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Abstract

Background: Understanding the genetic networks and their role in chronic diseases (e.g., cancer) is one of the
important objectives of biological researchers. In this work, we present a text mining system that constructs a
gene-gene-interaction network for the entire human genome and then performs network analysis to identify
disease-related genes. We recognize the interacting genes based on their co-occurrence frequency within the
biomedical literature and by employing linear and non-linear rare-event classification models. We analyze the
constructed network of genes by using different network centrality measures to decide on the importance of each
gene. Specifically, we apply betweenness, closeness, eigenvector, and degree centrality metrics to rank the central
genes of the network and to identify possible cancer-related genes.

Results: We evaluated the top 15 ranked genes for different cancer types (i.e., Prostate, Breast, and Lung Cancer). The
average precisions for identifying breast, prostate, and lung cancer genes vary between 80-100%. On a prostate case
study, the system predicted an average of 80% prostate-related genes.

Conclusions: The results show that our system has the potential for improving the prediction accuracy of identifying
gene-gene interaction and disease-gene associations. We also conduct a prostate cancer case study by using the
threshold property in logistic regression, and we compare our approach with some of the state-of-the-art methods.
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Background
According to NCCDPHP (National Center for
Chronic Disease Prevention and Health Promo-

tion), cancer is among the top 10 causes of deaths
for 2014 in the United States [1]. Cancer affected
about 8.8 million deaths in 2015 worldwide, with
Lung cancer being the leading cancer cause of
death according to the World Health Organization.
The National Institutes of Health (NIH) in association
with the American Cancer Society (ACS) reported the
common cancer types in 2016 [2, 3], which is illustrated
in Fig. 1. There are many efforts directed towards the
treatment of this chronic disease, but the most impor-
tant direction for more effective treatments starts with
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enhancing the understanding of cancer and the roots of
its cause.

Cancer is a disease that is partially genetic, and the
reason behind many genetic diseases and disorders is
mutated genes. Mutations in genes lead to harmful con-
sequences and genetic diseases [4]. Genes generally code
for proteins. A single protein holds the responsibility of
many functions within the cell. Thus, genetic mutations
would lead to the creation of nonfunctional proteins. For
instance, for genes coding for proteins involved in cell
division, a mutation will interrupt the normal process of
cell proliferation and death [5]. Genes that control cell
division and growth are usually referred to as Tumor sup-
pressor genes. Any alteration or mutation to these genes
will disrupt the normal cell division process resulting in
cell division over-activation, and will eventually lead to the
development of a tumor (cancer).
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Fig. 1 Number of new cases and deaths for each common cancer type from NIH [2]

Since abnormal proteins functions are highly associated
with the occurrence of cancer, a large number of can-
cer studies focus on protein/gene functions. Such studies
provide the critical knowledge needed in designing can-
cer diagnosis and treatment interventions. Over the two
past decades, a large body of bioinformatics research
was directed towards protein function predictions (PFP).
Bioinformatics researchers focused their efforts on devel-
oping computational methods that assign and interpret
the functions of proteins.

The PFP techniques are varied depending on the source
of information (i.e., sequence-based, structure-based, text
mining, and protein-protein interactions). These meth-
ods also influenced disease-gene association studies and
disease gene prediction [6]. In general, the huge growth
in biological data influenced a similar evolution in the
biomedical literature. A huge effort in bioinformatics is
directed towards the use of the rapidly growing biomedi-
cal literature to infer the disease-related genes by extract-
ing this information directly from the text [7, 8]. The
biomedical text mining approaches also referred to as
BioNLP approaches, employ different Natural Language
processing (NLP) techniques to extract descriptive infor-
mation on biological entities and disease.

In this paper, we propose a simple yet powerful disease-
gene association identification method based on analyzing
a co-occurrence genetic network. We combine the infor-
mation extraction method with rare event classification
and then perform network analysis. We first construct a
gene-gene-interaction network based on the number of
times the genes and their Gene Ontology (GO) terms
appear in the PubMed articles. We extract several features
from the text to represent each pair of genes in a vec-
tor of variables. We employ two rare-event classification
models to optimize the prediction accuracy and to con-
sider the rareness of possible positive gene connections.
We trained our data with linear and non-linear classifiers,

and we present the results obtained for each one. Follow-
ing the prediction of gene-gene interactions, a subnetwork
is extracted to represent the disease-related network. We
then use a network analysis tool to identify the network
parameters, properties, and centrality measures. We use
the centrality measure scores to rank the top 7 genes and
evaluate them using a disease-gene association bench-
mark. In this work, we evaluate our approach for three
cancer types (i.e., Prostate, Breast, and Lung).

We provide a demo that outputs the set of genes that are
related to an input gene from the gene-gene-interaction
network that the system has constructed. The demo also
provides the list of related genes for three cancer types
mentioned in this work by allowing the user to choose
either classification models. The last option is to view
the gene-gene-interaction networks constructed by a soft-
ware for network analysis and visualization. The demo is
available at:

e http://ecesrvr.kustar.ac.ae:8080/humangene/index.
html.

Related work

A well-known way to study proteins is through iden-
tifying similar proteins that interact with each other.
A typical feature of proteins is the fact that they
don’t work alone. Proteins interact or bind with each
other to carry through a certain function [9]. Pre-
dicting the protein/gene interactions at their abstract
level for the whole genome (i.e., the human genome,
the yeast genome, etc.) results in constructing genetic
interaction networks. Several approaches use previously
known knowledge about the protein/gene to construct
PPIs/GGIs. Among these various approaches, many have
used the information within the biomedical articles to
accomplish this goal. Although various literature analysis
approaches have been presented in the past decade, the
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rapid growth of the biomedical publications encourages
the continuous development of methods that automati-
cally extract the information presented in the biomedical
articles.

