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Abstract

This review focuses on the pathways that regulate lysosome biogenesis and that are implicated in 

numerous degenerative storage diseases, including lysosomal storage disorders and late-onset 

neurodegenerative diseases. Lysosomal proteins are synthesized in the endoplasmic reticulum and 

trafficked to the endolysosomal system through the secretory route. Several receptors have been 

characterized that execute post-Golgi trafficking of lysosomal proteins. Some of them recognize 

their cargo proteins based on specific amino acid signatures, others based on a particular glycan 

modification that is exclusively found on lysosomal proteins. Nearly all receptors serving 

lysosome biogenesis are under the transcriptional control of transcription factor EB (TFEB), a 

master regulator of the lysosomal system. TFEB coordinates the expression of lysosomal 

hydrolases, lysosomal membrane proteins, and autophagy proteins in response to pathways 

sensing lysosomal stress and the nutritional conditions of the cell among other stimuli. TFEB is 

primed for activation in lysosomal storage disorders but surprisingly its function is impaired in 

some late-onset neurodegenerative storage diseases like Alzheimer’s and Parkinson’s, due to 

specific detrimental interactions that limit TFEB expression or activation. Thus, disrupted TFEB 

function presumably plays a role in the pathogenesis of these diseases. Multiple studies in animal 

models of degenerative storage diseases have shown that exogenous expression of TFEB and 

pharmacological activation of endogenous TFEB attenuate disease phenotypes. These results 

highlight TFEB-mediated enhancement of lysosomal biogenesis and function as a candidate 

strategy to counteract the progression of these diseases.

Graphical abstract

This review discusses how the transcription factor EB (TFEB) is implicated in lysosomal 

biogenesis and degenerative storage diseases. TFEB coordinates the expression of proteins 

participating in the autophagy-lysosome pathway, including lysosomal enzymes and their 

transporters. TFEB is primed for activation in lysosomal storage disorders due to lysosomal stress, 

but TFEB function is impaired in some late-onset neurodegenerative storage diseases due to 

specific detrimental interactions that limit TFEB expression or activation. Increased expression or 

activation of TFEB results in the enhancement of the autophagy-lysosome pathway and 
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ameliorates disease phenotypes in models of lysosomal storage disorders and other degenerative 

storage diseases.
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Introduction

Antonie Van Leeuwenhoek’s description of plant vacuoles as empty sacs filling up to 90% 

of the plant cell dates back to 1676, preceding by ~300 years Christian De Duve’s discovery 

of lysosomes as lytic and degradative organelles (De Duve et al., 1955). It is now 

appreciated that the lysosome hosts more than 60 soluble lysosomal hydrolases and 

accessory proteins and over 120 lysosomal membrane proteins and transitory residents 

(Braulke and Bonifacino, 2009). The characterization of the function of these proteins has 

caused a paradigm shift in study and description of the lysosome, which is now understood 

as a key cellular metabolic hub with multiple roles in processes as different as nutrient 

sensing, gene regulation, secretion, plasma membrane repair, metal ion homeostasis, 

cholesterol transport, and immune response. Interestingly, as many of these processes are 

similar in different phyla, it is not surprising that many of their underlying factors have been 

conserved over the course of evolution. Mutations in genes encoding lysosomal enzymes or 

proteins participating in their maturation and trafficking can lead to lysosomal storage 

disorders, of which more than 50 genetically distinct types have been classified to date. 

While individually rare, lysosomal storage disorders as a group have a relatively high 

incidence in the general population—more than 1:5000 live births is affected by one of the 

lysosomal storage disorders (Boustany, 2013). The clinical manifestations of lysosomal 

storage disorders vary widely, even though neurological symptoms and progressive 

neurodegeneration are common features. At the subcellular level, lysosomal storage 

disorders are characterized by the aberrant intralysosomal storage of metabolites that cannot 

be properly eliminated due to defects in one or multiple catabolic pathways (Walkley, 2009). 

In this Review, we will focus on lysosomal biogenesis from the point of view of the 

regulatory pathways and signals that contribute to the synthesis and trafficking of lysosomal 

proteins. As illustrated by numerous examples, the characterization of these pathways is 
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providing powerful instruments to better understand—and potentially counteract—various 

human diseases that are rooted in, or worsened by, impaired lysosomal biogenesis or 

function.

Transcriptional control of lysosomal pathways

Under microscopic examination, lysosomal storage has the appearance of an expansion of 

the lysosomal compartment. This expansion could be interpreted not only as the 

consequence of the impaired capacity of the cell to eliminate its catabolic substrates but also 

as the result of an increased lysosomal biogenesis. Early findings indicated an increased 

activity of several lysosomal enzymes in multiple lysosomal storage disorders; these 

findings supported the notion that the cell could increase lysosomal biogenesis as a 

compensatory mechanism to counteract lysosomal stress (Karageorgos et al., 1997). 

Additional observations indicated that lysosomal storage stress and the subsequent 

lysosomal biogenesis could be recapitulated experimentally by providing sucrose to cultured 

cells. In some cultured cell lines, sucrose is indeed internalized into the lysosomes but 

cannot be eliminated due to the absence of the invertase enzyme. The progressive 

intralysosomal accumulation of sucrose results in the formation of enlarged lysosomes 

(“sucrosomes”) that offer an experimental model of lysosomal storage (Cohn and 

Ehrenreich, 1969; Karageorgos et al., 1997).

The hypothesis that the activity of the lysosomal system is coordinated as an adaptive 

response to the cell’s needs was demonstrated by the identification of transcription factor EB 

(TFEB) as a master transcriptional regulator of lysosomal biogenesis and function (Sardiello 

et al., 2009). Many genes contributing to the functioning of the lysosomal system have, in 

their promoter regions, one or multiple binding sites for TFEB (named as ‘coordinated 

lysosomal expression and regulation’ or CLEAR motif); genes with CLEAR sequences in 

their promoters are induced by TFEB activation or increased expression (Sardiello et al., 

2009). The sucrosome experimental model led to the identification of TFEB cytosol-to-

nucleus translocation as the mode of activation of TFEB. It was indeed noticed that TFEB is 

localized in the cytosol in the majority of cells cultured in normal conditions; however, 

supplementation of sucrose neatly promoted nuclear translocation of TFEB, consequently 

increasing both the binding of TFEB to the promoters of genes of the lysosomal system and 

the expression levels of these genes. Similarly, cells from models of lysosomal storage 

disorders have increased TFEB nuclear translocation (Sardiello et al., 2009).

