteristics of H as a functional of 

S(x). Firstly, it detects the degree of concavity (also called convexity) in an S(x) function. 

Secondly, decreasing H values signal changes in the survival curve toward greater 
survivorship. (Appendix A.3 contains a discussion of these two general features of H.) By 

the same token, panels (a) and (c) also indicate similar characteristics of H as a functional of 

μ(x) but in this case decreasing H values signal changes in the force of mortality curve 

toward lower mortality. Because the survival function is bounded, 0 ≤ S(x) ≤ 1, changes in 

S(x) have “less room” to operate and this leads to different dynamics when studying changes 

in H as a functional of S(x) versus when H is a functional of μ(x)—which, at least 

theoretically, is unbounded. Thus, the entropy H would express differential effects in 

response to changes in the survival function (S(x)) or to changes in the force of mortality 

(μ(x)), and calculus of variations offers a unique opportunity to study these changes. We 

study these two cases in Sections 2.3 and 2.4, respectively.

2.3. A theorem concerning the entropy as a functional of the survival function

Changes in functions are described by calculus, while changes in functionals are described 

by the calculus of variations. (Appendix B contains a brief review of the subject, as well as 

the notation we will use throughout the remainder of the paper.) Importantly, calculus of 

variations allow us to look at variations in the entire survival function S(x) and their link 

with changes in H (as in Fig. 1), as opposed to univariate calculus in which changes are 

localized at a given point in the survival function. In this section we focus our attention on 

δH and δ2H - the analogues of the first and second derivatives of a single-variable function, 

respectively - and what they can tell us about changes in the survival function. To begin, let 

us note that the denominator of (2.4) is just e0[S(x)] (recall (2.2)). Moreover, Goldman and 

Lord (1986) and Vaupel (1986) have shown that the numerator of (2.4) - which includes the 

minus sign - can be re-expressed as
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∫0
∞

μ(x)S(x)e(x)dx,

which has been traditionally denoted by e† (Vaupel, 1986). Therefore,

e†[S(x)] = − ∫0
∞

S(x)ln(S(x))dx,

so that the entropy (2.4) then becomes

H[S(x)] = e†[S(x)]
e0[S(x)] .

Now, denote by S(x; ϵ) a family of smooth “varied curves”: curves that are small 

perturbations of S(x) but have the same endpoint values as S(x) (i.e., for all ϵ, S(0; ϵ) = S(0) 

and S(x; ϵ) → 0 as x → ∞).1 The difference S(x; ϵ) − S(x) is called the variation of S(x) 

and is traditionally denoted by δS (c.f. Appendix B). We can now prove the following 

theorem.

Proposition 1.—Let δS be a variation of the survival function S(x). Then:

1. The relative change in H[S(x)] is

δH[S(x)]
H[S(x)] = δe†[S(x)]

e†[S(x)]
+

−δe0[S(x)]
e0[S(x)] , (2.5)

where the first variations of e†[S(x)] and e0[S(x)] are given by

δe†[S(x)] = − δe0[S(x)] − ∫
0

∞
ln(S(x))v(x)dx, (2.6)

δe0[S(x)] = ∫
0

∞
v(x)dx, (2.7)

and where δS(x) has been expanded to first-order in ϵ: δ S(x) = ϵv(x), with v(x) 

a smooth function that vanishes at zero and as x → ∞.

2. The second variation δ2H[S(x)] is

1For example, μ(x; ϵ) = (1 + ϵ)μ(x), the perturbation to the mortality function discussed in Section 2.1, is a family of smooth varied 
curves for μ(x).
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δ2H[S(x)] = − 1
e0

∫
0

∞ (v(x))2

S(x) dx

+ 2 δe0δH + ∫
0

∞
w(x)dx (H + 1)

+∫
0

∞
w(x)ln(S(x))dx ,

(2.8)

where δ S(x) has been expanded to second-order in ϵ: δ S(x) = ϵv(x) + ϵ2w(x), 

where v(x) and w(x) are smooth functions that vanish at zero and as x → ∞.

The proof of Proposition 1 can be found in Appendix C.

Eq. (2.5) decomposes the relative change in H into the sum of the relative changes in e† and 

e0. Therefore, this equation shows that changes in overall survival, indexed by H, depend on 

improvements in both e† and in e0. In addition, Eq. (2.6) shows that e0 and e† change in 

opposite directions in response to a variation in the survival function, since for small 

variations in S(x), where v(x) → 0, the first variations of e0 and e† would be the exact 

opposites of each other.

We end this section by noting that when ϵ is finite but small we can use the first and second 

variation to approximate H[S + δS] to second order in ϵ (see also (B.8)):

H[S(x) + δS(x)] ≈ H[S(x)] + ϵδH[S(x)] + ϵ2

2 δ2H[S(x)] . (2.9)

2.4. The entropy as a functional of the mortality function

Let us now return to the problem of studying the effect on H of varying μ(x). The following 

theorem is the analogue of Proposition 1.

Proposition 2.—Let δμ be a variation of the mortality function μ(s). Then the relative 
change in H[μ(s)] is given by

δH[μ(s)]
H[μ(s)] = δe†[μ(s)]

e†[μ(s)]
+

−δe0[μ(s)]
e0[μ(s)] , (2.10)

where the first variations of e†[μ(x)] and e0[μ(x)] are given by

δe†[μ(s)] = − δe0[μ(s)]

− ∫
0

∞
Sx[μ(s)]ln Sx[μ(s)] ln Sx[v(s)] dx,

(2.11)
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δe0[μ(s)] = ∫
0

∞
Sx[μ(s)]ln Sx[v(s)] dx, (2.12)

with Sx[v(s)] = e
−∫ 0

xv(s)ds
, and where δμ(s) has been expanded to first-order in ϵ: δμ(s) = 

ϵv(s), with v(s) a smooth function that vanishes at zero and as s → ∞.

The proof of Proposition 2 can be found in Appendix C.

Although (2.10) is a direct analogue of (2.5), note that the equations identifying the first 

variations of δe†[S(x)] and δe0[S(x)] ((2.6) and (2.7)) are very different from those shown 

above in (2.11) and (2.12). The extra terms shown in the latter case come from the non-

linear link between the force of mortality and average years of life (δe† and δe0). These 

equations highlight the differential effect on the entropy H resulting from changes in the 

survival function (S(x)) versus changes in the force of mortality (μ(x)).

Similar to Eq. (2.6), Eq. (2.11) shows that there is a negative association between the first 

variation of e†[μ(x)] and that of e0[μ(x)]—when one increases the other one decreases. 

Moreover, for very small variations (δμ(s) close to zero) the second term in (2.11) becomes 

negligible (because Sx[v(s)]|v(s)≈0 → 1 and ln(Sx[v(s)]) → 0), and the two variations 

become negatives of each other.

2.5. Reproducing the Keyfitz result with Propositions 1 and 2

As a quick application of Propositions 1 and 2, let us show that the calculation performed by 

Keyfitz and Caswell (2005, Sec. 4.3.1) and reviewed in Section 2.1 is indeed an investigation 

of the change in the functional H under the variation δμ = ϵμ(s) of the mortality function 

(Beltrán-Sánchez and Soneji, 2011).

To begin, note that the new mortality function (1 + ϵ)μ(s) in that calculation can be written

(1 + ϵ)μ(s) = μ(s) + ϵμ(s) = μ(s) + δμ(s) .

In the language of Proposition 2, this means that v(s) = μ(s), so that (2.12) immediately gives

δe0
e0

=
∫ 0

∞S(x)ln(S(x))dx

∫ 0
∞S(x)dx

. (2.13)

If we now consider ϵ to be finite but small, applying (B.7) yields

Δe0
e0

≈ ϵ
δe0
e0

=
∫ 0

∞S(x)ln(S(x))dx

∫ 0
∞S(x)dx

ϵ,
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which verifies the entropy result of Keyfitz and Caswell (2005, sec. 4.3.1) (Eq. (2.3)).

We can also derive (2.13) (and therefore again reproduce (2.3)) using Proposition 1 as 

follows. The variation in the mortality function causes a variation in the survival function 

S(x) of

δS(x) = S x 1 + ϵ − S(x) = S(x) S(x)ϵ − 1 = S(x) eϵln(S(x)) − 1

= S(x) ϵln(S(x)) + ϵ2(ln(S(x)))2
2 + ⋯ .

(The terms in parentheses in the last equation come from Taylor-expanding eϵ ln(S(x)) − 1.) 

Therefore, to first-order in ϵ, the variation in the mortality function results in a variation δS 
= ϵS(x) ln(S(x)) in the survival function. Then, using (B.6) to compute the first variation of 

e0[S(x)] we arrive at

δe0[S(x)] = ∂
∂ϵ e0 S(x) + ϵS(x)ln(S(x))

ϵ = 0

= ∫0
∞

S(x)ln(S(x))dx .

Dividing this equation by e0 then yields (2.13).

Analytical expressions for the entropy are also known for other special scenarios. In 

Appendix D we consider a few of these special cases and apply Propositions 1 and 2 to 

again verify the results found in the literature.

3. Early deaths from late deaths

Propositions 1 and 2 allow us to study changes in the life table entropy (H) associated with 

improvements in the survival and mortality functions across all ages. These propositions can 

also be used to provide additional insights to link premature and older deaths with life table 

entropy, and to inform about changes in lifespan disparity. For instance, an important 

property of e† as a measure of life disparity is that there is a unique threshold age, a†, that 

separates early from late deaths (Zhang and Vaupel, 2009). The importance of this age for 

overall survival is that improvements in reducing early (premature) deaths reduces variation 

in lifespans (overall survival), while improvements in late (older) deaths increases variation 

in lifespans (Vaupel et al., 2011). An age a† separates early from late deaths if 0 = e†(a†)

−e0(a†)[1 −Λ(a†)], where Λ a† = ∫ 0
a†

μ(s) is the cumulative hazard function (Zhang and 

Vaupel, 2009).