Studying the genes or proteins functions has proven to
have a direct link to the detection of disease and the dis-
covery of drugs. A missing or mutated protein in the cell
is responsible for the cause of a disease. Therefore, the
study of disease-gene association (DGA) has been widely
conducted, especially in the field of biomedical literature
mining. Similarly to the basic text mining approaches,
DGA approaches can take a simple or a complex direc-
tion. In general, a relation extraction algorithm needs to
be implemented in order to use the biomedical literature
to find genes related to a certain disease [10]. Extracting
DGA could depend on the mentions of both the dis-
ease and the genes, or analysis of already constructed
genetic networks. Network analysis method is used in
many text mining approaches [11-13]. One of the earliest
approaches that extract disease-gene association based on
text mining techniques and network analysis is proposed
by Ozgiir et al. [14]. This method starts with the assump-
tion that the central genes in their constructed disease
genetic network are highly associated with the disease.
After the gene-gene-interaction network is constructed,
centrality measures are applied to rank the top genes in
the network that are more likely to be associated with the
target disease (i.e., Prostate Cancer). Another very similar
approach by Quan & Ren targets the study towards Breast
Cancer [15]. It also applies centrality measures to ana-
lyze the constructed network, but the difference is in the
technique followed for building the network. Quan & Ren
select only important sentences that include interaction
verbs between genes or diseases.

There are much simpler approaches that depend only
on the co-occurrence frequency among biological enti-
ties (genes, proteins, and diseases) [16]. GO terms are
proven to improve the overall performance of the DGA
approaches like in [17]. This application applies prox-
imity relation between genes and diseases mentioned in
the biomedical text, while also identifying the GO terms
annotating the genes and diseases (calculate the seman-
tic similarity). Another approach by Sun et al. uses GO
annotations as one source for predicting disease-gene
associations [18]. BioNLP has been engaged in many
disease/Network-based prediction algorithms, and that
is shown in details in the review study by Zhu et al.
[19]. Including several Natural Language Processing tech-
niques in the development of these applications can make
a complex system. However, using NLP with text mining
has shown to perform more efficiently to extract relevant
information [20]. Some researchers focus on the identi-
fication of disease-related genes without predicting new
candidate genes like in DigSee [21]. This application is a
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search engine that finds and highlights the associations
among Cancer genes.

In this paper, we tackle some of the limitations that the
above studies have by first identifying the GO terms in
the abstract text along with the gene name rather than
calculating the GO terms semantic similarities between
the genes or diseases mentioned in the text. Also, we
extract features at three levels of text (i.e. abstract, sen-
tence, and semantic), rather than limiting the search for
interacting genes in the sentences or abstracts only. One
of the key contributions of this work is to utilize rare-
event classification which has many advantages over other
classification methods. With this classification method,
we can use small datasets to train and test the classi-
fier [22—24]. To the best of our knowledge, this is the
first work that utilizes rare-event classification with the
use of biomedical text mining approach. Recognizing
the sparsity of biomedical data when designing a text min-
ing prediction system is crucial since the possible negative
connections between genes outnumber the possible pos-
itive connections. We also use the threshold property of
the classifier to rank the predicted genes which presents
novel observations.

Methods

In this section, we explain the process of con-
structing the co-occurrence genetic network for the
human genome (“Co-occurrence network” section).
Our research focus is on using the GO terms as
biological terms to help with the information extrac-
tion step. We also present linear and non-linear
rare-event classifiers. In “Disease-gene association”
section, we then describe the process of extracting
disease-gene associations based on network analysis.

Co-occurrence network
Constructing the co-occurrence genetic network consists
of the following main steps:

Information extraction

We used UniProtKB/SwissProt [25] to download the pri-
mary/official list of genes in order to build the gene-gene-
interaction network. We downloaded a total set of 20,183
human genes. In this work, we also identify the Gene
Ontology (GO) terms from the text. Gene Ontology is one
of the most popular bio-ontology [26]. It annotates genes
based on the three main functionalities of genes, i.e., cel-
lular location, molecular function, and biological process.
A gene is annotated by one or many GO terms and thus,
GO terms are highly descriptive of the genes functionality.
We downloaded the list of GO terms that are associated
with each gene retrieved from UniProtKB/SwissProt using
QuickGO [27]. Therefore our system mainly looks for
the gene names and GO terms in the text of biomedical
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articles. Each gene in the list of genes should be annotated
by at least one GO term and should also be mentioned in
at least one PubMed article. As for the extraction text, we
have used a set of PubMed abstracts retrieved from the
National Center for Biotechnology Information (NCBI)
[28]. We use abstracts as they are publicly available data
and they usually hold the main outcomes of the biomedi-
cal experiments. We used the E-utilities provided at NCBI
to search and download the abstract texts that mention at
least one human gene. We used two main e-utilities that
are "e-search” to search the PubMed IDs associated with
a target gene, and "e-fetch" to retrieve and download the
PubMed abstract text using the abstract ID from the pre-
vious e-utilities query. We retrieved a total of 7,894,920
abstracts in February 2017 and saved them into a local
SQL database.

Our proposed system automatically extracts different
features from the text based on co-occurrence the biolog-
ical terms “gene-gene” or ‘gene-GO term”. In addition, the
system looks for the co-occurrence frequency at three dif-
ferent levels of text (i.e., abstract level, sentence level, and
semantic level). The abstract and sentence levels respec-
tively indicate the number of times the two terms appear
in the same abstract and the same sentence. The seman-
tic level expresses the number of times the two terms
appear to have a semantic relationship in the text. That is,
the two terms show a positive relationship when we look
closely at the sentence. Accordingly, we look for phrases
which indicate that the biological terms are interacting or
related to each other (e.g., “binds with", “interacts with",
“and", “or", etc.). We study the semantic level to have a
better understanding of the relation between two biolog-
ical entities, specifically in the sense of inferring if they
are related/connected to each other. The semantic level
expresses the “semantic similarity” which is defined as the
measure of resemblance between two biological entities.