These observations triggered a series of studies that documented a number of kinases and 

phosphatases able to modulate TFEB subcellular distribution by direct modification of 

several TFEB amino acid residues. Among them, the atypical serine/threonine kinase 

mechanistic target of rapamycin complex 1 (mTORC1) phosphorylates TFEB on Ser211, 

which triggers TFEB cytosolic sequestration by 14–3-3 proteins (Martina et al., 2012; 

Roczniak-Ferguson et al., 2012); mTORC1 also phosphorylates TFEB on Ser142 (Settembre 

et al., 2012) and Ser122 (Vega-Rubin-de-Celis et al., 2017); the serine/threonine kinase 

mitogen-activated protein kinase 1 (MAPK1 or ERK) phosphorylates TFEB on Ser142 

(Settembre et al., 2011); the serine/threonine kinase protein kinase B (PKB or Akt) 

phosphorylates TFEB on Ser467 (Palmieri et al., 2017a; Palmieri et al., 2017b); the serine/
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threonine kinase glycogen synthase kinase 3β (GSK3β) phosphorylates TFEB on Ser134 

and Ser138 (Li et al., 2016); and the serine/threonine kinase mitogen-activated protein 

kinase kinase kinase kinase 3 (MAP4K3) phosphorylates TFEB on Ser3 (Hsu et al., 2018) 

(Figure 1). These phosphorylation events all limit TFEB nuclear translocation and indeed, 

chemical inhibition of any of these kinases promotes TFEB activation. In response to various 

cellular stimuli, TFEB is dephosphorylated and activated by the phosphatases calcineurin 

(Medina et al., 2015) and protein phosphatase 2 (PP2A) (Chen et al., 2017). These 

regulatory sites are part of evolutionarily constrained regions in the protein sequence of 

TFEB (Chang et al., 2018).

Active TFEB promotes the transcription of genes of the autophagy-lysosome pathway and 

globally regulates phenomena such as lysosomal biogenesis (Sardiello et al., 2009), 

autophagy (Settembre et al., 2011), lysosomal proteostasis (Song et al., 2013), lysosomal 

positioning (Willett et al., 2017) and lysosomal exocytosis (Medina et al., 2011). More 

recently, cross-talks with pathways underlying ER stress (Martina et al., 2016), 

mitochondrial biogenesis (Mansueto et al., 2017), and peroxisomal biogenesis (Eun et al., 

2018) have been described. The TFEB homologs TFE3 and MITF, which belong to the same 

subfamily of MiT/TFE transcription factors, also contribute to the transcriptional regulation 

of the autophagy-lysosome pathway (Martina et al., 2014) and are similarly regulated by 

mTORC1 (Martina and Puertollano, 2013; Roczniak-Ferguson et al., 2012) and Akt 

(Palmieri et al., 2017a). As detailed in the following paragraphs, TFEB coordinates the 

expression of various lysosomal proteins with that of their transporters, and is part of the 

pathogenic cascade in several neurodegenerative storage diseases.

Lysosomal sorting signals and sorting receptors

Soluble and membrane-bound vacuolar/lysosomal proteins have sorting signals that are 

recognized by sorting receptors. These receptors also contain signals, which allow them to 

be recognized by the trafficking machinery (clathrins and adaptor proteins) for their proper 

delivery to the endolysosomal system through various trafficking routes.

The sorting signals of soluble proteins can be either folded polypeptide sequences displayed 

on the protein surface or specific glycan modifications as detailed below. In plants, a 

sequence-specific vacuolar sorting signal (ssVSS) present at the protein N-terminus consists 

of the conserved sequence Asn-Pro-Ile-Arg (NPIR motif) (Holwerda et al., 1992; Koide et 

al., 1997; Matsuoka et al., 1990; Matsuoka et al., 1995). In the yeast Saccharomyces 
cerevisiae, an N-terminal QXXΦ motif (where X is any amino acid and Φ is a bulky 

hydrophobic residue) is recognized by vacuolar protein sorting 10 protein (Vps10p), a type I 

membrane-spanning sorting receptor (Valls et al., 1990). However, alternative signals might 

be present in the yeast as not all vacuolar proteins contain the QXXΦ motif (Westphal et al., 

1996).

Compared to lower phyla/kingdoms, vertebrates have fewer well-characterized examples of 

sorting receptors with specificity to determined peptide sequences. Sortilin and LIMP-2 are 

sorting receptors for lysosomal soluble proteins that are both known to interact with their 

soluble cargo using short stretches of amino acids, though a consensus motif is yet to be 
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discovered. As discussed below, other sorting receptors present in vertebrates interact with 

their cargo proteins through specific glycan modifications. Regardless of their mode of 

action, most mammalian receptors share similar structural features, including a single 

transmembrane domain, a large luminal domain for interaction with their cargo, and a C-

terminus containing signals necessary for their own trafficking.

Sortilin.

A quintessential example of sorting receptors is sortilin (SORT1). Sortilin belongs to the 

Vps10p domain receptor family, which in mammals includes other four members (SorCS1, 

SorCS2, SorCS3 and SorLA) (Hermey et al., 1999; Jacobsen et al., 1996; Rezgaoui et al., 

2001). About 90% of the total pool of sortilin receptors is found at the Golgi system and 

Golgi-derived vesicles, whereas only a minor fraction is expressed at the cell surface, 

suggesting Golgi-endosome sorting. Sortilin and some of its homologs contain the classic 

tyrosine- and dileucine-based consensus motifs at their C-terminus, which guide intracellular 

sorting and internalization via interactions with cytosolic adaptors such as AP-1 and GGA2 

(discussed below). Sortilin has been shown to be involved in the lysosomal sorting of GM2 

ganglioside activator, prosaposin (the precursor of sphingolipid activator proteins) (Hassan 

et al., 2004; Lefrancois et al., 2003; Zeng et al., 2009), acid sphingomyelinase (Ni and 

Morales, 2006), and cathepsins D and H (Canuel et al., 2008), demonstrating its involvement 

in lysosomal biogenesis pathways. In experimental sucrosome models, expression of SORT1 
was upregulated along with that of the genes coding for several sortilin cargo proteins; direct 

overexpression of TFEB also increased the expression of SORT1 and related cargo proteins 

(Sardiello et al., 2009; Song et al., 2013).

Unexpectedly, sortilin-deficient mice do not show any obvious clinical signs of lysosomal 

pathology, suggesting compensation by alternative mechanisms of sorting (Zeng et al., 

2009). This could be explained by redundancies between sortilin and other receptors of the 

same protein family, of which SorLA is one of the most important contenders for a role in 

lysosomal cargo transportation. While no human disease has been associated with loss-of-

function mutations in sortilin protein, a non-coding single-nucleotide polymorphism in an 

enhancer controlling SORT1 expression has been causally associated with plasma low-

density lipoprotein cholesterol and myocardial infarction (OMIM: 613589) (Musunuru et al., 

2010). Molecular studies have found that this polymorphism creates a C/EBP (CCAAT/

enhancer binding protein) transcription factor binding site that increases SORT1 expression 

in the liver, finally resulting in impaired homeostasis of total plasma cholesterol and low-

density lipoprotein cholesterol (Musunuru et al., 2010). These data illustrate a possible 

function of sortilin in the control of hepatic lipoprotein metabolism that goes beyond its role 

as a sorting receptor for lysosomal proteins (Carlo et al., 2014).

Interestingly, Vps10p sorting receptors are substrates for presenilin-dependent γ-secretase 

cleavage (Nyborg et al., 2006). As both SorLA and presenilin have been implicated in the 

pathogenesis of Alzheimer’s disease (Andersen et al., 2005; Wolfe et al., 1999), these 

findings indicate the existence of connections between Alzheimer’s disease pathogenesis 

and lysosomal biogenesis, a theme that will be explored further in this Review.
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LIMP-2.

Lysosomal integral membrane protein 2 (LIMP-2) is another mammalian lysosomal enzyme 

sorting receptor that interacts with its cargo based on proteinaceous signals (Blanz et al., 

2015). LIMP-2 serves as a receptor for the transport of β-glucocerebrosidase (GCase) from 

the endoplasmic reticulum throughout endolysosomal compartments (Reczek et al., 2007). 