Proposition 1 can be re-expressed to incorporate a given threshold age a†. The result is 

(Appendix E):
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δH[S(x)]
H[S(x)] = δe†[S(x | x < a†)]

e†[S(x)]
+

−δe0[S(x | x < a†)]
e0[S(x)]

+ δe†[S(x | x ≥ a†)]
e†[S(x)]

+
−δe0[S(x | x ≥ a†)]

e0[S(x)] ,

(3.1)

where the first conditional variations of e†[S(x)] and e0[S(x)] are given by

δe†[S(x | x < a†)] = − δe0[S(x | x < a†)] − ∫
0

a†
ln(S(x))v(x)dx, (3.2)

δe†[S(x | x ≥ a†)] = − δe0[S(x | x ≥ a†)] − ∫
a†

∞
ln(S(x))v(x)dx, (3.3)

δe0[S(x | x < a†)] = ∫
0

a†
v(x)dx, (3.4)

δe0[S(x | x ≥ a†)] = ∫
a†

∞
v(x)dx, (3.5)

where v(x) is a smooth function that vanishes at zero and as x → ∞.

Eq. (3.1) shows that relative changes in the entropy can be decomposed as the sum of 

relative changes in e†[S(x)] and e0[S(x)] associated with early and late deaths. In addition, 

Eqs. (3.2)–(3.5) highlight the interplay between e†[S(x)] and e0[S(x)] in determining overall 

survival when early and/or late deaths are averted. Proposition 2 can also be written in 

analogous form to (3.1) with its respective conditional variations in e†[μ(s)] and e0[μ(s)] 

(Appendix E).

Note that the above equations are general in the sense that they work with any threshold age. 

For instance, one may be interested in investigating changes in the entropy associated with 

mortality improvements below and above the mean, median, mode2 or any other moment of 

the survival probability function or the force of mortality (Appendix E).

2One may need to bound the estimate of the mode, e.g. for ages >10, to avoid a bi-modal distribution due to high number of deaths in 
childhood. In doing so one would also need to bound the entropy accordingly.

Fernandez and Beltrán-Sánchez Page 10

Theor Popul Biol. Author manuscript; available in PMC 2019 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Application to Latin American mortality data

In this section we describe the results of applying Proposition 1 to assess changes in the 

entropy, H, and their corresponding link with changes in e0 and e†.

4.1. Data and methods

We use period mortality data from 18 countries in Latin America from about 1950 to 2008 

from the Latin American Mortality Database (Palloni et al., 2014) (Table 1).This data covers 

the period when major improvements in mortality took place in the region, with particularly 

fast declines in infant mortality and sizeable increases in life expectancy at birth (Palloni and 

Wyrick, 1981; Palloni and Pinto, 2011).

We focus here on age 0, that is, life expectancy at birth (e0) with its corresponding life 

expectancy lost due to death (e†) and life table entropy (H). To highlight the usefulness of 

Proposition 1 for studying changes in overall survival, we also provide an application 

decomposing changes in H associated with improvements in early vs. late deaths. Because 

population data typically comes in discrete form, we use standard techniques to estimate 

e(0), e†(0), and H at time t (life table notation) - see Appendix F.1 - and also use the discrete 

versions of the first variations in Proposition 1 - see Appendix F.2.

4.2. Results

As a first application of Proposition 1, for each country in Table 1 we compare the observed 

change in H between two consecutive time periods t1 and t2 (H[S(x, t2)] − H[S(x, t1)]) to the 

predicted change in H (δH[S(x, t1)]).3 Using advanced numerical integration techniques 

(Appendix F.2), we find that in each country the average percentage error in the estimation 

across all periods is <0.16%4

Next, Fig. 2 shows estimates of the life table entropy, H, for all countries included in the 

analyses for males and females (see Appendix Table 2 for specific values). Results indicate a 

decline in H over time suggesting improvements in overall survival in all these countries 

since the 1950’s. Interestingly, there is a different pattern in H between countries that had an 

early demographic transition and those with a late transition. For instance, countries with an 

early demographic transition (e.g., Argentina, Costa Rica, Cuba, and Uruguay) start at lower 

levels in H in the 1950’s and show slower pace of decline over time; the opposite is true for 

countries with a late demographic transition (e.g., El Salvador, Guatemala, Honduras and 

Nicaragua). This result reflects the fact that countries with an early demographic transition 

had already attained relatively low mortality levels in the 1950’s (Palloni and Pinto, 2011); 

thus, their corresponding life table entropy early on is lower than that of countries with a late 

demographic transition. In addition, improvements in overall survival tend to be larger when 

starting at high mortality levels, suggesting that H would show faster declines for countries 

with a late demographic transition.

3This and all subsequent analyses were performed using the R software package (R Core Team, 2014).
4The discrete approximations (F.1) and (F.2) lead to percentage errors in H as large as 4.5% in some cases (Ecuador between 1986 and 
1995). We therefore employed the aforementioned advanced numerical methods for all subsequent analyses.
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As a second application of Proposition 1 - and (2.5) specifically - we now decompose 

changes in H over time to assess whether increases in overall survival in Latin America in 

the second part of the 20th century are due to larger improvements in e† vs. e0.

The percentage contribution of e† and e0 to the change in H between two consecutive 

periods for each country for males and females is shown in Figs. 3 and 4, respectively 

(Appendix Table 3). Results clearly indicate a differential contribution of e0 and e† to 

changes in H over time. Improvements in e0 show larger contributions to increasing overall 

survival at high mortality levels (e.g., before 1990), but improvements in e† contributed the 

most as the mortality level declines. For instance, for males in El Salvador, Guatemala, 

Honduras and Nicaragua, increases in e0 contributed about 60% of the change in H before 

1980, but after 2000, a similar percentage contribution is due to improvements in e†. On the 

other hand, increases in survival for males in countries with low mortality levels (e.g., 

Argentina, Cuba and Uruguay) were mostly due to improvements in e†. There is a similar 

pattern for females, but in this case, e† made larger contributions to overall survival because 

females tend to experience lower mortality rates than males.

Importantly, there was a different age pattern of mortality decline in Latin America since the 

1950’s between countries with early and late demographic transitions (Palloni and Wyrick, 

1981). For the latter countries, declines in infant and childhood mortality are likely 

responsible for the bulk of overall survival, but for the former countries, declines in adult 

and older adult mortality are the most likely contributors (Palloni and Pinto, 2011). Thus, as 

a third application of Proposition 1, we estimate the age separating early (premature) from 

late (older) deaths (a†, Appendix Table 2) and further decompose changes in H over time 

associated with averting premature and older deaths using Eqs. (3.1)–(3.5) (Appendix Table 

4).

Due to space limitations we only show results for males (Fig. 5); results for females are 

shown in the Appendix Fig. 6. Results for the age separating premature from older deaths 

show that in countries with a late demographic transition, a† starts at lower values and 

increases at a faster pace over time relative to countries with a late demographic transition 

(Appendix Table 4, Appendix Fig. 7). This time trend corresponds to a faster mortality 

reduction over time among the former countries.

Fig. 5 shows results decomposing changes in the male entropy due to improvements in 

premature and older deaths. In countries with a late demographic transition (e.g., El 

Salvador, Guatemala, and Honduras), increases in overall survival are mainly due to 

increases in e0 resulting from improvements in older deaths (light pink). As the mortality 

level declines in these countries there is a larger contribution to overall survival from 

premature deaths (pink). On the contrary, in countries with an early demographic transition 

(e.g., Argentina, Cuba, and Uruguay), increases in overall survival are due to improvements 

in e† resulting from averting premature deaths (dark blue). In some of these countries, for 

example in Argentina, Cuba and Uruguay, males at older ages experienced worsening rather 

than improving average years of life lost due to death—hence the negative contribution to 

overall survival in the figure. Nonetheless, premature deaths made large enough 

contributions to overall survival that they offset the mortality deterioration at older ages.
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5. Concluding remarks

In this paper we provide a demographic interpretation of changes in the life table entropy by 

studying this concept from the functional viewpoint. This approach allow us to provide 

additional insights for understanding changes in overall survival in a population. In 

particular, we find that changes in the entropy depend on the relative changes in both life 

expectancy lost due to death (e†) and in life expectancy at birth (e0), with the exact 

relationship given by (2.5). Our results also provide a new way to describe the effect of 

changes in the mortality function on the population entropy (c.f. Proposition 2). These are 

well-studied demographic concepts that now have a natural and consistent link to a 

population’s entropy and changes in its mortality and survival functions.

When we apply our methods to period mortality data in Latin American countries since the 

1950’s, we obtain an especially useful description of the interplay between e0 and e† in 

determining changes in overall survival of a population. We show that, in these countries, 

declines in H - which are associated with increases in overall survival - are driven by faster 

improvements in e0 in high mortality regimes, and by e† in low mortality regimes. This 

insight reinforces the interpretation of e† as an indicator of life disparity (Vaupel et al., 2011; 

Shkolnikov et al., 2011). Thus, in countries experiencing a low-mortality regime, 

improvements in overall survival will increasingly depend on reducing disparities in length 

of life in adulthood.

Moreover, we show that changes in the survival function produce changes in opposite 

direction between e† and e0 (see Eq. (2.11)). In fact, for very small changes in the survival 

function, e.g. those currently experienced in low-mortality countries, e† and e0 are direct 

opposites. Thus, our equation helps elucidate previous research that shows a negative 

correlation between e† and e0 among low-mortality countries, why this correlation is higher 

in recent times, and why countries with low life disparity (e†) tend to have higher values in 

life expectancy at birth (e0) (Vaupel et al., 2011).

For Latin American countries, our decomposition of changes in the entropy due to averting 

premature and older deaths shows that improvements in overall survival (i.e., declines in H) 

are associated with averting premature deaths. The implication of this result is that countries 

in Latin America are likely reducing lifespan inequality, which is a consequence of averting 

early deaths (Zhang and Vaupel, 2009, 2008).

Our methods and the substantive results have immediate applications for envisioning future 

changes in overall survival in other countries. For instance, it is likely that most increases in 

survival in high-income countries will result from improvements in e†, while in low- and 

middle-income countries e0 is likely to still play an important role in determining overall 

survival of the population. Our methods also provide additional insights for linking changes 

in the life table entropy with improvements in premature and older deaths. Our formulas are 

general in the sense that they work with any threshold age. For instance, one may be 

interested in investigating changes in the entropy associated with mortality improvements 

below and above the mean, median, and mode.
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The results we have achieved have been made possible by casting the problems we have 

studied within the domain of the calculus of variations. The examples considered in 

Appendix D further showcase how demographic questions, like the change in a population’s 

life expectancy given a relative change in their overall mortality, can be answered with 

variational calculus. These tools have already proven useful in the field (see e.g., Arthur, 

1984; Beltrán-Sánchez and Soneji, 2011; Preston, 1982; Engelman et al., 2014), and we 

would like to further advocate their use, especially given the potential insights - such as 

those contained in Proposition 1 and the applications of it we have discussed - that may 

surface as a result of their usage.