We used the Java APIs provided by LingPipe [29] to
develop name entity recognition. Through LingPipe, we
identified biological entities (i.e., genes, and GO terms),
developed sentences tagging, and word tokenization. Each
abstract is parsed through LingPipe library. The features
for each pair of genes is then extracted and analyzed by
updating the occurrence status of each biological entity
according to the three levels of text (i.e., abstract, sentence,
semantic).

We represent each pair of genes by the previously
extracted information in a vector of features. In the frame-
work of this study, a pair of genes X; is represented by nine
features.

Xi = (W1, Wa, W3, Wy, W5, We, Wy, W, Wo)

Each feature measures the likeliness between the two
genes in the pair. Also, Each feature will represent either
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the direct (gene-gene) or the indirect (gene-Go term) co-
occurrences of the two genes. Since we keep track of the
occurrence frequency of the biological terms at three lev-
els of text, each feature will indicate a level (i.e., abstract,
sentence, semantic). The way to compute each feature
is by calculating the number of times the two biological
terms are co-occurred over their individual appearance in
the level of the text. Table 1 shows a description of the
nine features for the pair of genes (g1, g2), with regards to
the biological terms they are representing and the level of
text they are targeting. The information extraction com-
ponent will result in a table of vectors (pairs) referred to as
Table(X), where X; is a row in the table. Further details on
this information extraction technique are introduced in a
recent study [23].

Rare-event classification:

The table of vectors (X) that is produced by the infor-
mation extraction step is fed to a rare-event classification
model. Due to the fact that the possible negative relations
among genes (non-events) outnumber the possible pos-
itive relations (events), we chose to employ a rare-event
classifier that will address the rarity of positive connec-
tions. In this work, we use a linear rare-event classifier
(Weighted Logistic Regression (WLR) [22]), and we also
employ a non-linear classifier alternative (Weighted Kernel
Logistic Regression (WKLR) [30]). Both classifiers opti-
mize the prediction accuracy and reflect the sparsity of
the biomedical data by using a reasonable sample size
[31]. The linear classifier (WLR) is particularly more effec-
tive than WKLR is terms of tuning the hyperparameters
for large datasets. Moreover, WKLR could be slower than
WLR since it represents the data in a high dimensional
space. However, it can better capture the data behavior
since it separates the data non-linearly [32].

We used a regularization parameter (1) in both clas-
sifiers to avoid singularities and overfitting. Next, we
provide a general description of the classifiers, and we
list all their related equations in Table 2. In both models

Table 1 Description of features for the pair (g1, g2)

Feature Biological terms Text level
Wi g1 and g» Abstract

W> giand g» Sentence
Ws giand g» Semantic
Wy g1 and the GO terms of g, Abstract

Ws g1 and the GO terms of g, Sentence
We g1 and the GO terms of g, Semantic
1 g> and the GO terms of g4 Abstract

Ws g> and the GO terms of g4 Sentence
Wo g> and the GO terms of g4 Semantic

Each feature measures the number of times the two biological terms are
co-occurred over their individual appearance in the level of text
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Table 2 The logit transformation and regularized log-likelihood for both classifiers (WLR and WKLR)
Model Logit transformation Regularized log-likelihood
WLR
pi n e,VrXrﬂ A
In =X — JE—— 2
(+25) =0 @ = Yowin (1557 ) - 5141 @)
@ =

WKLR

n eVikiar A7
InLy (@) = ;W,/ﬂ a3 Ka (4)

The detailed description for each equation is reported in “Rare-event classification:” section

(WLR and WKLR), the vector of features is represented
in a logit transformation function defined by Equation 4
for WLR and Equation 6 for WKLR. p; is the probabil-
ity of the pair of genes being interacting, 8 in Equation 4
is a vector of parameters that differentiate the events and
the non-events (the positive class and the negative class).
« in Equation 6 is the dual variable (vector) that also indi-
cates the separation of events and non-events. X; is a row
in Table(X), and it is just the vector of features for a pair of
genes. k; also represents a pair of genes, but the difference
is that WKLR transforms the data to a higher dimen-
sional space, hence k; is the ith row in the kernel matrix
k(X;,Xj) = K (see Eq.(5)). The kernel used in WKLR is
the Gaussian Radial Basis Function (RBF) kernel [33] as
shown in the equation below. ¢ is the kernel parameter
that defines the width of the kernel. This parameter along
with the regularization parameter (i) are chosen from a
range of values and are tuned using bootstrapping.

k(X X)) = ezl .

The best B and o vectors are estimated by maximizing
the log-likelihood. The difference between the two mod-
els is presented in estimating the log-likelihood where it
is expressed in Egs. 5 and 7. In both equations: y; is 1 if
the ith training example pair was related and 0 otherwise,
n is the total number of training examples, and A is the
regularization parameter. The log-likelihood is adjusted
using the weight w; that represents the proportion of
events to non-events. This weight introduces rare-event
classification and reflects the imbalanced data problem.

Prediction:

We trained our system using STRING training dataset
that provides the information of experimentally verified
related genes [34]. Although STRING is a source for inter-
acting genes/proteins based on experimental and com-
putational methods, we only retrieved the experimentally

verified interactions. Each pair of genes represented by
the nine features (recall “Information extraction” section),
is assigned the value “1" to indicate that the pair of genes
is confirmed to be experimentally related according to
STRING. We assigned the value “0" to pairs that do not
appear to be related, but both genes have to be appearing
in STRING experimentally verified interactions network.