Loss-of-function mutations in the GCase gene, glucosylceramidase beta (GBA), cause 

Gaucher disease (GD), the most prevalent lysosomal storage disorder. The binding between 

LIMP-2 and GCase depends on the helical arrangement and the amphipathic nature of 

critical residues (152 to 167) in the coiled-coil domain of LIMP-2 (Blanz et al., 2010). The 

binding between LIMP-2 and GCase also depends on pH, with a single histidine residue of 

LIMP-2 (His171) functioning as a pH sensor (Zachos et al., 2012). The neutral environment 

of the ER lumen allows association of GCase with LIMP-2, whereas the acidic pH in 

endolysosomes triggers their dissociation (Reczek et al., 2007). Similar to sortilin, LIMP-2 

is targeted to endolysosomes using a dileucine motif contained in its C-terminal region 

(Sandoval et al., 1994). The levels of both LIMP-2 and GCase are regulated by TFEB 

(Sardiello et al., 2009; Song et al., 2013). Recent structural studies have shown that LIMP-2 

is also modified by the post-translational addition of mannose 6-phosphate (M6P) (Zhao et 

al., 2014). By virtue of this modification, LIMP-2 interacts with mannose-6-phosphate 

receptors (M6PR, discussed below), suggesting the presence of a ternary complex between 

LIMP-2, GCase, and M6PR (Zhao et al., 2014).

Deficiency of LIMP-2 in mice leads to a severe reduction of GCase activity in various 

tissues, with the majority of the enzyme being secreted to the extracellular compartment 

(Reczek et al., 2007). Providing exogenous LIMP-2 to LIMP-2-deficient fibroblasts 

reconstituted both GCase activity and trafficking (Reczek et al., 2007). Mutations in 

SCARB2 (the gene that encodes LIMP-2) cause a rare form of progressive myoclonus 

epilepsy (PME) often associated with action myoclonus-renal failure syndrome (AMRF; 

OMIM: 254900). PME and AMRF are part of the phenotypic spectrum displayed by GD 

patients (Berkovic et al., 2008; Dibbens et al., 2011; Hopfner et al., 2011; Velayati et al., 

2011). Similar to most pathogenic mutations affecting lysosomal proteins, there is not a 

clear genotype-phenotype correlation between mutations in SCARB2 and the associated 

clinical manifestations. In particular, it is not clear why some patients develop PME or renal 

failure, whereas others show mild hearing impairment or neuropathy. LIMP-2-deficient mice 

show signs of ureteropelvic junction obstruction, deafness, and peripheral neuropathy, and 

cell lines derived from these mice have clear signs of GCase missorting and secretion (Gamp 

et al., 2003). The functional relationship between LIMP-2 and GCase is further underlined 

by the finding that SCARB2 can act as a modifier of Gaucher disease (Velayati et al., 2011). 

In an examined family, two siblings were diagnosed with GD, with the additional diagnosis 

of myoclonic epilepsy only for one of the two. Sequencing of SCARB2 genomic and cDNA 

sequences identified a heterozygous, maternally inherited novel mutation in the sibling with 

GD and epilepsy that was responsible for diminished GCase lysosomal transport and activity 

(Velayati et al., 2011). This suggests the potential usefulness of investigating the effects of 

modifiers such as protein transporters or activators in cases in which there is discordance 

between genotype and phenotype.
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Additional consequences of reduced GCase activity in LIMP-2 deficient mice are lipid 

storage and disturbed autophagic-lysosomal function (Rothaug et al., 2014). This results in 

α-synuclein accumulation, which in turn causes neurotoxicity in dopaminergic neurons. 

Reintroducing LIMP-2 by heterologous overexpression accelerated clearance of α-

synuclein, indicating modulation of GCase activity as a potential strategy for treating 

synucleopathies (Rothaug et al., 2014).

Transport mediated by the mannose-6-phosphate receptors

The trafficking of many lysosomal soluble proteins requires the intervention of a set of 

highly specialized protein activities along the trafficking route, including specific post-

translational modifications, recognition of unique tags, and cargo packaging and delivery. 

Once synthesized and N-glycosylated in the endoplasmic reticulum, lysosomal soluble 

proteins are transported to the Golgi complex where most of them are modified to expose 

M6P residues. The M6P-tagged proteins are consequently recognized by the M6PR and 

delivered from the trans-Golgi network to the endolysosomal system. The importance of 

these processes for the correct biogenesis and function of lysosomes is underlined by the 

existence of various human diseases caused by mutations in the genes that are involved in 

these trafficking steps.

M6P modification.

The series of posttranslational modifications that ensure the correct sorting of most 

lysosomal soluble proteins to the lysosome begin at early stages of their synthesis. Native 

lysosomal proteins are co-translationally glycosylated by the oligosaccharyltransferase 

(OST) onto selected asparagine residues belonging to the consensus sequence Asn-X-

Ser/Thr (Kornfeld and Kornfeld, 1985). These N-linked oligosaccharides are further 

modified at the Golgi compartment by the addition of carbohydrate groups of higher 

complexity. The modification of high-mannose type oligosaccharides to M6P is catalyzed by 

the cooperative function of two enzymes: the UDP-N-acetylglucosamine 1-

phosphotransferase (GlcNAc-1-phosphotransferase) and the N-acetylglucosamine-1-

phosphodiester α-N-acetylglucosaminidase, also known as the uncovering enzyme (UCE) 

(Do et al., 2002). This last modification is essential for the sorting of lysosomal soluble 

proteins from the Golgi compartment to the endolysosomal system.

The GlcNAc-1-phosphotransferase catalyzes the addition of GlcNAc-P-mannose diester 

onto the high-mannose type oligosaccharides. It is a transmembrane protein composed of 

three subunits (α, β, γ) which appear twice, forming the hexamer α2β2γ2. The γ subunit is 

encoded by the GNPTG gene, whereas the α and β subunits are encoded as a single 

precursor by the GNPTAB gene. The release of the individual α and β subunits requires 

proteolytic processing between Lys928 and Asp929 by the site-1 protease (Marschner et al., 

2011). The α subunit carries both the catalytic and the protein binding domains, but alone it 

is unable to reconstitute the GlcNAc-1-phosphotransferase activity. In fact, the β and γ 
subunits are required as they appear to be important for the structural maintenance of this 

multimeric complex (Kudo and Canfield, 2006) and for the regulation of its catalytic activity 

(Qian et al., 2010), respectively.
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The recognition of the high mannose lysosomal proteins by the GlcNAc-1-

phosphotransferase requires a tridimensional determinant composed of amino acid residues 

that are far from each other in the folded protein. Studies involving chimeric products of the 

lysosomal protease cathepsin D and its non-lysosomal homolog pepsinogen, together with 

mutational studies of cathepsin L, identified a group of lysine residues organized in a precise 

tridimensional configuration as a crucial determinant for the selective recognition of these 

proteins as destined to the lysosome (Baranski et al., 1990; Cuozzo and Sahagian, 1994).

The UCE catalyzes the uncovering of the M6P signal by removing the GlcNAc from the 

GlcNAc-P-mannose diester. The UCE is a tetrameric transmembrane protein, coded as a 

precursor by the NAGPA gene. To be active, the UCE precursor needs the removal of a 

propeptide of 24 amino acids catalyzed by furin in the trans-Golgi network (Do et al., 2002).