Source: Latin American Mortality Database (LAMBdA).
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Appendix A.: Origin and interpretations of the entropy

A.1. A brief history of the origin of the life table entropy

The concept of entropy was initially proposed in the physical sciences as a measure of the 

level of disorder in a system. A similar concept in population studies - population entropy or 

life table entropy - was independently developed by Demetrius and Keyfitz in the 1970’s 

using different principles. The first approach, developed by Demetrius (1974, 1975, 1976, 

1978), is a direct analogue of the entropy of physical systems. Demetrius considers a 

population to be a system of n interacting age classes that can be represented by a lattice 

system. This system has a phase space with an associated set of (invariant) probability 

measures. Thus, given a finite partition of the lattice system there is a Kolmogorov entropy 

which, in an equilibrium state (i.e., a state that maximizes the entropy for a fixed mean 

energy), corresponds to “the variability of the contribution of the different age classes to the 

stationary age distribution (Demetrius, 1974)”.

Table 2

Estimates of life expectancy at birth (e0), life expectancy lost due to death (e†), entropy of 

the life table (H), and the age separating early from late deaths (a†) for males and females 

for 18 countries in Latin America.

Year Males Females

e0 e† a† H e0 e† a† H

Argentina

1953 59.6 16.1 53.0 0.27 64.7 15.1 61.0 0.23

1965 61.8 15.1 55.0 0.24 68.0 13.4 65.0 0.20

1975 63.2 14.5 56.0 0.23 69.9 12.6 66.0 0.18

1985 66.1 13.1 59.0 0.20 72.4 10.9 69.0 0.15
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Year Males Females

e0 e† a† H e0 e† a† H

1996 67.6 12.6 61.0 0.19 74.3 10.2 71.0 0.14

2005 69.5 11.7 63.0 0.17 75.6 9.5 73.0 0.13

Brazil

1985 60.6 16.6 53.0 0.27 66.5 14.2 62.0 0.21

1995 64.4 15.2 57.0 0.24 70.9 12.4 67.0 0.17

2005 67.7 13.7 61.0 0.20 73.9 10.8 71.0 0.15

Chile

1956 51.6 20.6 39.0 0.40 56.3 20.0 47.0 0.36

1965 55.3 18.8 45.0 0.34 61.0 17.7 55.0 0.29

1976 61.9 15.7 54.0 0.25 67.7 13.6 63.0 0.20

1987 67.0 13.1 60.0 0.20 72.9 10.6 69.0 0.15

1997 70.3 11.5 65.0 0.16 75.8 9.1 72.0 0.12

2006 72.4 10.5 68.0 0.14 77.6 8.2 75.0 0.11

Colombia

1957 50.9 21.4 36.0 0.42 54.0 20.8 42.0 0.39

1968 56.1 18.7 47.0 0.33 60.0 18.1 53.0 0.30

1979 61.9 16.2 55.0 0.26 66.4 14.4 61.0 0.22

1989 63.4 15.6 56.0 0.25 69.9 12.3 65.0 0.18

1999 66.0 14.7 60.0 0.22 72.9 11.0 69.0 0.15

2008 69.1 12.9 65.0 0.19 75.2 9.8 73.0 0.13

Costa Rica

1956 58.6 19.0 52.0 0.33 60.8 18.2 55.0 0.30

1968 62.8 16.6 58.0 0.26 65.8 15.3 62.0 0.23

1978 68.5 13.5 64.0 0.20 72.4 11.5 69.0 0.16

1992 71.6 11.5 67.0 0.16 75.7 9.4 72.0 0.12

2005 73.1 10.9 69.0 0.15 77.6 8.6 75.0 0.11

Cuba

1961 64.6 15.1 59.0 0.23 67.3 14.3 63.0 0.21

1975 69.4 12.7 65.0 0.18 72.2 11.5 69.0 0.16

1991 71.0 11.2 66.0 0.16 74.3 9.8 70.0 0.13

2006 73.3 10.3 68.0 0.14 76.8 8.7 73.0 0.11

Dominican Republic

1955 49.0 22.8 31.0 0.47 50.9 22.7 34.0 0.44

1965 54.8 20.8 44.0 0.38 57.4 20.3 48.0 0.35

1975 58.3 18.7 50.0 0.32 61.5 18.1 55.0 0.29

1987 62.7 16.6 56.0 0.26 67.6 14.9 63.0 0.22

1997 66.1 15.4 60.0 0.23 71.5 13.0 68.0 0.18

2006 67.8 14.0 62.0 0.21 72.9 11.7 69.0 0.16

Ecuador

1956 46.9 23.9 24.0 0.51 49.7 23.7 30.0 0.48

1968 54.3 21.3 43.0 0.39 56.7 20.7 47.0 0.36
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Year Males Females

e0 e† a† H e0 e† a† H

1978 58.8 19.2 50.0 0.33 62.6 17.9 58.0 0.29

1986 63.2 16.7 57.0 0.26 67.5 14.8 64.0 0.22

1995 66.0 15.3 60.0 0.23 71.2 12.9 68.0 0.18

2005 69.5 13.5 65.0 0.19 74.7 10.8 72.0 0.15

El Salvador

1955 44.0 23.9 19.0 0.54 47.2 23.7 26.0 0.50

1966 50.7 21.9 36.0 0.43 54.9 20.9 45.0 0.38

1981 53.4 20.6 38.0 0.39 62.3 17.7 57.0 0.28

1999 61.2 16.9 50.0 0.28 70.8 12.5 67.0 0.18

2008 62.9 15.9 52.0 0.25 72.5 11.3 68.0 0.16

Guatemala

1957 42.4 24.4 13.0 0.58 42.6 24.0 15.0 0.56

1968 46.5 22.9 26.0 0.49 48.4 22.5 30.0 0.47

1977 50.9 21.6 35.0 0.43 54.4 20.8 43.0 0.38

1987 55.9 19.4 44.0 0.35 60.7 17.8 54.0 0.29

1998 61.3 17.4 51.0 0.28 67.1 14.6 62.0 0.22

2005 64.2 15.8 57.0 0.25 69.4 13.1 65.0 0.19

Honduras

1955 39.6 24.8 9.0 0.63 40.7 24.3 12.0 0.60

1967 48.5 22.6 30.0 0.47 51.4 22.0 37.0 0.43

1981 60.6 18.8 53.0 0.31 64.5 17.0 60.0 0.26

1989 65.4 16.7 60.0 0.26 69.6 14.6 67.0 0.21

Mexico

1955 48.5 22.8 30.0 0.47 51.7 22.1 37.0 0.43

1965 54.2 20.5 42.0 0.38 59.3 19.1 52.0 0.32

1975 59.3 18.9 50.0 0.32 64.3 16.9 59.0 0.26

1985 63.4 16.3 56.0 0.26 69.1 13.6 65.0 0.20

1995 66.8 14.4 61.0 0.22 72.1 11.8 68.0 0.16

2005 69.8 12.6 64.0 0.18 74.3 10.3 70.0 0.14

Nicaragua

1956 42.5 24.0 17.0 0.56 47.0 24.0 25.0 0.51

1967 49.0 22.7 31.0 0.46 52.9 22.0 40.0 0.42

1983 57.7 19.4 47.0 0.34 63.8 16.8 58.0 0.26

2000 64.7 15.3 57.0 0.24 69.5 13.1 64.0 0.19

2007 65.8 14.2 58.0 0.22 70.8 12.0 65.0 0.17

Panama

1955 57.4 18.8 49.0 0.33 58.6 19.0 49.0 0.32

1965 61.7 16.7 56.0 0.27 63.7 16.3 58.0 0.26

1975 65.7 14.8 60.0 0.23 67.9 14.1 63.0 0.21

1985 70.0 13.1 66.0 0.19 72.9 11.6 70.0 0.16

1995 71.4 12.3 67.0 0.17 74.9 10.6 72.0 0.14
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Year Males Females

e0 e† a† H e0 e† a† H

Paraguay

1956 58.6 18.2 51.0 0.31 60.5 18.2 53.0 0.30

1967 61.2 16.8 55.0 0.27 63.4 16.3 58.0 0.26

1977 62.6 16.2 56.0 0.26 65.3 15.4 60.0 0.24

1987 65.0 14.6 59.0 0.23 68.1 13.5 64.0 0.20

1997 65.2 14.5 59.0 0.22 69.1 12.9 64.0 0.19

2006 68.1 13.0 63.0 0.19 71.9 11.2 68.0 0.16

Peru

1966 48.1 22.9 30.0 0.48 50.9 22.9 34.0 0.45

1976 55.6 20.4 46.0 0.37 58.5 19.7 51.0 0.34

1987 61.0 17.6 54.0 0.29 64.4 16.5 60.0 0.26

2000 66.3 14.5 61.0 0.22 70.4 12.8 67.0 0.18

2008 69.2 12.7 64.0 0.18 73.0 11.0 69.0 0.15

Uruguay

1969 63.0 14.5 56.0 0.23 68.8 12.8 65.0 0.19

1980 65.4 13.5 59.0 0.21 71.6 11.5 68.0 0.16

1990 67.5 12.5 61.0 0.19 73.9 10.3 71.0 0.14

2000 68.8 12.1 62.0 0.18 75.3 9.6 72.0 0.13

2007 70.2 11.5 64.0 0.16 76.3 9.1 73.0 0.12

Venezuela

1955 55.6 19.5 46.0 0.35 58.5 19.1 50.0 0.33

1966 60.8 16.8 53.0 0.28 64.5 15.6 58.0 0.24

1976 62.1 15.7 55.0 0.25 67.6 13.9 62.0 0.21

1985 65.1 14.4 58.0 0.22 70.5 12.2 65.0 0.17

1995 66.5 14.0 60.0 0.21 72.3 11.3 68.0 0.16

2006 67.3 13.9 61.0 0.21 74.2 10.4 70.0 0.14

Source: Authors’ calculations using data from LAMBdA (Palloni et al., 2014).

Contrary to Demetrius, Keyfitz (1977) uses demographic principles to derive an analogous 

formula of population entropy. Keyfitz develops his concept while searching for an 

alternative indicator to assess changes in life expectancy associated with fractional declines 

in age-specific mortality rates. Both approaches lead to similar entropy formulations, 

although their focus is rather different as Demetrius (1979) emphasizes the net maternity 

function while Keyfitz (1977) focuses on changes in the mortality schedule.