We use Bootstrapping to train the classifiers and to
adjust the regularization parameter (A) and the kernel
parameter (o). Bootstrapping is a re-sampling method
that allows the generation of a large number of samples
over multiple rounds. It is a simple and effective tech-
nique for approximating the true error measure and for
generating a confidence interval for the accuracy [35]. We
evaluate the accuracy at each round and by tuning the
parameters (A and o). The best accuracy is found by com-
paring all the accuracies obtained by the different values of
the parameters. The best accuracy indicates that we found
the best fit parameters § and « that will be used for the
prediction.

For the WLR classifier, we found the best 8 vector at
A = 4328, and we predict the relation for the pairs of genes
using the following equation: 0.5 is the default threshold
for prediction in logistic regression.

"=\ 1 PGilXif) > 05

As for the WKLR classifier, the best « vector was found
at A = 5.7 x 1073 and o = 0.5, the relation prediction is
evaluated using the following equation:

[0, Pyilka) <05
Yi {1, P(yilkict) > 0.5 @)

We show the Receiver Operating Characteristic (ROC)
curve in Fig. 2 to assess the quality of our system. ROC
curve is a plot of the true positive rate (TPR) against false
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positive rate (FPR) at different thresholds. We also com-
puted the Area Under the ROC Curve (AUC) measure
in Tables 3 and 4 to show how well our system can sep-
arate the connected and unconnected genes using WLR
and WKLR respectively. With WKLR, we achieved higher
accuracy than WLR for both classes as seen in Table 4. In
Figs. 3 and 4, we show how our system balances both recall
and precision by identifying the performance measures
(true positives, false positives, etc.) according to STRING,
and by using WLR and WKLR.

Using either classifier, we can predict the interact-
ing genes and, hence, construct the human gene-gene-
interaction network. In the next section, we describe the
process of identifying disease-related genes using network
analysis.

Disease-gene association

In “Co-occurrence network” section, we constructed the
genetic co-occurrence network for the entire human
genome. We are going to use this network to extract
disease-related subnetworks. In this work, we are focusing
the study on different Cancer types (i.e., Breast, Prostate,
Lung, etc.). As shown in Fig. 5, we follow a process of steps
to construct disease subnetworks, analyze these networks
and identify new candidate genes that could be linked
directly to the disease. The steps are as follows:

Table 3 Accuracy measures from training a data of pairs of
genes using WLR

Accuracy AUC

Class 0 (unrelated) 68 74
Class 1 (related) 68
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Table 4 Accuracy measures from training a data of pairs of
genes using WKLR

Accuracy AUC
Class 0 (unrelated) 71 78
Class 1 (related) 85

1 Initial list of seed genes: The process of
constructing the disease subnetwork starts with
retrieving the genes related to the disease under
consideration according to a high-quality reference
source. We used Online Mendelian Inheritance in
Man (OMIM) to download the seed genes that we
are going to use to build the subnetwork [36]. OMIM
is a comprehensive collection of human genes and
diseases that is being updated daily and publicly
available. Moreover, it is commonly used in most of
the methods that identify disease-gene associations.
OMIM provides the access to its database through an
API. The OMIM API URLSs consists of handlers,
parameters and a unique API key that is given upon
request to the user. We used the ‘geneMap’ handler
to search and retrieve all the data related to a certain
disease entry.

2 Building disease-related subnetwork: Using the
seed genes as a start for building the network, we
retrieved from our previously predicted network all
the genes that are related to at least one seed gene.
All the pairs in the generated subnetwork include at
least one seed gene. The subnetwork is then analyzed
to get further candidate genes that could be directly
related to the disease of study. The list of related
genes for the three cancer networks (Breast, Prostate
and Lung Cancer) by using either WLR as a classifier

0.8
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Fig. 3 Precision-Recall Curve Using WLR
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Fig. 4 Precision-Recall Curve Using WKLR

or by using WKLR as a classifier are available via the
demo link provided in “Background” section.
Network Analysis (centrality measures): We used
Cytoscape network analyzer to perform the analysis
for the constructed subnetwork. Cytoscape is an
open-source visualization tool that offers interactive
network analysis [37]. It computes the network
parameters such as the number of nodes and edges,
and it reports several properties of the network such
as the network flow. Cytoscape computes different
centrality measures to rank all the genes in the

network and identify the most relevant to the disease.

Centrality measures identify how important each

Qsuitiat 1ist
—\

:> Seed genes

2 Disease-Related Network

=

4 Results Evaluation 3 Network Analysis

Centrality Measures ...
- >

Fig. 5 The process of network analysis and disease-gene identification
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node is and how does it affect the network. In this
work, we applied several centrality measures, and
each is defined below:

(a) Degree centrality
The degree of a node is the number of nodes
that are connected to it. Alternatively stated, it
is the number of edges adjacent to the node as
well. The degree centrality indicates the
popularity of the node, hence, the more
neighbors a node has, the more important the
node is.

(b) Eigenvector centrality
This centrality measures the extent of effect a
node has in a network. Similarly to the degree
centrality, the eigenvector centrality scores the
number of neighbors of a node. However, the
difference is that the neighbors, in this case, are
only considered if they have the characteristics
of being high quality or high scoring nodes. A
node will score a high eigenvector value if it is
also connected to nodes with high eigenvector
values. Based on this, the node centrality is
dependent on the quantity and the quality of its
connections. A node is said to be
well-connected if it has more prestigious nodes
connected to it.