M6P receptors.

Once tagged with M6P residues, lysosomal soluble proteins are diverted from the secretory 

pathway and rerouted to the lysosomes by the action of the M6PRs, which bind the cargo at 

pH 6.7 in the trans-Golgi network and release it in the endosomes at pH 6. There are two 

types of M6PRs: cation-dependent (CD-MPR, encoded by the M6PR gene) and cation-

independent (CI-MPR, encoded by the IGF2R gene). The CI-MPR is also known as 

MPR300 due to its molecular weight of 300 kDa, or insulin-like growth factor II receptor 

(IGFIIR), due to its ability to bind and transport the IGF-II hormone. The extracytoplasmic 

domain of the CI-MPR is composed of 15 repeated homology segments of about 147 amino 

acids each. Studies have shown that this domain contains two binding sites for the M6P, one 

in domain 3 and one in domain 9. Mutagenesis of Arg435 in domain 3 and Arg1334 in 

domain 9 reduced dramatically the ligand binding activity, confirming the ability of these 

two domains to bind the M6P. The CI-MPR also contains a binding site for the IGF-II 

(Westlund et al., 1991) and a different one for a Man6P-GlcNAc phosphodiester (Marron-

Terada et al., 2000). The CD-MPR is also known as MPR46 due to its molecular weight of 

46 kDa. The extracytoplasmic side of CD-MPR contains one single domain which is 

homologous to the 15 repetitive domains presents in the CI-MPR (Tong and Kornfeld, 

1989). The CD-MPR works either as a homodimer or as a tetramer, and since each monomer 

contains only one binding site for the M6P, the CD-MPR protein complex is able to bind two 

or more M6P tags at the same time (Dahms and Kornfeld, 1989).

Although the two M6PRs are related and share similar domains, studies in fibroblasts 

deficient for CI-MPR, CD-MPR, or both, revealed a different affinity for different M6P-

tagged substrates, indicating that the function of the two receptors is mostly complementary 

and only partially redundant (Munier-Lehmann et al., 1996a; Munier-Lehmann et al., 

1996b). In vivo disruption of CD-MPR or CI-MPR caused a moderately impaired trafficking 

of lysosomal hydrolases to the lysosomes, although mutant mice lacking the CI-MPR die 

prenatally due to the accumulation of IGF-II (Sohar et al., 1998).

The anterograde transport of the M6PRs is mediated by the Golgi-localized, gamma-ear-

containing, ARF-binding proteins (GGAs). The GGAa recognize acidic-cluster-dileucine 

signals that are present at the cytosolic C-terminus of the M6PRs, and dominant-negative 

mutations of the GGAs retain both CI-MRP and CD-MPR proteins in the trans-Golgi 

Bajaj et al. Page 8

J Neurochem. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



network (Puertollano et al., 2001). Therefore, GGA function is crucial for the correct sorting 

of lysosomal soluble proteins. Once these proteins are released in the lysosomes, the M6PRs 

are recycled back to the trans-Golgi network by the combined action of the retromer and the 

Rab9/TIP47 protein complex (Seaman et al., 1998). The cytoplasmic tail of CD-M6PR 

contains a Phe in position 18 and a Trp in position 19 that interact with TIP47 and are 

required for the correct retrieval of the CD-M6PR (Schweizer et al., 1997). Retrieval of CI-

M6PR to the trans-Golgi network is mediated by the interaction of the retromer, in concert 

with the clathrin adaptor AP-1, with the Trp/Phe-Leu-Met/Val tri-peptide motif that is 

present in the cytoplasmic tail of the receptor (Seaman, 2007).

Importantly, not all the lysosomal proteins that are correctly tagged with M6P are delivered 

to the lysosome. Some escape the binding with the M6PRs and are exocytosed in the 

extracellular compartment. Since the CI-MPR is localized not only at the trans-Golgi 

network and endosomes but also at the plasma membrane, the escaped proteins can be 

retrieved by CI-MPR and rerouted back to the endosomal system and, hence, to the 

lysosomal compartment. This mechanism represents the foundation of the concept of 

enzyme replacement therapy (ERT). Missing lysosomal enzymes can be provided 

exogenously, upon modification with M6P tags before administration so to be rescued from 

the extracellular compartment via CI-MPR interaction. ERT is being used successfully for 

the treatment of some lysosomal storage disorders, including Fabry disease, Pompe disease 

and CLN2 disease (Schiffmann et al., 2000; Schulz et al., 2018; Thurberg et al., 2006).

From a cell biology perspective, it is interesting that both M6PRs, as well as the GlcNAc-1-

phosphotransferase and the uncovering enzyme, are encoded by genes that are part of the 

CLEAR network. Like SORT1 and SCARB2, the M6PR, IGF2R, NAGPA and GNPTG 
genes indeed contain single or multiple binding sites for TFEB and are responsive to TFEB 

activation or overexpression (Palmieri et al., 2011; Sardiello et al., 2009; Song et al., 2013). 

This suggests that the expression of lysosomal proteins needs to be coordinated with that of 

their modifying proteins and sorting receptors in order to allow efficient biogenesis of 

lysosomes and, presumably, appropriate responses to external and internal stimuli (Figure 2).

M6P and human disease.

Mutations in any of the components involved in M6P-based trafficking of lysosomal 

enzymes may result in devastating disorders. Mucolipidosis II (ML II) and Mucolipidosis III 

(ML III) are caused by mutations in the genes encoding the GlcNAc-1-phosphotransferase: 

ML II α/β (OMIM: 252500) are caused by mutations in the GNPTAB gene, whereas ML III 

α/β (OMIM: 252600) are caused by mutations in the GNPTG gene. ML II, also known as I-

cell disease, is characterized by a complete loss of the GlcNAc-1-phosphotransferase 

activity and the presence of large intracellular inclusion bodies. Clinically, the skeletal 

system is severely affected, the development is delayed, and death occurs prematurely, 

usually within the first decade of life. ML III is much milder and characterized by a typical 

Hurler-like dysmorphism, with slower progression, short stature, impaired mobility of the 

joints and mental retardation in half of the affected patients. Death occurs late in life, with 

some patients living until the eighth decade (Kollmann et al., 2010). Conversely, loss of 

UCE enzyme activity is well tolerated and to date there are no reported pathologies that are 
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associated with mutations in the NAGPA gene. This is probably due to the ability of the CI-

MPR to bind and transport the Man6P-GlcNAc phosphodiesters, although with lower 

efficiency (Chavez et al., 2007).

Importantly, ML II presents with a severely impaired—but not completely abolished—

trafficking of lysosomal enzymes to the lysosome. Since the GlcNAc-1-phosphotransferase 

activity is completely absent, one would expect to observe nearly complete loss of enzymes 

in the lysosomes. Instead, studies involving ML II patient-derived cell lines have shown that 

many lysosomal enzymes are able to reach the lysosomes despite the lack of M6P tags, 

suggesting that alternative routes such as those based on sortilin and LIMP-2 could at least 

partially take over in the sorting of the enzymes (Staudt et al., 2016; Tsuji et al., 1988).