A.2. Other interpretations of the entropy

While the entropy of a physical system has the same meaning regardless of the context - the 

higher the entropy the higher the disorder in the system - the many applications in human 

and non-human populations of the population entropy have resulted in a variety of context-

specific interpretations. For example, population entropy has been associated with the fitness 

of an age-structured population (Demetrius, 1974), the life-history of a population (e.g., 
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populations that only reproduce once have zero entropy—semelparous populations) 

(Demetrius, 1975), the rate of convergence of a population to its stable equivalent age 

distribution (Tuljapurkar, 1982, 1993), the general shape of the survival function (e.g., 

entropy = 0 if all mortality concentrates at one age or entropy = 1 if mortality is the same at 

all ages) (Demetrius, 1978; Keyfitz and Caswell, 2005), and the “degree” of concavity of the 

survival function, such that increasing concentration of deaths at some age corresponds to 

lower entropy values (e.g., low entropy in high-income countries as deaths concentrate at 

older ages) (Wilmoth and Horiuchi, 1999; Nagnur, 1986).

Table 3

Contribution to changes in the life table entropy (H) due to changes in life expectancy at 

birth (e0) and in life expectancy lost due to death (e†) for males and females for 18 countries 

in Latin America.

Period Males Females

Change in H Overall cont % cont Change in H Overall cont % cont

Observed Predicted
a

δe†

e† −
δe0
e0

δe†

e†
δe0
e0

Observed Predicteda
δe†

e† −
δe0
e0

δe†

e†
δe0
e0

Argentina

1953–1965 −0.026 −0.028 −0.018 −0.010 65.2 34.8 −0.036 −0.035 −0.023 −0.012 65.5 34.5

1965–1975 −0.015 −0.016 −0.010 −0.006 63.6 36.4 −0.018 −0.017 −0.012 −0.005 69.1 30.9

1975–1985 −0.032 −0.033 −0.022 −0.010 68.2 31.8 −0.029 −0.029 −0.023 −0.006 77.9 22.1

1985–1996 −0.012 −0.011 −0.007 −0.005 59.9 40.1 −0.014 −0.014 −0.010 −0.004 72.3 27.7

1996–2005 −0.018 −0.017 −0.012 −0.005 70.3 29.7 −0.011 −0.011 −0.009 −0.002 77.7 22.3

Brazil

1985–1995 −0.038 −0.035 −0.018 −0.017 51.9 48.1 −0.039 −0.034 −0.019 −0.014 57.5 42.5

1995–2005 −0.033 −0.032 −0.020 −0.012 62.9 37.1 −0.028 −0.028 −0.020 −0.007 73.6 26.4

Chile

1956–1965 −0.058 −0.062 −0.033 −0.029 53.4 46.6 −0.066 −0.069 −0.039 −0.030 57.0 43.0

1965–1976 −0.087 −0.090 −0.049 −0.041 54.6 45.4 −0.088 −0.090 −0.058 −0.032 64.4 35.6

1976–1987 −0.058 −0.058 −0.037 −0.021 64.0 36.0 −0.056 −0.055 −0.039 −0.015 71.7 28.3

1987–1997 −0.031 −0.029 −0.019 −0.010 66.4 33.6 −0.025 −0.023 −0.017 −0.006 75.1 24.9

1997–2006 −0.019 −0.019 −0.014 −0.005 74.3 25.7 −0.015 −0.014 −0.011 −0.003 80.5 19.5

Colombia

1957–1968 −0.087 −0.090 −0.047 −0.043 51.9 48.1 −0.084 −0.087 −0.044 −0.043 50.6 49.4

1968–1979 −0.072 −0.075 −0.040 −0.035 53.6 46.4 −0.084 −0.085 −0.053 −0.032 62.2 37.8

1979–1989 −0.016 −0.016 −0.010 −0.006 61.4 38.6 −0.041 −0.041 −0.030 −0.011 72.4 27.6

1989–1999 −0.024 −0.022 −0.011 −0.010 52.7 47.3 −0.025 −0.022 −0.015 −0.008 66.5 33.5

1999–2008 −0.036 −0.035 −0.025 −0.010 70.4 29.6 −0.021 −0.021 −0.016 −0.005 76.6 23.4

Costa Rica

1956–1968 −0.060 −0.061 −0.038 −0.024 61.4 38.6 −0.067 −0.067 −0.043 −0.025 63.5 36.5

1968–1978 −0.068 −0.068 −0.044 −0.024 64.5 35.5 −0.073 −0.072 −0.049 −0.023 67.7 32.3

1978–1992 −0.037 −0.037 −0.028 −0.009 76.2 23.8 −0.035 −0.035 −0.028 −0.007 79.2 20.8

1992–2005 −0.011 −0.010 −0.006 −0.003 65.0 35.0 −0.013 −0.013 −0.010 −0.003 74.7 25.3
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Period Males Females

Change in H Overall cont % cont Change in H Overall cont % cont

Observed Predicted
a

δe†

e† −
δe0
e0

δe†

e†
δe0
e0

Observed Predicteda
δe†

e† −
δe0
e0

δe†

e†
δe0
e0

Cuba

1961–1975 −0.050 −0.048 −0.031 −0.017 64.2 35.8 −0.054 −0.051 −0.036 −0.016 69.6 30.4

1975–1991 −0.025 −0.025 −0.021 −0.004 82.6 17.4 −0.027 −0.028 −0.023 −0.004 83.7 16.3

1991–2006 −0.017 −0.018 −0.013 −0.005 71.6 28.4 −0.018 −0.016 −0.011 −0.005 71.4 28.6

Dominican Republic

1955–1965 −0.086 −0.089 −0.033 −0.056 37.4 62.6 −0.091 −0.093 −0.036 −0.057 39.0 61.0

1965–1975 −0.058 −0.058 −0.034 −0.024 58.8 41.2 −0.060 −0.061 −0.036 −0.025 58.9 41.1

1975–1987 −0.057 −0.057 −0.033 −0.024 57.7 42.3 −0.074 −0.073 −0.043 −0.025 59.4 40.6

1987–1997 −0.032 −0.030 −0.016 −0.014 53.4 46.6 −0.038 −0.036 −0.024 −0.013 65.6 34.4

1997–2006 −0.026 −0.027 −0.021 −0.006 77.5 22.5 −0.021 −0.021 −0.018 −0.004 82.8 17.2

Ecuador

1956–1968 −0.117 −0.121 −0.040 −0.081 32.9 67.1 −0.113 −0.116 −0.048 −0.067 41.9 58.1

1968–1978 −0.065 −0.066 −0.034 −0.032 51.3 48.7 −0.078 −0.079 −0.041 −0.038 52.5 47.5

1978–1986 −0.064 −0.065 −0.041 −0.025 62.3 37.7 −0.067 −0.068 −0.046 −0.022 67.1 32.9

1986–1995 −0.032 −0.031 −0.019 −0.012 61.9 38.1 −0.039 −0.039 −0.027 −0.012 68.9 31.1

1995–2005 −0.037 −0.036 −0.024 −0.012 66.4 33.6 −0.035 −0.035 −0.026 −0.009 74.8 25.2

El Salvador

1955–1966 −0.113 −0.117 −0.033 −0.084 28.4 71.6 −0.120 −0.123 −0.042 −0.082 33.8 66.2

1966–1981 −0.046 −0.047 −0.024 −0.023 51.2 48.8 −0.098 −0.097 −0.046 −0.051 47.0 53.0

1981–1999 −0.111 −0.113 −0.057 −0.056 50.5 49.5 −0.106 −0.109 −0.071 −0.038 64.8 35.2

1999–2008 −0.023 −0.023 −0.016 −0.007 68.1 31.9 −0.022 −0.022 −0.017 −0.004 79.9 20.1

Guatemala

1957–1968 −0.083 −0.086 −0.030 −0.056 35.2 64.8 −0.098 −0.099 −0.022 −0.077 22.3 77.7

1968–1977 −0.067 −0.069 −0.022 −0.047 32.4 67.6 −0.084 −0.085 −0.027 −0.057 32.4 67.6

1977–1987 −0.077 −0.081 −0.039 −0.042 48.5 51.5 −0.089 −0.092 −0.048 −0.044 51.8 48.2

1987–1998 −0.065 −0.063 −0.029 −0.034 46.2 53.8 −0.076 −0.074 −0.043 −0.031 58.6 41.4

1998–2005 −0.037 −0.037 −0.024 −0.013 63.9 36.1 −0.029 −0.029 −0.021 −0.008 74.0 26.0

Honduras

1955–1967 −0.160 −0.163 −0.021 −0.142 12.9 87.1 −0.169 −0.163 −0.006 −0.157 3.6 96.4

1967–1981 −0.155 −0.150 −0.034 −0.116 22.6 77.4 −0.164 −0.156 −0.047 −0.108 30.3 69.7

1981–1989 −0.055 −0.053 −0.029 −0.024 54.2 45.8 −0.055 −0.053 −0.032 −0.021 60.0 40.0

Mexico

1955–1965 −0.091 −0.096 −0.041 −0.055 42.7 57.3 −0.105 −0.104 −0.041 −0.063 39.5 60.5

1965–1975 −0.059 −0.058 −0.022 −0.035 38.9 61.1 −0.061 −0.060 −0.033 −0.027 55.1 44.9

1975–1985 −0.063 −0.063 −0.041 −0.022 64.6 35.4 −0.065 −0.066 −0.046 −0.020 70.1 29.9

1985–1995 −0.040 −0.040 −0.027 −0.014 66.0 34.0 −0.033 −0.034 −0.025 −0.009 74.2 25.8

1995–2005 −0.035 −0.035 −0.026 −0.010 72.4 27.6 −0.026 −0.026 −0.021 −0.005 80.6 19.4

Nicaragua

1956–1967 −0.102 −0.107 −0.021 −0.086 19.8 80.2 −0.094 −0.099 −0.035 −0.064 35.2 64.8
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Period Males Females

Change in H Overall cont % cont Change in H Overall cont % cont

Observed Predicted
a

δe†

e† −
δe0
e0

δe†

e†
δe0
e0

Observed Predicteda
δe†

e† −
δe0
e0

δe†

e†
δe0
e0

1967–1983 −0.127 −0.130 −0.048 −0.082 37.0 63.0 −0.152 −0.153 −0.067 −0.086 43.9 56.1