(c) Closeness centrality
This centrality is a measure of how close a node
is to all other nodes in the network. A node
with a high closeness value is of interest, as it
implies that the node is closer to the center of
the network. It also implies that the node has a
high effect on the nodes surrounding it.
Closeness centrality is computed by calculating
the inverse of the sum of the shortest distances
between each node and every other node in the
network. It can be simply put that higher
closeness means a smaller total distance of a
node to the other nodes.

(d) Betweenness centrality
Betweenness indicates the extent to which a
node affects the flow of data within the
network. It measures the number of times a
node serves as a channel in the shortest paths
between two other nodes. The higher the
betweenness value is, the more important the
node is in controlling the network connections.
Betweenness is computed by calculating the
number of shortest paths between other nodes
passing over this node.

4 Results Evaluation: All the previous centrality

measures give us a summary of the network



Al-Aamri et al. BMC Bioinformatics (2019) 20:70

properties, by reporting a score for each node (gene)
in the network. In order to test the prediction quality
of our method, we ranked the genes based on their
score values with each of the described standard
centrality measures. That is, for each centrality
measure we evaluated the top 15, 25, 45, etc. genes by
using different benchmarks that hold already known
disease genes. The tests and results validation are
reported in the next section.

Experimental results

We implemented this system in Java, and we run it
on Intel(R) Core i7 processor, with a CPU of 3.4 GHz
and 16GB RAM, under Windows10. We used Ling Pipe
APIs for the information extraction algorithm and imple-
mented the classification model in MATLAB. We deter-
mine the interactions among human genes based on their
frequency in the biomedical texts.

The co-occurrence network generated by our system
is analyzed to identify disease-gene associations. More
specifically, we study cancer-related genes found in the
co-occurrence network. We followed the steps mentioned
in “Disease-gene association” section to analyze the co-
occurrence genetic network. We first retrieve an initial
list of genes associated with the target cancer type, using
OMIM database. We then build a cancer-related subnet-
work using the already generated co-occurrence network.
We establish the subnetwork through a search for genes
that interact with at least one seed gene. In this study, we
construct subnetworks for three different types of Cancer
(i.e., Prostate, Breast, and Lung). We gathered 18 prostate
cancer seed genes, 23 for breast cancer, and 16 for lung
cancer. Table 5 lists the seed genes compiled for each can-
cer type. It has not escaped our notice that OMIM does
not include “BRCA1 gene” in the list of breast cancer genes
(MIM number: 114480). However, this gene appears to
be associated with breast-ovarian cancer syndrome (Mim
number: 604370). We did not manually include BRCA1 in
the list of breast cancer genes for the sake of source data
integrity. Using the seed genes to construct the disease-
related network, we counted the predicted interactions
for the three cancer types. These interactions are gener-
ated for the two classifiers used in this study (WLR and
WKLR). We included the Network images for each cancer
type via the demo link provided in “Background” section.
We also show Cytoscape’s report on the subnetwork’s
parameters such as the network diameter, clustering coef-
ficient, number of interactions and number of nodes in
Table 6.

We used Cytoscape to analyze the networks using close-
ness, betweenness, degree and eigenvector standard cen-
trality measures. Each measure produces a list of genes
(nodes in the network) that are ranked by the cen-
trality score. We evaluate the quality of our system in
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Table 5 The seed genes retrieved from OMIM

Prostate Breast Lung
PCAP RAD54L FASLG
HPC5 CASP8 CASP8
MAD1L1 BARD1 DLECT
HPC4 PIK3CA RASSF1
HIP1 HMMR PIK3CA
MSR1 NQO2 IRF1
KLF6 ESR1 PRKN
PTEN RB1CC1 EGFR
MXI1 SLC22A1L BRAF
D82 TSG101 MAP3K8
BRCA2 ATM ERCC6
CDH1 KRAS SLC22A1L
ZFHX3 BRCA2 PPP2R1B
HPCQTL19 XRCC3 KRAS
HPC3 AKT1 ERBB2
CHEK2 RAD51A CYP2A6
HPC6 PALB2
AR CDH1

TP53

PHB

PPM1D

BRIP1

CHEK2

identifying disease-related genes with reference to two
benchmarks:

a MalaCards [38]:
MalaCards is a database of human diseases, their
related-genes annotations, and the database is affiliated
with GeneCards [38]. It holds about 20, 000 disease
entries integrated from more than 70 data sources. In a

Table 6 The Cancer-related gene-interaction networks
properties as reported by Cytoscape

Diameter Nodes cc* Interactions
Prostate
WLR 9 257 0.038 275
WKLR 6 1808 0.086 2479
Breast
WLR 8 504 0.103 693
WKLR 6 3126 0.161 5986
Lung
WLR 7 555 0.070 691
WKLR 6 2355 0.067 3959

* cc refers to clustering coefficient
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study by Rappaport et al. MalaCards is shown to
outnumber OMIM and UniProt in the average number
of disease-gene associations [39]. In this experiment,
we retrieved from MalaCards the gene-disease
associations that are marked as “elite” genes. An elite
gene in the framework of MalaCards is defined to be
that from sources that are manually curated and
contains strong and reliable association to the disease.
b NCI’s GDC [40]:
NCI's GDC is short for the National Cancer Institute’s
Genomic Data Commons. It is a data portal that holds
a collection of descriptive information on cancer
genomics. It is part of the National Institutes of Health
(NIH), which is a research agency governed by the U.S.
Department of Health and Human Services. We
retrieved from the GDC portal cancer-related genes
that are marked as being part of the Cancer Gene
Census (CGC), which is an ongoing effort to categorize
genes involved directly to cancer [41].