Sorting of membrane proteins to the endolysosomal system

The mammalian lysosome contains several dozens of lysosomal membrane proteins (LMPs), 

and many others likely remain to be identified (Lubke et al., 2009). LMPs are involved in 

diverse functions, ranging from the acidification of the lysosomal lumen to the regulation of 

membrane fusion and fission events, import of sorting machineries, and recycling of 

lysosomal degradation products. LMPs and transmembrane transporters that are involved in 

the sorting of soluble lysosomal proteins are mostly known to utilize tyrosine-based (NPXY 

or YXXΦ) or dileucine-based ([DE]XXXL[LI] or DXXLL) signals for their targeting to 

endolysosomes through clathrin-coated vesicles—APs (adaptor proteins) or GGAs (Golgi-

localising, Gamma-adaptin ear domain homology, ARF-binding proteins) (Hermey et al., 

2003; Hunziker and Fumey, 1994; Johnson and Kornfeld, 1992; Nielsen et al., 2007; Nielsen 

et al., 2008; Nielsen et al., 2001). Examples of ‘conventional’ tyrosine- and dileucine-based 

signal motifs that drive protein sorting in endosome-derived organelles are found in the 

cytosolic termini of LAMP1 (Guarnieri et al., 1993), tyrosinase (Simmen et al., 1999) and 

endolyn (Ihrke et al., 2000) among others (Bonifacino and Traub, 2003). However, 

alternatives to conventional signal motifs and trafficking carriers are now emerging which 

have likely evolved because of the different topologies of LMPs. For example, the polytopic 

LAPTM5 (lysosomal-associated transmembrane protein 5) contains three modified tyrosine 

motifs (L/PPxY) within its C-terminus that promote protein recruitment and transport to 

lysosomes (Pak et al., 2006). Similarly, the LAPTM5 protein homolog LAPTM4α 
(lysosomal-associated transmembrane protein 4 alpha) necessitates of two tandem tyrosine-

based motifs in its C-terminus for efficient localization to lysosomes (Hogue et al., 2002).

A different example is TMEM106B, a protein associated with frontotemporal lobar 

degeneration (Lang et al., 2012) which contains an extended dileucine-based signal 

(EXXXXXLI) for lysosomal sorting (Busch et al., 2016). Similarly, the Batten disease 

protein CLN3 has an EEEX(8)LI signal in its second cytosolic loop that is necessary for 

efficient lysosomal targeting (Kyttala et al., 2004; Storch et al., 2004).

Very different from the tyrosine- or dileucine-based signals is the case of MLN64 

(metastatic lymph node 64), an integral endolysosomal membrane protein involved in 

cholesterol transport (Alpy et al., 2001; Zhang et al., 2002) whose sorting depends on a 

KSASNP motif. This motif is present in the C-terminal START domain of the protein and 
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mediates binding with 14–3-3 proteins. Alanine substitution of key amino acids in this motif 

results in delayed transport of MLN64 to endosomes (Liapis et al., 2012).

Sorting motifs in LMPs do not only come in different flavors of amino acid stretches but 

may also be based on specific post-translational modifications. For example, prenylation of a 

C-terminal CAAX box is known to be an additional guide for endolysosomal transport of 

CLN3 protein (Storch et al., 2007). Similarly, palmitoylation of the C-terminal tail of 

mucolipin (MCOLN1/TRPML1) promotes its internalization from the plasma membrane 

(Vergarajauregui and Puertollano, 2006).

Intriguingly, instead of evolving sorting motifs, several LMPs have leveraged their 

interactions with other LMPs as a piggyback mechanism of trafficking to the endolysosomal 

compartment. For example, ABCD4, a member of ATP-binding cassette transporter family, 

associates with LMBD1 (LMBR1 domain containing protein 1). LMBD1 is internalized in 

clathrin-coated vesicles by using a conventional tyrosine-based signal in its C-terminus, 

carrying ABCD4 in the process (Kawaguchi et al., 2016; Tseng et al., 2013). Similarly, 

synaptotagmin VII associates with the lysosomal tetraspanin CD63/LAMP3 upon 

palmitoylation of cysteine residues in its luminal domain. Synaptotagmin exploits this 

interaction to reach the lysosomal compartment together with CD63, which is sorted to 

lysosomes using tyrosine-based sorting motifs in its C-terminus (Flannery et al., 2010).

Lysosome-associated membrane protein 1 and 2 (LAMP1 and LAMP2) are some of the 

most abundant and vastly studied LMPs. Their packaging in clathrin-coated vesicles using 

tyrosine-based signals has long been known; however, studies based on LAMP1 and 

LAMP2 sorting and packaging in certain cell types devoid of clathrin vesicles have revealed 

unconventional clathrin-independent routes of trafficking (Karlsson and Carlsson, 1998). 

Using immunoelectron microscopy, LAMP1 was found to be present in carriers devoid of 

APs but rather containing the SNARE (soluble N-ethylmaleimide-sensitive factor attachment 

protein receptor) protein VAMP7 (vesicle associated membrane protein 7) and an accessory 

protein of the homotypic fusion and protein sorting (HOPS) complex, hVps41 (Pols et al., 

2013). An additional study reported that CD63/LAMP3 is internalized via caveolae-

mediated endocytosis independent of clathrin-coated vesicles (Pols and Klumperman, 2009). 

These examples indicate that the contribution of unconventional trafficking routes for 

lysosomal protein sorting may play a more general role than initially anticipated.

Although several genes encoding LMPs are well-characterized members of the CLEAR 

network and TFEB targets (Palmieri et al., 2011; Sardiello et al., 2009), the relationship 

between TFEB function and the machineries governing the transport of lysosomal 

membrane proteins remains unexplored.

Impaired TFEB signaling in neurodegenerative disease

In recent years, the lysosome has gained the spotlight in the study of the pathogenesis of 

late-onset neurodegenerative diseases (Sharma et al., 2018). Multiple studies have indeed 

identified very definite molecular events that lead to impairment of lysosome-dependent 

processes as an important component of neuronal stress in these diseases. Interestingly, 
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many of these processes converge to impaired lysosome biogenesis and function via 

interference with TFEB levels or activity (Sardiello, 2016). Chief among the lysosomal 

functions that are impaired in neurodegenerative diseases is macroautophagy (henceforth 

referred to as ‘autophagy’). The lysosome is indeed the terminal degradative organelle for 

the breakdown of material that is fed to lysosomes through the autophagic complex—

macromolecules, protein aggregates, damaged cellular components and exhausted 

organelles. Autophagy encompasses material sequestration by double-membrane structures 

(the ‘phagophore’) and multiple vesicle fusion events that culminate in lysosomal 

degradation of autophagic cargo. Defects in the assembly, fusion, or degradation of these 

structures are consistently observed not only in lysosomal storage disorders but also in the 

most widespread late-onset neurodegenerative diseases (Seranova et al., 2017; Sharma et al., 

2018). Among the proposed mechanisms that lead to lysosomal-autophagic failure in 

neurodegenerative diseases, TFEB deregulation has gained increasing recognition owing to 

the accurate dissection of multiple molecular events that can interfere with normal TFEB 

function. The best-defined examples pertain to the identification of possible pathogenic 

mechanisms in Parkinson’s disease, Alzheimer’s disease, and spinobulbar muscular atrophy 

(Figure 3), as detailed below.