1983–2000 ‒0.099 −0.102 −0.061 −0.041 59.7 40.3 −0.074 −0.076 −0.052 −0.023 69.1 30.9

2000–2007 −0.021 −0.021 −0.017 −0.004 80.2 19.8 −0.020 −0.020 −0.017 −0.004 82.5 17.5

Panama

1955–1965 −0.057 −0.057 −0.032 −0.025 56.8 43.2 −0.067 −0.067 −0.039 −0.028 58.3 41.7

1965–1975 −0.045 −0.044 −0.027 −0.017 60.7 39.3 −0.049 −0.049 −0.032 −0.017 65.1 34.9

1975–1985 −0.039 −0.036 −0.021 −0.015 58.2 41.8 −0.047 −0.044 −0.029 −0.015 65.5 34.5

1985–1995 −0.014 −0.014 −0.010 −0.004 73.0 27.0 −0.019 −0.018 −0.014 −0.004 76.5 23.5

Paraguay

1956–1967 −0.035 −0.036 −0.023 −0.014 62.0 38.0 −0.043 −0.043 −0.029 −0.014 67.0 33.0

1967–1977 −0.017 −0.018 −0.012 −0.006 64.8 35.2 −0.022 −0.022 −0.014 −0.008 64.1 35.9

1977–1987 −0.033 −0.033 −0.023 −0.010 71.1 28.9 −0.037 −0.038 −0.028 −0.010 73.5 26.5

1987–1997 −0.003 −0.004 −0.003 −0.001 78.2 21.8 −0.012 −0.012 −0.009 −0.003 75.5 24.5

1997–2006 −0.032 −0.030 −0.021 −0.010 67.8 32.2 −0.030 −0.030 −0.022 −0.008 74.6 25.4

Peru

1966–1976 −0.108 −0.110 −0.035 −0.075 31.9 68.1 −0.113 −0.114 −0.046 −0.068 40.7 59.3

1976–1987 −0.078 −0.079 −0.044 −0.035 55.3 44.7 −0.081 −0.082 −0.049 −0.034 58.9 41.1

1987–2000 −0.070 −0.071 −0.046 −0.025 64.9 35.1 −0.074 −0.075 −0.051 −0.024 68.3 31.7

2000–2008 −0.036 −0.036 −0.026 −0.010 72.9 27.1 −0.031 −0.031 −0.025 −0.007 78.7 21.3

Uruguay

1969–1980 −0.023 −0.024 −0.015 −0.009 63.6 36.4 −0.026 −0.025 −0.017 −0.007 70.2 29.8

1980–1990 −0.022 −0.022 −0.016 −0.006 70.7 29.3 −0.021 −0.020 −0.015 −0.005 74.6 25.4

1990–2000 −0.010 −0.010 −0.006 −0.004 60.7 39.3 −0.011 −0.010 −0.008 −0.003 74.1 25.9

2000–2007 −0.012 −0.011 −0.008 −0.004 68.1 31.9 −0.008 −0.008 −0.007 −0.002 79.3 20.7

Venezuela

1955–1966 −0.076 −0.079 −0.046 −0.033 58.2 41.8 −0.084 −0.086 −0.053 −0.033 61.3 38.7

1966–1976 −0.023 −0.023 −0.017 −0.006 74.6 25.4 −0.038 −0.037 −0.026 −0.012 68.4 31.6

1976–1985 −0.030 −0.031 −0.019 −0.012 61.5 38.5 −0.031 −0.031 −0.023 −0.009 72.5 27.5

1985–1995 −0.011 −0.010 −0.005 −0.005 49.3 50.7 −0.017 −0.016 −0.012 −0.004 72.4 27.6

1995–2006 −0.005 −0.004 −0.002 −0.002 43.8 56.2 −0.016 −0.016 −0.012 −0.004 73.4 26.6

a
Predicted values are estimated as: δH S x, t1 ≈ H S x, t1

δe†[S(x)]
e† 0, t1

−
δe0[S(x)]

e 0, t1
(see Appendix F.2); ‘cont’, 

contribution.

Source: Authors’ calculations using data from LAMBdA (Palloni et al., 2014) and formulas from Proposition 1.
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In demography, most of the studies about population entropy follow Keyfitz’s principle by 

studying the relative change in life expectancy associated with changes in age-specific 

mortality rates. These studies have elucidated important properties of the entropy. For 

instance, Goldman and Lord (1986), Mitra (1979, 1978) and Vaupel (1986) re-expressed the 

entropy using life table notation as the weighted average of life expectancies at age x, which 

can be further described as the average years of future life that are lost by the observed 

deaths (Goldman and Lord, 1986), the proportional increase in life expectancy at birth if 

everyone’s first death were averted (Mitra, 1979; Vaupel, 1986), or alternatively, life 

expectancy lost due to death among those surviving to a given age (Vaupel and Canudas 

Romo, 2003; Zhang and Vaupel, 2009). This last definition, called e-dagger (e†), was first 

coined by Vaupel (1986). This indicator has been further developed elsewhere (Vaupel and 

Canudas Romo, 2003; Zhang and Vaupel, 2009) and shown to be a useful indicator of life 

disparity (Vaupel et al., 2011; Shkolnikov et al., 2011).

A.3. The effect of changes in age-specific mortality on H

A population’s entropy also detects changes in age-specific mortality. To see this, consider 

first the case of constant mortality, where μ(s) = μ is constant5 and taken positive, for the 

moment. Then S(x) = e−μx, and after inserting this into the formula for H (the negative of the 

parenthetical term in (2.3)) a straightforward calculation yields H = 1. The case when μ(s) = 

0 - the zero mortality case6 - leads to S(x) = 1, ln S(x) = 0, and thus H = 0.7 Thus, we 

conclude that if the mortality function is constant across age, H = 0, 1. The contrapositive of 

this statement is that if H ≠ 0, 1 then the mortality function is non-constant across age. One 

more example further illustrates this point. Let us refer to this as the almost-constant 
mortality case, wherein

μ(s) =
μ1, s ∈ ℝ ≥ 0 − [a, b],
μ2, s ∈ [a, b], (A.1)

where 0 < a < b and μ1, μ2 ≠ 0. We envision b − a to be small, so that the force of mortality is 

the constant μ1 for most of the ages s, and only different (yet still constant) for a small subset 

of ages. The corresponding survival function is

S(x) = e
(b − a) μ1 − μ2 − μ1x

,

and the corresponding entropy is

5The corresponding survivorship curves are referred to as Type II curves (Demetrius, 1978), and describe a population in which no age 
group is favored at death (i.e. mortality is independent of age).
6The corresponding survivorship curves are referred to as Type I curves (Demetrius, 1978), and describe a population in which all 
individuals reach the maximum possible lifespan of the species.
7Wenote that 0 and 1 are in general the extrema of H, since 0 ≤ S(x) ≤ 1 implies that H ≥ 0, and – assuming the mean age of the 
stationary population is less than the value of the life expectancy – H ≤ 1 was shown true in (Demetrius, 1979). (If this assumption is 
not the case and the mean is μ, then H ≤ 1 + ln(μ/e0) (Goldman and Lord, 1986, footnote 1).)
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H = 1 − (b − a) μ1 − μ2 .

In the limit of b → a, the force of mortality becomes constant and H → 1, which verifies 

our earlier results of the constant mortality case. But when b ≠ a, the change across age in 

the force of mortality in (A.1) is detected by H. To summarize, for a given population, values 

of H ≠ 0, 1 immediately tell us that the population’s mortality function varies across age. 

Moreover, the almost-constant mortality case also highlights the sensitivity of H: no matter 

how small the difference b − a is, H detects the change in mortality, suggesting that H is “in 

general highly sensitive to variations in age-specific mortality” Demetrius (1979).

Because mortality is related to the survival function via (2.1), these results suggest that a 

population’s entropy may be a useful tool in characterizing its survivorship (in the cases 

when mortality is not constant across age). Indeed, in the literature H is often referred to as 

the “simple parameter” that can “characterize the shape of [survival] curves” Demetrius 

(1979). Often the “shape” refers to the degree of concavity (also convexity) of the survival 

curve, and we find several references agreeing that “H is a convenient summary of the 

degree of concavity in an l(x) column” Keyfitz and Caswell (2005, Sec. 4.3.2). We see 

clearly that as the concavity of the survival curves in Fig. 1(a) changes, the entropy H in Fig. 

1(b) changes as well. Moreover, we note that decreasing H values - given by decreasing a-

values - leads to increased survivorship.

Appendix B.: Introduction to the calculus of variations

Consider the following calculus problem. Given a real-valued function y(x) of a real variable 

x that is differentiable on a given interval (a, b), approximate the change in y due in a small 

change ϵ in x from an initial point x0 ∈ (a, b).

This problem can be solved easily by using differentials as follows. The assumed 

differentiability of y guarantees the existence of y′(x0), defined by

y′ x0 = lim
ϵ 0

y x0 + ϵ − y x0
ϵ . (B.1)

The infinitesimal change dy in y due to an infinitesimal change dx in x is then defined by

dy = y′ x0 dx .

If we now suppose that the change in x is finite but small, we may drop the equality in (B.1) 

and use the approximation

y′ x0 ≈
y x0 + ϵ − y x0

ϵ , or equivalently, Δy ≈ y′ x0 ϵ, (B.2)
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where Δy = y(x0 + ϵ) − y(x0). The last approximation in (B.2) has a simple interpretation: 

the change in input Δx = ϵ produces an approximate change in the function’s values given by 

the derivative y′(x0) multiplied by Δx = ϵ. Moreover, from (B.2) we also see that the relative 
change in y, given by dy/y, is y′(x0) multiplied by the relative change dx/x:

dy
y = y′ x0

dx
x , or, for a finite but small change Δx = ϵ,

Δy
y ≈ y′ x0

ϵ
x .

(B.3)

The related problem of approximating the change in a differentiable multivariable function 

y(x) in the direction of a vector v can be treated similarly. The analogue of y′(x0) is the 

directional derivative y′(x0) defined by

y′ x0 = lim
ϵ 0

y x0 + ϵv − y x0
ϵ . (B.4)

The approximate change in y in the direction v is then given by (B.2), with y′(x0) replaced 

by y′(x0).

Now, if the object of interest is not a function but instead a functional, the derivative (B.4) 

has an analogue. To describe it let us consider the simplest example of a functional: the 

familiar Riemann integral

I[y(x)] = ∫
a

b
y(x)dx . (B.5)

Given a function y(x) that is Riemann integrable over the interval [a, b], the functional 

I[y(x)] produces a number—the net signed area between a and b under the graph of y(x). We 

can now ask the same question as before: what is the approximate change in I[y(x)] due to a 

change in y(x)?