For each centrality measure, we evaluated the top 15
ranked genes. In general, the top # ranked genes have
the highest centrality scores. Particularly, as # increases
the centrality scores decrease and sometimes approach 0,
which means that it is less likely to find genes related to
cancer as 7z increases. We show the effect of centrality
scores on the percentage of related genes using MalaC-
ards as a benchmark. In Table 7, we report the precisions
of all centrality measures for the top n ranked genes
related to Lung Cancer where the pairs in the lung-cancer-
subnetwork were predicted using WLR. The percentages
of the top # genes start off with high values of up to 99%
performed by eigenvector. As n increases though, the pre-
cisions go down for the four centrality measures, and they
converge to each other.

Table 7 Percentage of top n genes related to lung cancer based
on MalaCards database

Topn Closeness Betweenness Degree Eigenvector
10 80.00 80.00 90.00 99.00
15 73.30 80.00 86.70 93.30
20 70.00 70.00 90.00 90.00
30 60.00 70.00 8333 76.67
50 48.00 56.00 72.00 72.00
75 40.00 48.00 54.67 58.67
100 36.00 50.00 50.00 52.00
125 31.20 43.20 43.20 47.19
225 20.44 2844 2844 29.77
300 1733 2233 2233 2433
450 17.11 17.11 17.11 1733
500 15.60 15.60 15.60 16.20
555 15.31 15.31 15.31 15.31

Page 9 of 15

In the following test, we evaluated the performance of
the system in identifying the genes associated with each
cancer type, using two benchmarks: MalaCards and NCI’s
GDC. For this test, we enumerated the top 15 genes
ranked with each centrality measure and tested their pre-
cision. Tables 8 and 9 show the percentage values for
the three diseases against the two chosen benchmarks,
and the results are discussed below. We included the
datasets of the two benchmarks for each cancer type in the
supported files [see Additional file 1].

Discussion

Using MalaCards:

As can be seen from Table 8, degree centrality achieves
the highest precisions in most of the models (WLR and
WKLR) and cancer types. Betweenness and eigenvector
centrality are second to degree centrality in terms of per-
formance, as they achieve an average precision score of
86.86% and 82.23% respectively, where the highest pre-
cision is 100%, and the lowest is evaluated to 80%. The
precision achieved by closeness centrality is the lowest
across all models (average precision of 60%). Regard-
ing the top 15 breast-cancer-genes predicted by WKLR
model, the achieved precisions by betweenness and eigen-
vector show that all 15 predicted genes are considered
associated to breast cancer with reference to MalaCards
(Both precisions are 100%). To analyze the centrality pre-
cisions based on the classifier models, we noticed that
in overall, WLR performs slightly higher than WKLR as
the latter model tends to hold more interactions in the
cancer-related genes subnetwork (number of interactions
are reported in Table 6). Comparing the cancer types,
breast cancer results show that our model(s) predicted
most of the breast cancer genes according to MalaCards.

Using NCI's GDC:

Table 9 show the precision results for four centrality mea-
sures evaluated against NCI's GDC Data. Eigenvector cen-
trality achieves the highest precisions for all cancer types

Table 8 The precision measures of the top 15 genes by each
centrality measure and against MalaCards

Closeness Betweenness Degree Eigenvector
Prostate
WLR 533 86.7 80 66.7
WKLR 46.7 80 86.7 66.7
Breast
WLR 80 86.7 93.3 93.3
WKLR 46.7 100 100 86.7
Lung
WLR 733 80 86.7 93.3
WKLR 60 86.7 86.7 86.7

The highest precisions are italic
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Table 9 The precision measures of the top 15 genes by each
centrality measure and against GDC

Closeness Betweenness Degree Eigenvector
Prostate
WLR 80 60 66.7 80
WKLR 333 60 60 60
Breast
WLR 733 40 533 86.7
WKLR 46.7 66.7 66.7 80
Lung
WLR 20 20 333 86.7
WKLR 40 40 40 60

The highest precisions are italic

(average precision is 75.57%), with the highest value being
evaluated 86.7% and the lowest to 60% which is consider-
ably higher than most scores by other centrality measures.
Betweenness and closeness centrality perform relatively
worse with average precisions of 47.8% and 48.9%. With
GDC, WKLR achieves higher average precision than WLR
with both breast-related and lung-related genes. Out of
the three cancer types, WLR predicts correctly 80% of
prostate-related genes using both closeness and eigen-
vector centrality. With both benchmarks: MalaCards and
GDC, the proposed system predicted correctly most genes
using degree and eigenvector centrality.

Combining MalaCards and NCI's GDC:

Table 10 shows the precision results for the four central-
ity measures evaluated against both MalaCards and NCI’s
GDC Data. As can be seen from the table, the precisions
are improved extremely compared to the results in both
Tables 8 and 9. One noticeable improvement is that except
for closeness, all other centrality measures scored above
86% with all cancer types and all classification methods.
The precision scores are also seen to be almost consis-
tent for each cancer type. Lung cancer average precision
results are the most improved among the cancer types
when compared to the results by each dataset individually.

Table 10 The precision measures of the top 15 genes by each
centrality measure and against both GDC and MalaCards

Closeness Betweenness Degree Eigenvector
Prostate
WLR 933 933 933 86.7
WKLR 60 86.7 933 80
Breast
WLR 80 86.7 933 933
WKLR 533 100 100 86.7
Lung
WLR 733 80 86.7 100
WKLR 66.67 86.7 86.7 933
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Although closeness measures achieved the lowest aver-
age precision, the lowest precision is at 53.3%. Combining
the two datasets assists in giving more of an accurate
presentation of our system’s performance.