Parkinson’s disease is characterized by selective loss of dopaminergic neurons in the 

substantia nigra which is preceded by an aberrant accumulation of α-synuclein in Lewy 

bodies (Dauer and Przedborski, 2003). In addition to various environmental causes 

(Greenamyre and Hastings, 2004; Pal et al., 2014), several genes of the lysosomal system 

have been characterized as risk factors for Parkinson’s disease, including GBA (Goker-

Alpan et al., 2004; Tayebi et al., 2003), SMPD1 (Foo et al., 2013; Gan-Or et al., 2013), and 

others (Chang et al., 2017; Do et al., 2011; Robak et al., 2017; Shachar et al., 2011). These 

findings have introduced the concept that lysosomal storage disorders and Parkinson’s 

disease may share a common genetic mechanism, an idea corroborated by the observations 

that the lysosome is implicated in the clearance of α-synuclein aggregates (Cuervo et al., 

2004) and that excessive α-synuclein disrupts neuronal lysosomal function (Mazzulli et al., 

2011). In addition, lysosomal depletion has been described as a prominent cellular 

phenotype in Parkinson’s disease (Dehay et al., 2010). A straightforward link between α-

synuclein accumulation and impairment of lysosomal function has been provided with the 

finding that α-synuclein behaves as a TFEB-sequestering molecule; thus, α-synuclein 

impedes TFEB nuclear translocation, thereby inhibiting lysosomal biogenesis (Decressac et 

al., 2013). The analysis of postmortem tissues from patients with Parkinson’s disease 

revealed depletion of nuclear TFEB and its accumulation with α-synuclein in Lewy bodies 

in dopaminergic neurons of the substantia nigra (Decressac et al., 2013). Iron accumulation 

could be an additional component of this pathogenic loop. Iron indeed accumulates in 

various neurodegenerative disorders and particularly in synucleinopathies (Snyder and 

Connor, 2009), where it contributes to α-synuclein aggregation and transmission by 

interfering with TFEB function via activation of the Akt/mTORC1 axis (Xiao et al., 2018).

Alzheimer’s disease is characterized by progressive hippocampal (and overall brain) 

atrophy. At the cellular level, accumulation of β-amyloid and hyperphosphorylated tau 

parallels the progressive disruption of the autophagy-lysosomal pathway (Nixon et al., 

2005). Interestingly, studies have shown that the hippocampus of Alzheimer’s disease 
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patients express higher levels of microRNA-128 (miR-128) (Lukiw, 2007), a microRNA that 

targets TFEB mRNA and thus lowers expression of TFEB and lysosomal genes (Sardiello et 

al., 2009). In blood cells from Alzheimer’s disease patients, increased expression of 

miR-128 correlated with decreased activities of lysosomal enzymes and a decreased ability 

of the cells to degrade β-amyloid, which was restored by suppression of miR-128 expression 

(Tiribuzi et al., 2014). A different link between Alzheimer pathology and TFEB function 

was observed with the finding that activation of TFEB is negatively impacted by the 

deficiency of presenilin, a cause of familial Alzheimer’s disease (Reddy et al., 2016). In the 

absence of presenilin, the levels of the mTORC1 amino acid sensor sestrin2 are reduced and 

mTORC1 is constitutively tethered to the lysosomal membrane, thereby increasing 

inhibitory phosphorylation of TFEB (Reddy et al., 2016). Increased phosphorylation of 

TFEB in Alzheimer’s is consistent with the observed progressive nuclear exclusion of TFEB 

in brain samples from Alzheimer’s disease patients (Wang et al., 2016b). A third, 

independent connection between Alzheimer pathology and TFEB function was reported 

with the observation that TFEB binding to the promoters of lysosomal genes can be 

outcompeted by apoE4 (Parcon et al., 2018). ApoE4 is the protein encoded by the APOE ɛ4 

allele, the single greatest genetic risk factor for the development of Alzheimer’s disease 

(Strittmatter and Roses, 1995). In vitro, apoE4 could bind to DNA probes carrying the 

CLEAR motif with much greater affinity than apoE3, the protein product of APOE ɛ3 allele 

which is not a risk factor for Alzheimer’s disease; increased apoE4 binding to CLEAR 

probes was paralleled by decreased TFEB binding to the same probes, and expression of 

apoE4 diminished the expression of TFEB target genes (Parcon et al., 2018). Thus, several 

independent pathways seem to converge to disturbed TFEB-mediated lysosomal biogenesis 

as a potential common leitmotif in the pathogenesis of Alzheimer’s disease. More in vivo 

work is needed to clarify whether these pathways cross-talk and where they are singularly 

placed in the sequence of cellular events that culminate with neuronal cell death.

Spinobulbar muscular atrophy (SBMA) is a disease caused by the expansion of a 

polyglutamine tract (polyQ) in androgen receptor (AR) protein. Recent work has shown that 

normal AR interacts with TFEB and promotes TFEB expression, whereas polyQ AR 

interferes with TFEB activation and impairs neuronal autophagy, thereby contributing to 

disease pathology (Cortes et al., 2014).

Together, these examples highlight impaired function of TFEB as a potential contributor of 

neuronal degeneration and prompt the question of whether interventions aimed at increasing 

TFEB function would counteract disease progression.

Therapeutic effects of TFEB-mediated enhancement of the autophagy-

lysosome pathway

Impairment of the autophagy-lysosome pathway and aberrant accumulation of non-degraded 

metabolites are shared focal points of most lysosomal storage disorders and several late-

onset neurodegenerative diseases (Sharma et al., 2018). Enhancing autophagy and lysosomal 

function can, therefore, be pursued as a line of investigation to define possible treatments for 

these diseases. Several studies based on autophagic enhancement in pre-clinical models of 
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neurodegenerative diseases have been conducted using the mTORC1 allosteric inhibitor, 

rapamycin, or analogue molecules (the rapalogs). The rationale was rooted in the notion that 

active mTORC1 inhibits autophagy by phosphorylating, among others, the autophagic 

initiating factor ULK1, leading to autophagy inhibition (Kim et al., 2011). Thus, inhibition 

of mTORC1 results in activation of autophagy. Results from various models of 

neurodegenerative disease, including Alzheimer’s, Parkinson’s and Huntington’s diseases 

and frontotemporal lobar degeneration have consistently shown improved pathology upon 

mTORC1 pharmacological inhibition with rapamycin/rapalogs (Berger et al., 2006; 

Caccamo et al., 2010; Ravikumar et al., 2004; Santini et al., 2009; Wang et al., 2012). 

Pharmacological inhibition of mTORC1 should also boost autophagy and lysosomal 

biogenesis by relieving mTORC1-mediated TFEB inhibition; unfortunately, however, TFEB 

is among the mTORC1 substrates that are insensitive to rapamycin and that therefore are not 

significantly activated by this pharmacological treatment (Roczniak-Ferguson et al., 2012; 

Settembre et al., 2012). Importantly, proof-of-principle studies using overexpression of 

exogenous TFEB have been conducted that demonstrate the therapeutic effects of TFEB-

mediated enhancement of the autophagy-lysosome pathway in very different disease models. 

Thus, additional signaling pathways are being examined to leverage activation of 

endogenous TFEB as a therapeutic tool. The following paragraphs provide an updated 

summary of studies focused on genetic and pharmacological manipulation of TFEB to 

sustain an enhanced lysosomal function in various animal models of storage diseases (Figure 

3).