The answer to this question is an exercise in the calculus of variations. Following Sagan 

(1992) one first defines a variation of y(x) - denoted by δy(x) - by ϵv(x), where v(a) = v(b) = 

0. (Intuitively, the curve y(x)+δy(x) in general closely resembles y(x) but is not equal to it.) 

Then, the first variation of a functional

J[y(x)] = ∫a

b
F(x, y(x))dx,

where F is a smooth function defined as follows.

Definition 2. Let v(x) and y(x) be two functions differentiable on a domain A, with v 
satisfying v(a) = v(b) = 0. Then the first variation δJ[y(x)] is defined by
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δJ[y(x)] = lim
ϵ 0

J[y(x) + δy(x)] − J[y(x)]
ϵ

= ∂
∂ϵ J[y(x) + δy(x)]

ϵ = 0

= ∂
∂ϵ J[y(x) + ϵv(x)]

ϵ = 0

(B.6)

whenever the limit exists.

As in (B.4), this can be thought of as the derivative of J[y(x)] “in the direction of v(x)”.

In practice, the process of calculating δJ begins in one of two ways. In the first, one is given 

a family of varied curves parameterized by some parameter ϵ. In this case (B.6) is calculated 

by Taylor expanding these varied curves in powers of ϵ. For example, for the functional (B.

5) let us consider the effect of the variations e(1+ϵ)x of the function ex on I[ex]. Here y(x) + 

δy(x) = e(1+ϵ)x, and to calculate (B.6) we Taylor expand the varied curves:

e(1 + ϵ)x = exeϵx = ex 1 + ϵx + ϵ2 x2
2! + ⋯ .

Then (B.6) gives

δI ex = ∂
∂ϵ∫a

b
e(1 + ϵ)xdx

ϵ = 0

= ∂
∂ϵ∫a

b
ex 1 + ϵx + ϵ2 x2

2! + ⋯ dx
ϵ = 0

= ∫a

b
xexdx .

To interpret this last result, we note that as in (B.2) we may write (Theorem 1.5 Sagan, 

1992)

ΔJ[y(x)] = J[y(x) + δy(x)] − J[y(x)] ≈ ϵδJ[y(x)] (B.7)

when ϵ is small. For example, if we choose a = 0 and b = 1 in the ex example and consider 

the variation to be y(x) + δy(x) = e(1.01)x, then

ΔI ex = I e(1.01)x − I ex ≈ (0.01)∫0
1

xexdx = 0.01.

This compares well with the actual increment I[e(1.01)x] − I[ex] = 01004.

In the second approach to calculating the first variation δJ one is given the variation δy. For 

example, for the functional (B.5) we have δy = ϵv(x)
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δI[y(x)] = lim
ϵ 0

I[y(x) + δy(x)] − I[y(x)]
ϵ

= lim
ϵ 0

∫ a
b(y(x) + ϵv(x))dx − ∫ a

by(x)dx

ϵ = ∫a

b
v(x)dx .

Using (B.7), we then have

ΔI[y(x)] ≈ ϵ∫a

b
v(x)dx,

which tells us that for small enough ϵ, changing the integrand y(x) to y(x) + ϵv(x) changes 

the net signed area by approximately ϵ multiplied by the net signed area of v(x), a 

conclusion made even more clear by drawing a few example graphs.

The preceding development has focused on the analogue of the first derivative in the 

calculus of variations. But as in the case with functions, where higher-order derivatives can 

be defined, we can also define higher-order variations of functionals.

Definition 3. Let y(x; ϵ) be a family of smooth varied curves for the function y(x) such that 

for all ϵ we have y(a; ϵ) = y(a) and y(b; ϵ) = y(b). Define δy(x) = y(x; ϵ) − y(x) and let

δy(x) = ϵv(x) + ϵ2w1(x) + ⋯ + ϵnwn + 1(x) + ⋯

be the Taylor expansion in powers of ϵ of δy(x). Then the nth variation δnJ[y(x)] is defined 

by

δnJ[y(x)] = ∂n

∂ϵn J[y(x) + δy(x)]
ϵ = 0

whenever the derivative exists.

We note that in the case of n = 1 this definition reduces to definition (B.6).

For instance, continuing with the ex example, we have

δ2I ex = ∂2

∂ϵ2∫a

b
ex 1 + ϵx + ϵ2 x2

2! + ⋯ dx
ϵ = 0

= ∫a

b
x2exdx .

We can then extend (B.7) to second order in ϵ (Theorem 1.8.1 Sagan, 1992):
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J[y(x) + δy(x)] − J[y(x)] ≈ ϵδJ[y(x)] + ϵ2

2 δ2J[y(x)] (B.8)

when ϵ is small. For example, choosing a = 0 and b = 1 in the ex example and again 

considering the variation to be y(x) + δy(x) = e(1.01)x, then

I e(1.01)x − I ex ≈ (0.01)∫0
1

xexdx + (0.01)2
2 ∫0

1
x2exdx

= 0.0100359,

which is an even better approximation to the actual increment I[e(1.01)x ] − I[ex] = 0.01004.

Finally, motivated by (B.3), we make the following definition.

Definition 4. The relative change of a functional J[y(x)] is defined by

δJ[y(x)]
J[y(x)]

everywhere J[y(x)] is nonzero.

Appendix C.: Proofs of propositions

Proof of Proposition 1.

Let δS(x) = ϵv(x) be a variation of S(x), i.e. v(x) is a smooth function that vanishes at zero 

and as x → ∞.

1.
To show: δH

H = δe†

e† −
δe0
e0

.

Proof. We begin with the observation that H[S + δS] = e†[S + δS]/e0 [S + δS] can be written 

as

0 = H[S + δS]e0[S + δS] − e†[S + δS]

= H[S + ϵv]e0[S + ϵv] − e†[S + ϵv] .

Now, taking the derivative with respect to ϵ yields

∂H
∂ϵ [S + ϵv]e0[S + ϵv] + H[S + ϵv]

∂e0
∂ϵ [S + ϵv]

− ∂e†

∂ϵ [S + ϵv] = 0,

(C.1)

Fernandez and Beltrán-Sánchez Page 30

Theor Popul Biol. Author manuscript; available in PMC 2019 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Setting ϵ = 0 now gives

δH[S]e0[S] + H[S]δe0[S] − δe†[S] = 0. (C.2)

Solving for δH[S] yields

δH =
δe† − Hδe0

e0
δH
H =

e0
e†

δe†
e0

− e†
e0

δe0
e0

= δe†

e† −
δe0
e0

.

We now show that δe† and δe0 are given by (2.6). By (B.6) we have

∂e†
∂ϵ [S(x) + ϵv(x)]

= − ∂
∂ϵ ∫0

∞
(S(x) + ϵv(x))ln(S(x) + ϵv(x))dx

= − ∫0
∞

v(x)[ln(S(x) + ϵv(x)) + 1]dx .

Evaluating this expression at ϵ = 0 yields

δe†[S(x)] = − ∫0
∞

v(x)[ln(S(x)) + 1]dx

= − ∫0
∞

v(x)dx − ∫0
∞

ln(S(x))v(x)dx,

which is the first equation in (2.6). Lastly,

∂e0
∂ϵ [S(x) + ϵv(x)] = ∂

∂ϵ ∫0
∞

(S(x) + ϵv(x))dx

= ∫0
∞

v(x)dx .

Thus,

δe0[S(x)] = ∫0
∞

v(x)dx,

reproducing the second equation in (2.6). □

2. To show: The second variation
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δ2H = − 1
e0

2 δe0δH + ∫0
∞

w(x)dx (H − 1)

− ∫0
∞

w(x)ln(S(x))dx − ∫0
∞ (v(x))2

S(x) dx] .

Proof. For ease of writing, let S(x) + δS(x) = S(x; ϵ) be a family of varied curves, where 

S(x; 0) = S(x), S(0; ϵ) = 0, and S(x; ϵ) → 0 as x → ∞. Expand S(x; ϵ) in an ϵ series:

S(x) + δS(x) = S(x) + ϵv(x) + ϵ2w(x) + ⋯ .

Now, differentiate (C.1) with respect to ϵ twice to arrive at

H′′[S(x; ϵ)]e0[S(x; ϵ)] + 2H′[S(x; ϵ)]e0′ [S(x; ϵ)]

+ H[S(x; ϵ)]e0′′[S(x; ϵ)] − e† ′′[S(x; ϵ)] = 0,

where the primes denote derivatives with respect to ϵ. Setting ϵ = 0 then yields

H′′[S(x; 0)]e0[S(x; 0)] + 2H′[S(x; 0)]e0′ [S(x; 0)]
+ H[S(x; ϵ)]e0′′[S(x; 0)] − e† ′′[S(x; 0)] = 0.

(C.3)

To calculate the quantities in this equation, we begin with e0[S(x; ϵ)] = ∫ 0
∞S(x; ϵ)dx. Then

e0′ [S(x; 0)] = ∫
0

∞
v(x)dx = δe0[S(x)],

e0′′[S(x; 0)] = 2∫
0

∞
w(x)dx .

(C.4)

Similarly,

e†[S(x; ϵ)] = − ∫0
∞

S(x; ϵ)ln(S(x; ϵ))dx

e† ′[S(x; 0)] = − ∫0
∞

S′(x; 0)[ln(S(x; 0)) + 1]dx

e† ′′[S(x; 0)] = − ∫0
∞

S′′(x; 0)(ln(S(x; 0)) + 1)

+ S′(x; 0) 2
S(x; 0) dx .

Therefore,
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e† ′′[S(x; 0)] = − 2∫
0

∞
w(x)(ln(S(x)) + 1)dx

− ∫
0

∞ (v(x))2

S(x) dx .

(C.5)

Finally, substituting (C.4)–(C.5) into (C.3) gives

δ2H e0 + 2(δH) δe0 + (2H) ∫0
∞

w(x)dx

+ 2∫0
∞

w(x)(ln(S(x)) + 1)dx + ∫0
∞ (v(x))2

S(x) dx = 0.

Solving for δ2H reproduces (2.8). □

Proof of Proposition 2.