The recall of seed genes:

We also evaluated the system in terms of recall
performance measures. We report the percentage
of initial seed genes that are retrieved among the
predicted pairs from the whole human genome network
(recall “Co-occurrence network” section). This is an indi-
cation of the original coverage of the system’s predictions
or connections in the co-occurrence network. The recall
measure is computed by dividing the number of seed
genes found in the co-occurrence network over the total
number of seed genes which are 16, 18 and 23 genes
respectively for lung, prostate and breast cancers. The
recall scores are shown in Table 11. Both WLR and WKLR
perform almost equally in this test. All the breast and
lung cancer seed genes were already predicted and found
in the co-occurrence network. About 66.6% (12 out of
18) prostate seed genes were found in the co-occurrence
network using WLR classifier. By using WKLR classifier,
about 72.2% (13 out of 18) prostate seed genes were found
in the co-occurrence network.

An Example of Breast-Cancer candidate genes:

In this section, we aim at presenting breast-cancer related
genes that are uniquely predicted by our proposed sys-
tem. These genes are validated by MalaCards and NCI’s
GDC. To the best of our knowledge, our system is the first
to associate these genes with breast-cancer. We take the
relatively recent proposed system by Quan & Ren [15] as
a sample of the systems that miss to predict these genes.
Table 12 shows the 30 top-ranked breast-cancer related
lists of genes predicted by our proposed system and Quan
& Ren. As the table shows, our uniquely predicted genes
are not included in the list predicted by Quan & Ren.
83.3% of the genes predicted by our system and shown
in Table 12 are validated by MalaCards and NCI's GDC.
These genes are marked with "YES' in the table. 70 present
of our predicted genes shown in the table are seed genes
and marked with 'Seed. As Table 12 shows, there are four
common genes predicted by both, our system and Quan
& Ren. We consider the remaining genes predicted by our
system (i.e., the genes that are not validated by MalaCards

Table 11 The recall of seed genes in the whole human genome
network created by using either WLR or WKLR

Prostate seeds  Recall ~ Breastseeds Recall Lungseeds Recall
WLR 66.6 WLR 100 WLR 100
WKLR 722 WKLR 100 WKLR 100
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Table 12 To the left, the Top 30 genes predicted by our system
and their relevance to breast-cancer

Propsed system Relevant Quan & Ren [15]
BRCA2 YES+Seed TNF
ESR1 YES+Seed EGFR
CDH1 YES+Seed CRC
BRCAT1 YES PTEN
PPM1D YES+Seed IL-6
NQO2 YES+Seed AR
XRCC3 YES+Seed BRCA1
TSG101 YES+Seed EGF
CDKN2A candidate GAPDH
PALB2 YES+Seed HR
BRIP1 YES+Seed AML
PIK3CA YES+Seed CcD4
MRETTA candidate STAT3
RADS54L YES+Seed AD
ERBB2 YES MMP-9
CHEK2 YES+Seed MS
RAD51C candidate RD
AKT1 YES+Seed MYC
TP53 YES+Seed S6
RB1CC1 YES+Seed TP53
RB1 YES ATM
HMMR YES+Seed IL-8
STK11 YES AP1
BARD1 YES+Seed MMP-2
RADS51 YES GC
KRAS YES+Seed FBS
RADS50 candidate ES
ATM YES+Seed RA
BACH! Seed CXCR4
CASP8 YES+Seed BRCA2

To the right, a list of the Top 30 genes predicted by Quan & Ren

and NCI's GDC) as “candidate genes”. These genes need
to be validated by experts. We will investigate them in a
future work. Since the datasets used by our system and
Quan & Ren are different, we did not evaluate the genes
predicted by Quan & Ren against MalaCards and NCI’s
GDC. The goal here is to show that our proposed system
provides uniquely discovered genes.

Prostate cancer case study and comparison

We present in this section the Prostate Cancer Case
Study in which we will compare our system with recent
approaches. In order to conduct the comparison, we used
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the same datasets used in the other approaches and we re-
constructed the co-occurrence network. The steps 1-4 are
the pre-steps for the comparison (step 5):

1 Seed genes: We downloaded the initial list of genes

that are related to prostate cancer using the
gene/phenotype map in OMIM. We used this list to
build the co-occurrence interaction network for
prostate cancer.

Downloading PMC articles: We used PMC which
is an electronic catalog of full-text PubMed articles. It
offers free access to view and to download the articles
via an FTP service. We downloaded all the PubMed
articles that are associated with prostate cancer.
Threshold Ranking: In this experiment, we use the
threshold property in our chosen classifiers (WLR
and WKLR). As stated previously in Egs. 6 and 7, 0.5
is the default threshold for prediction in logistic
regression. A typical binary weighted logistic
regression plot with a threshold of 0.5 is illustrated in
Fig. 6. A perfect scenario would have the positive
connections plotted to the right of the y-axis, and the
negative connections plotted the left. However, this
is not always the case as some positive and negative
connections might overlap during the prediction
process. In this test, we predict the relation among
genes using different thresholds (i.e., 0.5, 0.6, 0.7 and
0.8) as seen in Fig. 6. As the threshold increases, the
prediction line is moved away from the y-axis, which
indicates stronger positive relations. We observed
the pair of genes that keep on appearing at the
different thresholds to effectively retrieve related
genes (positive relations).