Multiple sulfatase deficiency.

Multiple sulfatase deficiency (MSD) is a severe lysosomal storage disorder caused by 

defects in SUMF1, an ER-residing post-translational modifying factor of the sulfatases 

(Cosma et al., 2003; Dierks et al., 2003). Deficiency of functional SUMF1 leads to the 

simultaneous inactivity of all sulfatases, of which several reside at the lysosome and are 

themselves defective in various distinct lysosomal storage disorders (Diez-Roux and 

Ballabio, 2005). At the tissue level, a prominent MSD feature is the storage of undegraded 

glycosaminoglycans (GAGs). Systemic injection of an adeno-associated virus (AAV) 

carrying TFEB cDNA in a mouse model of MSD resulted in reductions of GAGs, 

macrophage infiltration (a marker of tissue inflammation) and cell death in the muscle and 

liver, indicating amelioration of tissue pathology (Medina et al., 2011). TFEB-induced 

clearance was mediated by enhanced lysosomal exocytosis, a process by which the 

lysosomal membrane fuses with the plasma membrane and the content of the lysosome is 

emptied outside of the cell; lysosomal exocytosis requires active TRPML1, a Ca2+ channel 

encoded by the MCOLN1 gene which is a direct target of TFEB (Medina et al., 2011).

Pompe disease.

Pompe disease is a lysosomal storage disorder caused by the deficiency of functional acid α-

glucosidase, a lysosomal enzyme that breaks down glycogen to glucose in the lysosomal 

lumen. Deficiency of α-glucosidase function results in a severe myopathy characterized by 

the accumulation of glycogen and excessive autophagic buildup in muscle fibers (Raben et 

al., 2007). AAV-mediated TFEB overexpression in the muscle of a mouse model of Pompe 

disease reduced abnormal glycogen storage and alleviated the autophagic buildup 
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(Spampanato et al., 2013). Similar to the MSD study, the clearance effect was mainly due to 

exocytosis of storage vesicles, which in this case included autophagosomes; suppressing 

autophagy indeed reduced the effects of TFEB overexpression (Spampanato et al., 2013).

Batten disease (neuronal ceroid lipofuscinosis).

Batten disease comprises a family of genetically distinct neurodegenerative diseases 

characterized, at the cellular level, by the intralysosomal storage of autofluorescent material 

(ceroid lipopigment) (Mole and Cotman, 2015). Juvenile Batten disease is caused by 

mutations in CLN3 gene, which encodes a multi-pass lysosomal membrane protein involved 

in lysosome homeostasis (Carcel-Trullols et al., 2015; Cotman and Staropoli, 2012). 

Pharmacological activation of endogenous TFEB via oral administration of trehalose 

reduced neuropathology and elongated the lifespan of a mouse model of juvenile Batten 

disease (Palmieri et al., 2017a). Trehalose activates TFEB through the inhibition of the 

activity of Akt, a negative regulator of TFEB; trehalose-treated animals had indeed increased 

nuclear translocation of TFEB in neurons and an enhanced expression of genes of the 

autophagy-lysosome pathway (Palmieri et al., 2017a). Trehalose treatment diminished the 

storage of ceroid lipopigment in brain cells and reduced neuroinflammation and 

neurodegeneration, while improving a sensory phenotype (Palmieri et al., 2017a). Since both 

the primary function of CLN3 protein and the link between CLN3 deficiency and the storage 

of ceroid lipopigment are unknown, it remains to be established whether TFEB activation 

reduces lysosomal storage in CLN3-deficient neurons by preserving lysosomal homeostasis 

or rather by enhancing lysosomal pathways that can compensate for the loss of CLN3 

function. It is also possible that TFEB-induced lysosomal exocytosis contributes to reducing 

the cellular load of ceroid lipopigment.

Sanfilippo syndrome type B (mucopolysaccharidosis IIIB).

Sanfilippo syndrome is caused by the deficiency of one of four enzymes involved in the 

degradation of heparan sulfate (a mucopolysaccharide, MPS). Similar to several other 

lysosomal storage disorders, Sanfilippo syndrome is characterized by progressive 

neurodegeneration, neuroinflammation, and vision loss among other symptoms (Ashworth et 

al., 2006; Tse et al., 2015; Valstar et al., 2008). Sanfilippo syndrome type B (MPS IIIB) is 

caused by mutations in the NAGLU gene, which encodes the heparan sulfate-degrading 

lysosomal enzyme α-N-acetylglucosaminidase. At the cellular level, NAGLU deficiency 

causes abnormal accumulation of heparan sulfate in autophagic vacuoles (Li et al., 1999). 

TFEB activation in MPS IIIB mice via oral administration of trehalose prevented retinal 

degeneration, attenuated vision loss, and reduced both neuroinflammation and the load of 

autophagic vacuoles in brain cells (Lotfi et al., 2018). Trehalose treatment also elongated the 

lifespan of MPS IIIB mice (Lotfi et al., 2018). Since no other enzymes similar to α-N-

acetylglucosaminidase are known that could compensate for its loss, it is likely that the 

clearance effect obtained upon TFEB activation was mainly mediated by lysosomal 

exocytosis, as seen for exogenous TFEB expression in other models of lysosomal enzyme 

deficiencies. This study demonstrated the therapeutic potential of drug-induced enhancement 

of the autophagy-lysosome pathway in a mouse model of lysosomal enzyme deficiency 

(Lotfi et al., 2018).
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Other degenerative diseases with toxic protein aggregates.

The finding that TFEB overexpression could induce the degradation of polyQ-expanded 

huntingtin (htt) (Sardiello et al., 2009), the protein that forms pathogenic aggregates in 

Huntington’s disease (MacDonald et al., 1993), set the stage for testing TFEB as a 

therapeutic tool in neurodegenerative diseases with a component of autophagic substrate 

accumulation. TFEB is a transcriptional target of PGC1α, and overexpression of PGC1α 
increases the expression of TFEB (Tsunemi et al., 2012). In a mouse model of Huntington’s 

disease, overexpression of PGC1α eliminated htt protein aggregation and ameliorated 

neuropathology through TFEB-dependent enhancement of htt autophagic degradation 

(Tsunemi et al., 2012). Comparable results were obtained with a more direct approach, 

namely, injection of AAVs carrying TFEB cDNA into the striatum of Huntington’s disease 

mice (Vodicka et al., 2016). Similarly, injection of TFEB AAVs in the brain of a rat model of 

Parkinson’s disease decreased both α-synuclein accumulation and loss of nigral dopamine 

neurons, demonstrating a therapeutic effect (Decressac et al., 2013). Likewise, AAV-

mediated expression of TFEB in the brain of the rTg4510 mouse model of tauopathy (a 

model of Alzheimer’s disease) reduced neurofibrillary tangle pathology and 

neurodegeneration, resulting in the rescue of synaptic and behavioral defects observed in 

these mice (Polito et al., 2014). Neuroprotective effects were also achieved by crossing a 

P301S model of tauopathy with a transgenic mouse line expressing TFEB in the adult brain 

(Wang et al., 2016a). Among the observed effects mediated by TFEB overexpression was 

the restored expression of spinophilin, a protein that regulates the formation and function of 

dendritic spines (Feng et al., 2000; Wang et al., 2016a). Finally, AAV-mediated expression of 

TFEB either in the astrocytes or neurons of APP/PS1 mice (a different model of Alzheimer’s 

disease displaying amyloid plaque pathogenesis) reduced β-amyloid levels and amyloid 

plaque load (Xiao et al., 2014; Xiao et al., 2015).