Proof. Let δμ(s) = ϵv(s) be a variation of the mortality function μ(s), and suppose that v(0) = 

0 and v(s) → 0 as s → ∞. Then

e0[μ + δμ] = ∫0
∞

e
−∫ 0

x(μ(s) + ϵv(s))ds
dx

= ∫0
∞

e
−∫ 0

xμ(s)ds
e
−ϵ∫ 0

xv(s)ds
dx

= ∫0
∞

e
−∫ 0

xμ(s)ds
1 − ϵ ∫0

x
v(s)ds + h . p . e . dx

= e0[μ] − ϵ ∫0
∞

S[μ(s)] ∫0
x

v(s)ds dx + h . p . e . ,

where the abbreviation h.p.e. stands for “higher powers in epsilon”. Therefore,

δe0[μ(s)] = lim
ϵ 0

e0[μ + δμ] − e0[μ]
ϵ

= − ∫
0

∞
S[μ(s)] ∫

0

x
v(s)ds dx .

(C.6)

Now, since S[v(s)] = e
−∫ 0

xv(s)ds
, then ln(S[v(s)]) = − ∫ 0

xv(s)ds. Therefore, (C.6) can be written 

as in (2.12). Similarly, we have that
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e†[μ + δμ] = − ∫0
∞

e
−∫ 0

x(μ(s) + ϵv(s))ds

× −∫0
x

(μ(s) + ϵv(s))ds dx

= ∫0
∞

e
−∫ 0

xμ(s)ds
1 − ϵ ∫0

x
v(s)ds + h . p . e

× ∫0
x

μ(s)ds + ϵ∫0
x

v(s)ds dx

= e†[μ] − ϵ ∫0
∞

S[μ(s)] ∫0
x

v(s)ds

× ∫0
x

μ(s)ds − 1 dx] + h.p.e.

It follows that

δe†[μ] = lim
ϵ 0

e†[μ + δμ] − e†[μ]
ϵ

= − ∫0
∞

S[μ(s)] ∫0
x

v(s)ds ∫0
x

μ(s)ds − 1 dx

= − ∫0
∞

S[μ(s)]( − ln(S[v(s)]))( − ln(S[μ(s)]) − 1)dx

= − ∫0
∞

S[μ(s)]ln(S[v(s)])(ln(S[μ(s)]) + 1)dx

= − ∫0
∞

S[μ(s)]ln(S[v(s)])dx

− ∫0
∞

S[μ(s)]ln(S[v(s)])ln(S[μ(s)])dx

= − δe0[μ(s)] − ∫0
∞

S[μ(s)]ln(S[μ(s)])ln(S[v(s)])dx,

which reproduces (2.11). □

Appendix D.: More applications of Propositions 1 and 2

In Appendix D.1 we reproduce the results of constant mortality case of Appendix A.3 as a 

basic illustration and check of Proposition 1. In Appendix D.2 we illustrate a particular case 

assuming a Gompertz force of mortality, i.e. μ(x) = a ebx and S(x) = ea/be−(a/b)ebx
, and 

evaluate the change in H when there is a proportional change in S(x) at all ages (similar to 

that shown by Keyfitz (1977)).

D.1. Reproducing the constant mortality case results

Let μ be a positive real number and S(x) = e−μx, and consider a variation δS that produces 

the new survival curve S + δS = e−(μ+ϵ)x, where ϵ > 0. To illustrate the results of Proposition 

1, we first Taylor expand S + δS in powers of ϵ:

Fernandez and Beltrán-Sánchez Page 34

Theor Popul Biol. Author manuscript; available in PMC 2019 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



S + δS = e−(μ + ϵ)x = e−μxe−ϵx = e−μx 1 − ϵx + (ϵx)2
2! + ⋯

= S + e−μx −ϵx + (ϵx)2
2! + ⋯ .

From the last equation we see that

δS = ϵ −xe−μx + ϵ2 x2e−μx/2 + ⋯ .

Thus, comparing with the expansion δS(x) = ϵv(x) + ϵ2w(x) we see that v(x) = −xe−μx and 

w(x) = x2e−μx/2. From (2.6) we then have

δe†[S(x)] = ∫
0

∞
[1 − μx] −xe−μx dx = − 1

μ2 ,

δe0[S(x)] = ∫
0

∞
−xe−μx dx = − 1

μ2 .

(D.1)

Now, since

e† e−μx = − ∫0
∞

( − μx)e−μxdx = 1
μ ,

e0 e−μx = ∫0
∞

e−μxdx = 1
μ ,

we see that δe†/e† = −1/μ = δe0/e0. Therefore, according to (2.5) we have that δH = 0. This 

suggests that, for example, the survival functions S1(x) = e−2x and S2(x) = e−2.01x both have 

the same H value. This is confirmed by the fact that H = 1 for the constant mortality case 

(c.f. Appendix A.3).

To illustrate (2.8) we make use of the following facts:

∫0
∞

x2e−μxdx = 2
μ3, ∫0

∞
x2e−μx( − μx)dx = − 6

μ3 .

Using these, along with the fact that H[S(x)] = 1, Eq. (2.8) gives

δ2H[S(x)] = − μ 2
μ3 + 0 + 2

μ3(1 + 1) − 6
μ3 = 0.

Therefore, to second order in ϵ we have, according to (2.9),

H[S + δS] ≈ 1 + 0 ⋅ ϵ + 0 ⋅ ϵ2 = 1.
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These calculations are again in accordance with our results from the constant mortality 

example of Appendix A.3.

To illustrate Proposition 2, note that the mortality function here is μ(s) = μ, and that the 

variation δμ(s) = ϵ. Thus, v(s) = 1 and (2.12) gives8

δe0[μ(s)] = ∫0
∞

e−μxln e
−∫ 0

x1ds
dx = ∫0

∞
−xe−μx dx,

matching (D.1). Similarly, (2.11) gives

δe†[μ(s)] = − ∫0
∞

−xe−μx dx − ∫0
∞

e−μx( − μx)( − x)dx,

again matching (D.1). Since e†, e0, δe†, δe0 all have the same values as before, (2.10) leads 

to the same δH = 0 conclusion.

D.2. Proportional changes in S and their effect on H

Suppose that we consider a small proportional increase in S(x) to kS(x), where k > 1 is close 

to one. We can then write

kS(x) = (1 + k − 1)S(x) = S(x) + (k − 1)S(x) = S(x) + δS(x),

where δS(x) = ϵS(x), with ϵ = k − 1 > 0 but close to zero. Note that v(x) = S(x) and w(x) = 

0. From (2.6) we then have

δe†[S(x)] = − ∫
0

∞
[1 + ln(S(x))]S(x)dx,

δe0[S(x)] = ∫
0

∞
S(x)dx .

(D.2)

Notice that the relative change in life expectancy δe0/e0 = 1, whereas the relative change in 

the average years of future life that are lost by observed deaths is

δe†[S(x)]
e†[S(x)]

=
∫ 0

∞[1 + ln(S(x))]S(x)dx

∫ 0
∞S(x)ln(S(x))dx

=
∫ 0

∞S(x)dx + ∫ 0
∞S(x)ln(S(x))dx

∫ 0
∞S(x)ln(S(x))dx

= −
e0
e† + 1,

8We note that although v(s) = 1 does not vanish at zero and as s → ∞, one can easily replace it by a continuous function that does 
without affecting the results of the calculations.
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So that (2.5) gives

δH[S(x)]
H[S(x)] = −

e0
e† + 1 − 1 = −

e0
e†

= − 1
H[S(x)] δH[S(x)] = − 1.

(D.3)

Thus, we conclude that since δH[S(x)] < 0 the survival curves S(x) must be changing shape 

toward increased survivorship, which is true since we have assumed that k > 1.

For the second variation, using (D.2) and (D.3) in (2.8) yields

δ2H[S(x)] = − 1
e0

∫0
∞ (S(x))2

S(x) dt + 2{(1)( − 1) + 0 + 0}

= − 1
e0

e0 − 2 = 1.

From (2.9) it follows that

H[kS(x)] ≈ H[S(x)] + ϵδH[S(x)] + ϵ2

2 δ2H[S(x)]

= H[S(x)] + (k − 1)( − 1) + (k − 1)2

2 (1)

= H[S(x)] + (1 − k) + (k − 1)2

2 .

(D.4)

We note that analogous calculations can be carried out for the k < 1 case.

Let us now compare these approximations to the exact results one obtains in the Gompertz 

case. Let μ(x) be the force of mortality at age x and assume it follows a Gompertz curve, i.e. 

μ(x)= a ebx. It follows that the corresponding survival function at age x is given by 

S(x) = Ce−(a/b)ebx
, where C = ea/b, and that

H[S(x)] = a
b

∫ 0
∞e−(a/b)ebx

ebxdx

∫ 0
∞e−(a/b)ebx

dx
− ln(C) . (D.5)

To calculate H[kS(x)] we first note that kS(x) = kCe−(a/b)ebx
, so that we can simply replace C 

by kC in (D.5). Therefore,
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H[kS(x)] = a
b

∫ 0
∞e−(a/b)ebx

ebxdx

∫ 0
∞e−(a/b)ebx

dx
− ln(kC)

= a
b

∫ 0
∞e−(a/b)ebx

ebxdx

∫ 0
∞e−(a/b)ebxdx

− ln(k) − ln(C)

= H[S(x)] − ln(k) .

(D.6)

Since we have assumed that k > 1 but close to one, writing ln k = ln (1 + (k − 1)) we can 

then Taylor expand ln(1 + (k − 1)) to express (D.6) as

H[kS(x)] = H[S(x)] − (k − 1) − (k − 1)2

2 + ⋯

= H[S(x)] + (1 − k) + (k − 1)2

2 − ⋯ .

(D.7)

From this we see that the second-order approximation (D.4) matches the actual result (D.7) 

exactly (to second order).

Appendix E.: Early and late deaths

E.1. Reworking of Proposition 1

Given a threshold age a†, we can break up the first variations of e0[S(x)] and e†[S(x)] as 

follows:

δe0[S(x)] = ∫
0

a†
v(x)dx + ∫

a†
∞

v(x)dx

= :δe0[S(x | x < a†)] + δe0[S(x | x ≥ a†)],

(E.1)
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δe†[S(x)] = − δe0[S(x | x < a†)] + δe0[S(x | x ≥ a†)]

− ∫
0

a†
ln(S(x))v(x)dx + ∫

a†
∞

ln(S(x))v(x)dx

= −δe0[S(x | x < a†)] − ∫
0

a†
ln(S(x))v(x)dx

+ −δe0[S(x | x ≥ a†)] − ∫
a†

∞
ln(S(x))v(x)dx

= :δe†[S(x | x < a†)] + δe†[S(x | x ≥ a†)],

(E.2)

where v(x) is a smooth function that vanishes at zero and as x → ∞.