Comparison with recent approaches: We
evaluated our approach with CGDA [14], EDC-EDC
[42] and MCforGN [43]. To compare to these
approaches, we used the same ground truth data they
follow (i.e., PGDB [44]). PGDB stands for Prostate
Gene DataBase. It is a curated database of prostate
related genes in general, and genes involved in
prostate diseases.

e CGDA [14]: CGDA identifies disease-gene
associations by analyzing the disease-related
network. It builds the network by extracting the
information on interacting genes from the
biomedical literature. It then employs centrality
measures to rank and identify disease-related
genes.

e EDC-EDC [42]: EDC infers disease-gene
association by extracting this information from
the biomedical text. It proposes novel linguistic
computational techniques to extract genes
interactions. It employs a hybrid
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Fig. 6 The prediction is made over several thresholds. As the threshold increases, fewer pairs are assigned to the positive class

constituency—dependency parser for developing
a biological NLP information extraction.

e MCforGN [43]: MCforGN determines related
genes based on their co-occurrence in
MEDLINE abstracts. It employs both the
standard centrality measures and Monte Carlo
simulation to identify genetic networks and
disease-gene associations.

We evaluated the performance of our system using
the common centrality measures across all
approaches (i.e., Closeness, Betweenness, Degree).
We report the precision of the top 10 ranked genes
by each centrality measure and by each approach in
Table 13. As can be seen from the table, The System
performs well, and the results are both balanced and
comparable with the other approaches. There are two
main observations that can be seen from the table:

()

The first observation is that our system
scored the best precision by closeness
centrality measure, and this is an expected
performance improvement from applying
threshold ranking. Scoring the highest in the

Table 13 A comparison for the precision of the top 10 ranked
genes by each centrality measure and by each approach

Closeness Betweenness Degree
CGDA[14] 70 90 80
EDC-EDC [42] 773 86.4 82.8
MCforGN [43] 78 83 82
Proposed system 80 80 80

closeness measure is also an indication of the
system’s ability to predict disease-related
genes and the significance of using threshold
ranking. In general, the closeness metric is the
best metric to determine the global
importance of a node in the network, whereas
the degree and betweenness metrics can better
determine the local importance of the node in
the network. For example, in a network of
criminals, each node represents a criminal.
Using the degree and betweenness centrality
would identify the immediate criminal leaders
in the network. However, using the closeness
metric would identify the main leader(s) of the
whole criminal network (In our case, identify
the main genes that are related to the disease).
The second observation is that our system
has comparable results with the other
approaches, which not only indicates good
performance, but it also shows the system can
predict disease-related genes from gene
interaction networks. Some of the genes that
were predicted by the system were not found
to be disease-related according to the
benchmarks. These genes can still be good
candidates for experimental verification
because the benchmarks that were used are
still under an ongoing effort of research. For
example, our system has predicted 80% of
prostate cancer genes correctly according to
PGDB (recall Table 13). The remaining 20%
of genes were not verified by PGDB. However,
their relation to prostate cancer can be
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verified further by another benchmark or by
working with a biologist to conduct an
experimental test. Working with a biologist is
one of the main directions that we would like
to follow to evaluate our system.

Conclusion

In this work, we presented a system for the identifica-
tion of disease-gene associations. We used the initial set of
seed genes known to be related to the disease to retrieve
their neighbor genes from the human co-occurrence net-
work generated by the system. Network analysis was then
applied to the constructed subnetworks (disease-related
networks) using a network analysis visualization tool. We
applied closeness, betweenness, degree and eigenvector
centrality measures to rank the genes in the subnetworks
and to identify new candidate genes that could be linked
directly to the diseases. In this study, we focus on studying
cancer-related genes as cancer is one of the top 10 leading
causes of death in the world. We evaluate the performance
of the system by using disease-gene related benchmarks
against the top 15 ranked genes. Degree and eigenvector
centrality achieves the highest precisions for identifying
breast, prostate, and lung cancer genes. According to one
benchmark, betweenness and eigenvector centrality pre-
dicted correctly 100% of the breast-cancer-related genes.
Our system predicted 80% of prostate-related genes using
both closeness and eigenvector centrality. We also evalu-
ated the system in terms of recall performance measures,
and we report the percentage of initial seed genes that
are retrieved among the top 15-20 ranked genes by each
centrality measure.

One of the main directions that we would like to fol-
low to evaluate our system, and show the significance
of our work is through working with a biologist. Turn-
ing to a biologist to conduct an experimental test can
help us verify the prediction genes. Some of the genes
that were predicted by the system were not found to
be disease-related according to the benchmarks we used.
These genes, however, can still be good candidates for
experimental verification because the benchmarks that
were used are still under an ongoing effort of research.

There are few directions to consider for improving the
results produced by the proposed system. The first is to
increase the accuracy for predicting the connected and
un-connected genes, as well as, the recall and precision. In
this study, we only considered the primary names of genes
(official gene symbol). Perhaps the use of gene names like
synonyms, or gene numbers (referred to as Ordered Locus
Names by UniProt [25]) could enhance the quality of per-
formance as some authors refer to genes using alias names
in the biomedical articles.

Another direction related to the information extrac-
tion component is to follow new structural linguistics
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principles and Natural Language Processing methods. For
example, our system’s linguistic model does not consider
the long distance relationship between genes or gene-
GOterms as the algorithm looks at each sentence in the
abstract at a time. In the future, we intend to investigate
more descriptive linguistic theories and different NLP
techniques to allow for a better extraction of the genes
relation.

Another aspect to consider is the extension of the steps
followed by this approach to further include the context
of the study. The cancer type of study could be added as
part of the extracted features, since improving the results
of the system in constructing the network will directly be
reflected in the identification of disease-gene associations.
Towards the same directions, the set of abstracts chosen
in this study could have affected the prediction accuracy.
Therefore, for future work, we could take into account the
full-text articles provided by reliable resources.

Additional file

Additional file 1: Document containing the list of genes for each cancer
type according to MalaCards and NClI's GDC. (XLSX 35 kb)
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