The brain is not the only organ that is affected by proteinopathies and that therefore could 

benefit from the enhancement of the autophagy-lysosome pathway. Alpha-1-antitrypsin 

(AAT) deficiency can present with the presence of AAT toxic aggregates resulting from 

mutations that impair normal AAT protein folding (Wu et al., 1994). TFEB viral delivery to 

the liver of a mouse model of AAT deficiency decreased the protein toxic aggregates and 

ameliorated liver fibrosis and cell death (Pastore et al., 2013). Similar therapeutic effects 

were observed when TFEB was delivered to the lung of mice with pathogenic aggregates of 

misfolded antitrypsin (Hidvegi et al., 2015) or in a Zebrafish model of amyloidogenic light 

chain-mediated cardiotoxicity (Guan et al., 2014).

Additional studies in cellular models of disease caused by abnormal protein accumulation—

including SBMA (Cortes et al., 2014), spinocerebellar ataxia type 1 (Bouche et al., 2016) 

and CLN2 disease (a Batten disease subtype) (Song et al., 2014)—demonstrated the 

potential therapeutic effects of increased TFEB function, thereby expanding the spectrum of 

diseases that are potentially amenable to TFEB therapy.

Conclusions

Although a complex and multi-layered process, lysosomal biogenesis can be dissected into a 

relatively small number of streamlined events that are amenable to genetic and biochemical 
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analysis. Somehow unexpectedly, the characterization of these pathways is revealing that 

highly complex organisms such as mammals are quite resistant to pathogenic mutations that 

would be predicted to be catastrophic based on the established cellular function of the 

affected components. Instead, the emerging picture is that of phenotypic manifestations that 

are much milder than anticipated—if observed at all. Degenerative storage diseases that are 

rooted in causes different from mutations in the genes participating in lysosomal biogenesis 

or function typically have a late onset, indicating that the system as a whole has been able to 

heal itself for a protracted period of time before being overwhelmed by some still undefined 

age-related component. Functional redundancy amongst various effectors of lysosomal 

biogenesis pathways could help explain the observed organism’s resilience to defects in the 

autophagy-lysosome system. The CLEAR network and its chief regulator TFEB could also 

contribute to this resilience. Indeed, experimental activation of the CLEAR network in very 

different models of degenerative storage diseases has consistently resulted in phenotypic 

improvements in the affected organ(s) and even elongation of lifespan in the two studies that 

included lifelong analyses. It is significant that many of these diseases do not currently have 

any therapeutic options other than palliative care. Translational studies that leverage the 

improved understanding of pathogenic mechanisms and regulatory pathways related to the 

autophagy-lysosome system are therefore urgently needed to test lysosomal enhancement as 

a therapeutic tool in degenerative storage diseases.
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Abbreviations

TFEB transcription factor EB

mTORC1 mechanistic/mammalian target of rapamycin complex 1

CLEAR Coordinated Lysosomal Expression and Regulation

PKB protein kinase B

GSK3β glycogen synthase kinase 3β

MAP4K3 mitogen-activated protein kinase kinase kinase kinase 3

PP2A protein phosphatase 2

MITF microphtalmia-associated transcription factor

ssVSS vacuolar sorting signal

LIMP-2 lysosome membrane protein 2

SORT1 sortilin 1

SAPs sphingolipid activator proteins
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GBA glucosylceramidase beta

GD Gaucher disease

GCase glucocerebrosidase

AP-1 adaptor protein-1

M6P mannose 6-phosphate

M6PR mannose-6-phosphate receptors

AMRF action myoclonus-renal failure syndrome

PME progressive myoclonus epilepsy

GNPTG N-Acetylglucosamine-1-Phosphotransferase Subunit Gamma

OST oligosaccharyl transferase

IGFIIR insulin-like growth factor II receptor

ERT enzyme replacement therapy

GNPTAB N-Acetylglucosamine-1-Phosphate Transferase Alpha And Beta 

Subunits

ML III mucolipidosis III

LMPs lysosomal membrane proteins

NAGPA N-Acetylglucosamine-1-Phosphodiester Alpha-N-

Acetylglucosaminidas

UCE uncovering enzyme

LAPTM5 lysosomal-associated transmembrane protein 5

LAPTM4α lysosomal-associated transmembrane protein 4

MLN64 metastatic lymph node 64

LMBD1 LMBR1 domain containing protein 1

LAMP1 Lysosome-associated membrane protein 1

LAMP2 Lysosome-associated membrane protein 2

SNARE soluble N-ethylmaleimide-sensitive factor attachment protein 

receptor

VAMP7 vesicle associated membrane protein 7

HOPS homotypic fusion and protein sorting

SBMA spinobulbar muscular atrophy
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polyQ polyglutamine tract

AR androgen receptor

MSD multiple sulfatase deficiency

GAGs glycosaminoglycans

AAV adeno-associated virus

MPS IIIB mucopolysaccharidosis IIIB

NAGLU α-N-acetylglucosaminidase

htt huntingtin

AAT alpha-1-antitrypsin

SBMA spinocerebellar ataxia type 1

SUMF1 sulfatase modifying factor 1

TRPML1 TRP channel subfamily 1

PGC-1α peroxisome proliferator-activated receptor gamma coactivator 1

apoE apolipoprotein E
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Figure 1. 
Phosphorylation of TFEB by serine/threonine protein kinases. mTORC1, Akt, GSK3β and 

MAP4K3 phosphorylate TFEB at various serine residues. The positions of the 

phosphorylated residues refer to the human TFEB protein.
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Figure 2. 
Regulation of the synthesis and trafficking of lysosomal enzymes. TFEB modulates the 

expression of various lysosomal enzymes and of their transporters: LIMP-2 (SCARB2), 

sortilin (SORT1), and the mannose-6-phosphate (M6P) receptors (M6PR and IGF2R). TFEB 

also modulates the expression of a subunit of GlcNac-1-phosphotransferase (GNPTG) and 

of the uncovering enzyme (NAGPA), the Golgi-residing enzymes that generate the 

mannose-6-phosphate tags on most lysosomal enzymes.
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Figure 3. 
Interplay between TFEB and various molecular pathways in neurodegenerative disease. 

TFEB binding to CLEAR sites can be outcompeted by apoE4, a protein encoded by the 

Alzheimer’s disease risk factor APOE ε4 allele. TFEB mRNA levels can be decreased by 

miR-128, a microRNA that is upregulated in Alzheimer’s disease. Loss of functional 

presenilin in familial Alzheimer’s disease leads to increased phosphorylation of TFEB by 

mTORC1 and subsequent cytosolic sequestration by 14–3-3 proteins. Increased TFEB 

sequestration can also result from increased Akt/mTORC1 pathway activity downstream of 

iron accumulation. α-synuclein and polyQ-expanded androgen receptor (AR) also can 

sequester TFEB and decrease its action. Active TFEB promotes various lysosome-based 

clearance pathways that can counteract pathogenic storage of undegraded molecules in 

lysosomal storage disorders and proteinopathies.
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