Thus, Proposition 1 can be written as:

δH[S(x)]
H[S(x)] = δe†[S(x | x < a†)]

e†[S(x)]
+

−δe0[S(x | x < a†)]
e0[S(x)]

+ δe†[S(x | x ≥ a†)]
e†[S(x)]

+
−δe0[S(x | x ≥ a†)]

e0[S(x)] .

(E.3)

E.2. Reworking of Proposition 2

Similarly, given a threshold age a†, we can break up the first variations of e†[μ(s)] and 

e0[μ(s)] as follows:

δe0[μ(s)] = ∫
0

a†
Sx[μ(s)]ln Sx[v(s)] dx

+ ∫
a†

∞
Sx[μ(s)]ln Sx[v(s)] dx

= :δe0[μ(s | x < a†)] + δe0[μ(s | x ≥ a†)],

(E.4)

Fernandez and Beltrán-Sánchez Page 39

Theor Popul Biol. Author manuscript; available in PMC 2019 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



δe†[μ(s)] = − δe0[μ(s | x < a†)] + δe0[μ(s | x ≥ a†)]

− ∫
0

a†
Sx[μ(s)]ln Sx[μ(s)] ln Sx[v(s)] dx

− ∫
a†

∞
Sx[μ(s)]ln Sx[μ(s)] ln Sx[v(s)] dx

= −δe0[μ(s | x < a†)]

− ∫
0

a†
Sx[μ(s)]ln Sx[μ(s)] ln Sx[v(s)] dx)

+ −δe0[μ(s | x ≥ a†)]

−∫
a†

∞
Sx[μ(s)]ln Sx[μ(s)] ln Sx[v(s)] dx

= :δe†[μ(s | x < a†)] + δe†[μ(s | x ≥ a†)],

(E.5)

where Sx[v(s)] = e
−∫ 0

xv(s)ds
.

Thus, Proposition 2 can be written as:

δH[μ(s)]
H[μ(s)] = δe†[μ(s | x < a†)]

e†[μ(s)]
+

−δe0[μ(s | x < a†)]
e0[μ(s)]

+ δe†[μ(s | x ≥ a†)]
e†[μ(s)]

+
−δe0[μ(s | x ≥ a†)]

e0[μ(s)] .

(E.6)

Appendix F.: Discrete approximations

F.1. Life table notation

One can use the following approximation formulas to estimate e(0), e†(0), and H at time t 
(life table notation):

e(0, t) = ∫
0

∞
S(a, t)da ≈ 1

l(0, t) ∑
x = 0

ω
L(x, t) (F.1)
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e†(0, t) = − ∫
0

∞
S(a, t)ln(S(a, t))da

≈ 1
l(0, t) ∑

y = 0

ω − 1
d(y, t) e(y, t) + e(y + 1, t)

2

(F.2)

H(t) = e†(0, t)
e(0, t)

where l(0, t), L(x, t), d(x, t), and e(x, t) correspond to the following life table values at age x, 

time t: radix at age 0, person-years lived, deaths, and life expectancy.

F.2. Discrete version of Proposition 1

One can use the following approximation formulas to estimate the first variations shown in 

Proposition 1:

δe0[S(x)] ≈ 1
l(0) ∑

x = 0

ω
L x, t2 − L x, t1

δe†[S(x)] = e 0, t1 − e 0, t2 − e† 0, t1 − e†, * 0, t2

where the approximation formulas for e(0, t) and e†(0, t) are shown in Eqs. (F.1) and (F.2), 

respectively. The estimation of e†,*(0, t2) can be carried out using Eq. (F.2) with d(y) 

replaced by d*(y); the latter corresponds to counterfactual life table deaths at age y 
estimated with mortality at time t1 and life table survivors at time t2.

To derive the two formulas above, let δS(x) = S(x, t2) − S(x, t1) be a variation of the survival 

function between times t1 and t2. Thus, v(x) = S(x, t2) − S(x, t1). The first variation of e0 is 

then given by:

δe0[S(x)] = ∫0
∞

v(x)dx

= ∫0
∞

S x, t2 − S x, t1 dx

= ∫0
∞

S x, t2 − ∫0
∞

S x, t1 dx

= e 0, t2 − e 0, t1

δe0[S(x)] ≈ 1
l(0) ∑

x = 0

∞
L x, t2 − L x, t1 ,
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where l(0, t1) = l(0, t2) = l(0).

The first variation of e† is given by:

δe†[S(x)] = − ∫
0

∞
v(x)dx + ∫

0

∞
ln S x, t1 v(x)dx

= − δe0[S(x)] + ∫
0

∞
ln S x, t1 S x, t2 dx

− ∫
0

∞
ln S x, t1 S x, t1 dx]

= − δe0[S(x)] − e†, * 0, t2 + e† 0, t1

δe†[S(x)] = e 0, t1 − e 0, t2 − e† 0, t1 − e†, * 0, t2

(F.3)

where

e†, * 0, t2 = − ∫0
∞

ln S a, t1 S a, t2 da

= ∫0
∞∫0

a
μ x, t1 S a, t2 dx da

= ∫0
∞

μ x, t1 ∫x

∞
S a, t2 da dx

= ∫0
∞

μ x, t1 l x, t2 e x, t2 dx

e†, * 0, t2 = ∫0
∞

d*(x)e x, t2 dx

d*(x) represents counterfactual life table deaths at age x estimated with mortality at time t1 

and life table survivors at time t2. From Eq. (F.2), the discrete approximation of the above 

equation is given by:

e†, * 0, t2 ≈ 1
l(0) ∑

y = 0

ω − 1
d*(y)

e y, t2 + e y + 1, t2
2 , (F.4)

where l(0, t1) = l(0, t2) = l(0). Thus, a discrete approximation of δe†[S(x)] (Eq. (F.3)) uses 

formulas (F.1), (F.2) and (F.4) corresponding to e(0, t), e†(0, t) and e†,*(0, t), respectively.

The preceding discretizations imply that (2.5) can be discretized as
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δH S x, t1 ≈ H S x, t1
δe†[S(x)]
e† 0, t1

−
δe0[S(x)]
e 0, t1

≈ H S x, t1
e 0, t1 − e 0, t2 − e† 0, t1 − e†, * 0, t2

e† 0, t1

−
e 0, t2 − e 0, t1

e 0, t1

= H S x, t1
e 0, t1 − e 0, t2 + e†, * 0, t2

e† 0, t1
−

e 0, t2
e 0, t1

=
e† 0, t1
e 0, t1

e 0, t1 − e 0, t2 + e†, * 0, t2
e† 0, t1

−
e 0, t2
e 0, t1

.

(F.5)

Discretization of equations relating H with early and late deaths.

We use a similar discretization of Eqs. (3.1)–(3.5) as shown above, except that now we have 

intervals for age (i.e., [0, a†] or [a†, ∞)).

Using these discretizations in practice requires numerical integration for some calculations 

(e.g., (2.4)). To reduce the calculation errors we use more advanced techniques from the 

theory of numerical integration. In particular, we fitted a third degree monotone cubic spline 

using Hyman filtering (Hyman, 1983) to the quinquennial S(x) column of the life table to 

produce single-year survival probabilities. We then estimated the area under this curve using 

trapezoids, which simplifies the numerical integration because the length of the intervals is 

one unit long.
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Fig. 1. 
Plots of (a) μ(x) = a/(1 − x) for a = 0.2, 0.5, 1, 3, 10 (the a-values decrease as one moves 

from upper-left to lower-right), (b) S(x) = (1 − x)a for a = 0.2, 0.5, 1, 3, 10, and (c) the 

entropy H[μ(x)] = H[S(x)] = a/(a + 1).
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Fig. 2. 
Life table entropy by country, year and gender.
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Fig. 3. 
Contribution of e† (blue) and e0 (pink) to changes in Male Life Table Entropy by Country 

and Period. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 4. 
Contribution of e† (blue) and e0 (pink) to changes in Female Life Table Entropy by Country 

and Period. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 5. 
Contribution of changes in premature (blue for e† and pink for e0) and older (light blue for 

e† and light pink for e0) deaths to changes in male life table entropy by country and period. 

Negative values in older e† (light blue) indicate that there was an increase over the period in 

average years of life lost due to death at older ages. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. 
Contribution of changes in premature (blue for e† and pink for e0) and older (light blue for 

e† and light pink for e0) deaths to changes in female life table entropy by country and period. 

Negative values in older e† (light blue) indicate that there was an increase over the period in 

average years of life lost due to death at older ages. Source: Authors’ calculations using data 

from LAMBdA (Palloni et al., 2014) and Eqs. (3.1)-(3.5). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 7. 
Threshold age, a†, separating premature and older deaths for males and females by country 

and period.

Source: Authors’ calculations using data from LAMBdA (Palloni et al., 2014) and formula 0 

= e† (a†) − e0(a†)[1 − Λ(a†)], where Λ a† = ∫ 0
a†

μ(s)ds is the cumulative hazard function 

(Zhang and Vaupel, 2009).
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Table 1

Latin American countries with available period mortality data by age and sex.

Country Years

Argentina 1953,1965, 1975, 1985, 1996, 2005

Brazil 1985,1995, 2005

Chile 1956,1965, 1976, 1987, 1997, 2006

Colombia 1957,1968, 1979, 1989, 1999, 2008

Costa Rica 1956,1968, 1978, 1992, 2005

Cuba 1961,1975, 1991, 2006

Dominican Republic 1955,1965, 1975, 1987, 1997, 2006

Ecuador 1956,1968, 1978, 1986, 1995, 2005

El Salvador 1955,1966, 1981, 1999, 2008

Guatemala 1957,1968, 1977, 1987, 1998, 2005

Honduras 1955,1967, 1981, 1989

Mexico 1955,1965, 1975, 1985, 1995, 2005

Nicaragua 1956,1967, 1983, 2000, 2007

Panama 1955,1965, 1975, 1985, 1995

Paraguay 1956,1967, 1977, 1987, 1997, 2006

Peru 1966,1976, 1987, 2000, 2008

Uruguay 1969,1980, 1990, 2000, 2007

Venezuela 1955,1966, 1976, 1985, 1995, 2006

Source:Latin American Mortality Database (LAMBdA).
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